Knowledge (XXG)

Cluster-expansion approach

Source 📝

2075: 1668: 2070:{\displaystyle {\begin{aligned}\langle 3\rangle &=\langle 3\rangle _{\mathrm {S} }+\langle 1\rangle \ \Delta \langle 2\rangle +\Delta \langle 3\rangle \,,\\\langle N\rangle &=\langle N\rangle _{\mathrm {S} }\\&\quad +\langle N-2\rangle _{\mathrm {S} }\ \Delta \langle 2\rangle \\&\quad +\langle N-4\rangle _{\mathrm {S} }\ \Delta \langle 2\rangle \ \Delta \langle 2\rangle +\dots \\&\quad +\langle N-3\rangle _{\mathrm {S} }\ \Delta \langle 3\rangle \\&\quad +\langle N-5\rangle _{\mathrm {S} }\ \Delta \langle 3\rangle \ \Delta \langle 2\rangle +\dots \\&\quad +\Delta \langle N\rangle \,,\end{aligned}}} 144:, the many-body wavefunction has an overwhelmingly complicated structure such that the direct wave-function-solution techniques are intractable. The cluster expansion is a variant of the coupled-clusters approach and it solves the dynamical equations of correlations instead of attempting to solve the quantum dynamics of an approximated wavefunction or density matrix. It is equally well suited to treat properties of many-body systems and quantum-optical correlations, which has made it very suitable approach for 1161: 737: 480: 2414: 847:
while the explicit momentum indices are suppressed for the sake of briefness. These quantities are normally ordered, which means that all creation operators are on the left-hand side while all annihilation operators are on the right-hand side in the expectation value. It is straight forward to show
2458:
However, as a major difference to a direct expectation-value approach, both many-body and quantum-optical interactions generate correlations sequentially. In several relevant problems, one indeed has a situation where only the lowest-order clusters are initially nonvanishing while the higher-order
2778:
This completely mathematical problem has a direct physical application. One can apply the cluster-expansion transformation to robustly project classical measurement into a quantum-optical measurement. This property is largely based on CET's ability to describe any distribution in the form where a
1164:
Schematic representation of the cluster-expansion-based classification. The full correlation is composed of singlets, doublets, triplets, and higher-order correlations, all uniquely defined by the cluster-expansion approach. Each blue sphere corresponds to one particle operator and yellow
2454:
among clusters. Obviously, introducing clusters cannot remove the hierarchy problem of the direct approach because the hierarchical contributions remains in the dynamics. This property and the appearance of the nonlinear terms seem to suggest complications for the applicability of the
1169:
The hierarchy problem can be systematically truncated after identifying correlated clusters. The simplest definitions follow after one identifies the clusters recursively. At the lowest level, one finds the class of single-particle expectation values (singlets) that are symbolized by
732:{\displaystyle \langle {\hat {N}}\rangle \equiv \langle {\hat {B}}_{1}^{\dagger }\cdots {\hat {B}}_{K}^{\dagger }\ {\hat {a}}_{1}^{\dagger }\cdots {\hat {a}}_{N_{\hat {a}}}^{\dagger }{\hat {a}}_{N_{\hat {a}}}\cdots {\hat {a}}_{1}\ {\hat {B}}_{J}\cdots {\hat {B}}_{1}\rangle } 1070: 1661: 1577: 2775:, defined by the singlet–doublet contributions, multiplied by a polynomial, defined by the higher-order clusters. It turns out that this formulation provides extreme convergence in representation-to-representation transformations. 2174: 1276: 2589:
Besides describing quantum dynamics, one can naturally apply the cluster-expansion approach to represent the quantum distributions. One possibility is to represent the quantum fluctuations of a quantized light mode
1423: 350: 2079:
where each product term represents one factorization symbolically and implicitly includes a sum over all factorizations within the class of terms identified. The purely correlated part is denoted by
936: 2169:
As this identification is applied recursively, one may directly identify which correlations appear in the hierarchy problem. One then determines the quantum dynamics of the correlations, yielding
206: 1673: 2765: 2691: 394: 1513: 1337: 2581:
is typically much smaller than the overall particle number, the cluster-expansion approach yields a pragmatic and systematic solution scheme for many-body and quantum-optics investigations.
799: 244: 2164: 2135: 2106: 2519: 2452: 419: 269: 1478: 1452: 1302: 1220: 1194: 845: 1150: 2617: 439: 1599: 1152:. Since all levels of expectation values can be nonzero, up to the actual particle number, this equation cannot be directly truncated without further considerations. 137:
that mainly operates with many-body wavefunctions. The coupled-clusters approach is one of the most successful methods to solve quantum states of complex molecules.
925: 1604: 1520: 2579: 2559: 2539: 1357: 1095: 893: 873: 293: 2409:{\displaystyle \mathrm {i} \hbar {\frac {\partial }{\partial t}}\Delta \langle {\hat {N}}\rangle =\mathrm {T} \left+\mathrm {NL} \left+\mathrm {Hi} \left\,,} 2619:
in terms of clusters, yielding the cluster-expansion representation. Alternatively, one can express them in terms of the expectation-value representation
1225: 2811: 52: 163: 3066: 3047: 2965: 2945: 2868: 2848: 1378: 31:
problem that arises when quantum dynamics of interacting systems is solved. This method is well suited for producing a closed set of
306: 1065:{\displaystyle \mathrm {i} \hbar {\frac {\partial }{\partial t}}\langle {\hat {N}}\rangle =\mathrm {T} \left+\mathrm {Hi} \left} 3014:
Kira, M.; Koch, S. W.; Smith, R. P.; Hunter, A. E.; Cundiff, S. T. (2011). "Quantum spectroscopy with Schrödinger-cat states".
2767:
to the density matrix is unique but can result in a numerically diverging series. This problem can be solved by introducing a
117:
The idea of cumulants was converted into quantum physics by Fritz Coester and Hermann Kümmel with the intention of studying
2806: 168: 48: 2801: 2780: 2696: 2622: 355: 2768: 1483: 1307: 1097:
symbolizes contributions without hierarchy problem and the functional for hierarchical (Hi) coupling is symbolized by
299:
nature of the quantity. When the many-body state consists of electronic excitations of matter, it is fully defined by
3085: 145: 44: 848:
that this expectation value vanishes if the amount of Fermion creation and annihilation operators are not equal.
744: 450: 133:
in order to describe many-body phenomena in complex atoms and molecules. This work introduced the basis for the
1075: 211: 2541:-particle clusters. As a result, the equations become closed and one only needs to compute the dynamics up to 2140: 2111: 2082: 1364: 1278:
that contains a formal sum over all possible products of single-particle expectation values. More generally,
79: 63: 1165:
circles/ellipses to correlations. The number of spheres within a correlation identifies the cluster number.
2779:
Gaussian is multiplied by a polynomial factor. This technique is already being used to access and derive
2462: 2421: 399: 249: 1457: 1431: 1281: 1199: 1173: 804: 2906: 2887: 1372: 1100: 852: 156: 465:
When the many-body system is studied together with its quantum-optical properties, all measurable
1425:. The singlet factorization constitutes the first level of the cluster-expansion representation. 296: 114:, and so on, that identify the distribution with increasing accuracy as more cumulants are used. 87: 2976:
Mootz, M.; Kira, M.; Koch, S. W. (2012). "Sequential build-up of quantum-optical correlations".
2593: 122: 3003: 2925: 931:. More mathematically, all particles interact with each other leading to an equation structure 3062: 3043: 2961: 2941: 2864: 2844: 875:-particle operator. However, the many-body as well as quantum-optical interactions couple the 466: 442: 424: 152: 130: 24: 2783:
from a set of classical spectroscopy measurements, which can be performed using high-quality
1584: 94:
that describe probabilistic distributions with as few quantities as possible; he called them
1160: 1656:{\displaystyle \Delta \langle 2\rangle =\langle 2\rangle -\langle 2\rangle _{\mathrm {S} }} 1572:{\displaystyle \langle 2\rangle =\langle 2\rangle _{\mathrm {S} }+\Delta \langle 2\rangle } 898: 2796: 134: 118: 28: 2984: 82:. Conceptually, there is always, at least formally, probability distribution behind each 2561:-particle correlations in order to explain the relevant properties of the system. Since 2564: 2544: 2524: 1342: 1080: 878: 858: 446: 278: 159:
to describe the physics involved. For example, a light field is then described through
75: 40: 2898:
Coester, F.; Kümmel, H. (1960). "Short-range correlations in nuclear wave functions".
86:
that is measured. Already in 1889, a long time before quantum physics was formulated,
3079: 2459:
clusters build up slowly. In this situation, one can omit the hierarchical coupling,
67: 1271:{\displaystyle \langle 2\rangle _{\mathrm {S} }=\langle 1\rangle \langle 1\rangle } 126: 71: 2995:
Kira, M.; Koch, S. (2008). "Cluster-expansion representation in quantum optics".
32: 83: 3022: 2917:
Kira, M.; Koch, S. (2006). "Quantum-optical spectroscopy of semiconductors".
91: 36: 3059:
Many-Body Methods in Chemistry and Physics: MBPT and Coupled-Cluster Theory
2958:
Many-Body Methods in Chemistry and Physics: MBPT and Coupled-Cluster Theory
1375:
where Boson operators are formally replaced by a coherent amplitude, i.e.,
2772: 1360: 1359:-particle expectation value. Physically, the singlet factorization among 111: 107: 103: 300: 35:
computable equations that can be applied to analyze a great variety of
2784: 1368: 272: 141: 1663:. The next levels of identifications follow recursively by applying 1159: 160: 1418:{\displaystyle {\hat {B}}\rightarrow \langle {\hat {B}}\rangle } 99: 2879:
Coester, F. (1958). "Bound states of a many-particle system".
929:
Bogolyubov–Born–Green–Kirkwood–Yvon (BBGKY) hierarchy problem
345:{\displaystyle {\hat {a}}_{\lambda ,\mathbf {k} }^{\dagger }} 2137:
determine doublets while the three-particle correlations
2938:
Statistische Physik: Gleichgewichtstheorie und Kinetik
2418:
where the factorizations produce a nonlinear coupling
851:
Once the system Hamiltonian is known, one can use the
155:
or quantum optics, it is most convenient to apply the
98:. The cumulants form a sequence of quantities such as 66:
essentially replaces classically accurate values by a
2771:(CET) that represents the distribution in terms of a 2699: 2625: 2596: 2567: 2547: 2527: 2465: 2424: 2177: 2143: 2114: 2085: 1671: 1607: 1587: 1523: 1486: 1460: 1434: 1381: 1345: 1310: 1284: 1228: 1202: 1176: 1103: 1083: 939: 901: 881: 861: 807: 747: 483: 427: 402: 358: 309: 281: 252: 214: 171: 927:-particle expectation values, which is known as the 201:{\displaystyle {\hat {B}}_{\mathbf {q} }^{\dagger }} 70:distribution that can be formulated using, e.g., a 2760:{\displaystyle \langle ^{J}{\hat {B}}^{K}\rangle } 2759: 2686:{\displaystyle \langle ^{J}{\hat {B}}^{K}\rangle } 2685: 2611: 2573: 2553: 2533: 2513: 2446: 2408: 2158: 2129: 2100: 2069: 1655: 1593: 1571: 1507: 1472: 1446: 1417: 1351: 1331: 1296: 1270: 1214: 1188: 1144: 1089: 1064: 919: 887: 867: 839: 793: 731: 433: 413: 389:{\displaystyle {\hat {a}}_{\lambda ,\mathbf {k} }} 388: 344: 287: 263: 238: 200: 1601:contribution denotes the correlated part, i.e., 1508:{\displaystyle \langle 2\rangle _{\mathrm {S} }} 1332:{\displaystyle \langle N\rangle _{\mathrm {S} }} 43:problems. For example, it is widely applied in 855:of motion to generate the dynamics of a given 8: 2754: 2700: 2680: 2626: 2503: 2482: 2394: 2373: 2346: 2331: 2316: 2301: 2292: 2277: 2253: 2238: 2219: 2204: 2153: 2147: 2124: 2118: 2108:. From these, the two-particle correlations 2095: 2089: 2056: 2050: 2027: 2021: 2012: 2006: 1989: 1976: 1962: 1956: 1939: 1926: 1906: 1900: 1891: 1885: 1868: 1855: 1841: 1835: 1818: 1805: 1783: 1776: 1766: 1760: 1749: 1743: 1734: 1728: 1719: 1713: 1699: 1692: 1682: 1676: 1642: 1635: 1629: 1623: 1617: 1611: 1566: 1560: 1543: 1536: 1530: 1524: 1494: 1487: 1467: 1461: 1441: 1435: 1412: 1397: 1318: 1311: 1291: 1285: 1265: 1259: 1256: 1250: 1236: 1229: 1209: 1203: 1183: 1177: 1136: 1115: 1054: 1033: 1009: 994: 978: 963: 726: 505: 499: 484: 2978:Journal of the Optical Society of America B 794:{\displaystyle N=N_{\hat {B}}+N_{\hat {a}}} 2835: 2833: 2831: 2829: 2827: 2748: 2737: 2736: 2729: 2719: 2708: 2707: 2698: 2674: 2663: 2662: 2655: 2645: 2634: 2633: 2624: 2598: 2597: 2595: 2566: 2546: 2526: 2486: 2485: 2466: 2464: 2425: 2423: 2402: 2377: 2376: 2357: 2335: 2334: 2305: 2304: 2281: 2280: 2264: 2242: 2241: 2225: 2208: 2207: 2186: 2178: 2176: 2142: 2113: 2084: 2059: 1993: 1992: 1943: 1942: 1872: 1871: 1822: 1821: 1787: 1786: 1752: 1703: 1702: 1672: 1670: 1646: 1645: 1606: 1586: 1547: 1546: 1522: 1498: 1497: 1485: 1459: 1433: 1401: 1400: 1383: 1382: 1380: 1344: 1322: 1321: 1309: 1283: 1240: 1239: 1227: 1201: 1175: 1119: 1118: 1104: 1102: 1082: 1037: 1036: 1020: 998: 997: 984: 967: 966: 948: 940: 938: 900: 880: 860: 813: 812: 806: 779: 778: 759: 758: 746: 720: 709: 708: 698: 687: 686: 676: 665: 664: 646: 645: 640: 629: 628: 621: 608: 607: 602: 591: 590: 580: 575: 564: 563: 553: 548: 537: 536: 526: 521: 510: 509: 488: 487: 482: 426: 406: 401: 379: 372: 361: 360: 357: 336: 330: 323: 312: 311: 308: 280: 256: 251: 239:{\displaystyle {\hat {B}}_{\mathbf {q} }} 229: 228: 217: 216: 213: 192: 186: 185: 174: 173: 170: 2159:{\displaystyle \Delta \langle 3\rangle } 2130:{\displaystyle \Delta \langle 2\rangle } 2101:{\displaystyle \Delta \langle N\rangle } 47:and it can be applied to generalize the 16:Quantum mechanical calculation technique 2823: 2183: 945: 403: 253: 3057:Shavitt, I.; Bartlett, R. J. (2009). 1454:is then the difference of the actual 1222:can be approximated by factorization 1196:. Any two-particle expectation value 303:creation and annihilation operators 7: 2812:Semiconductor luminescence equations 2693:. In this case, the connection from 421:refers to particle's momentum while 53:semiconductor luminescence equations 1339:is the singlet factorization of an 469:can be expressed in the form of an 164:creation and annihilation operators 2514:{\displaystyle \mathrm {Hi} \left} 2479: 2470: 2467: 2447:{\displaystyle \mathrm {NL} \left} 2429: 2426: 2370: 2361: 2358: 2328: 2298: 2268: 2265: 2235: 2226: 2201: 2192: 2188: 2179: 2144: 2115: 2086: 2047: 2018: 2003: 1994: 1953: 1944: 1897: 1882: 1873: 1832: 1823: 1788: 1740: 1725: 1704: 1647: 1608: 1588: 1557: 1548: 1499: 1323: 1241: 1108: 1105: 1024: 1021: 985: 954: 950: 941: 414:{\displaystyle \hbar \mathbf {k} } 264:{\displaystyle \hbar \mathbf {q} } 27:that systematically truncates the 14: 1515:. More mathematically, one finds 1473:{\displaystyle \langle 2\rangle } 1447:{\displaystyle \langle 2\rangle } 1297:{\displaystyle \langle 1\rangle } 1215:{\displaystyle \langle 2\rangle } 1189:{\displaystyle \langle 1\rangle } 2907:doi:10.1016/0029-5582(60)90140-1 2888:doi:10.1016/0029-5582(58)90280-3 2769:cluster-expansion transformation 1156:Recursive definition of clusters 840:{\displaystyle N_{\hat {B}}=J+K} 407: 380: 331: 257: 230: 187: 2043: 1972: 1922: 1851: 1801: 3061:. Cambridge University Press. 3042:. Cambridge University Press. 3038:Kira, M.; Koch, S. W. (2011). 3004:doi:10.1103/PhysRevA.78.022102 2960:. Cambridge University Press. 2926:doi:10.1103/PhysRevA.73.013813 2843:. Cambridge University Press. 2839:Kira, M.; Koch, S. W. (2011). 2742: 2726: 2713: 2703: 2668: 2652: 2639: 2629: 2603: 2491: 2382: 2340: 2310: 2286: 2247: 2213: 1480:and the singlet factorization 1406: 1394: 1388: 1139: 1124: 1112: 1042: 1003: 972: 914: 902: 818: 784: 764: 714: 692: 670: 651: 634: 613: 596: 569: 542: 515: 493: 366: 317: 222: 179: 1: 2861:Thiele: Pioneer in Statistics 2807:Semiconductor Bloch equations 1145:{\displaystyle \mathrm {Hi} } 157:second-quantization formalism 49:semiconductor Bloch equations 3040:Semiconductor Quantum Optics 2841:Semiconductor Quantum Optics 2802:Quantum-optical spectroscopy 2781:quantum-optical spectroscopy 2455:cluster-expansion approach. 146:semiconductor quantum optics 121:many-body phenomena. Later, 45:semiconductor quantum optics 2985:doi:10.1364/JOSAB.29.000A17 474:-particle expectation value 3102: 2612:{\displaystyle {\hat {B}}} 1365:Hartree–Fock approximation 271:defines the momentum of a 129:extended the approach for 21:cluster-expansion approach 2859:Lauritzen, S. L. (2002). 2521:, at the level exceeding 1304:defines the singlets and 2956:Bartlett, R. J. (2009). 895:-particle quantities to 434:{\displaystyle \lambda } 135:coupled-cluster approach 80:phase-space distribution 1594:{\displaystyle \Delta } 1428:The correlated part of 1373:classical approximation 461:-particle contributions 2863:. Oxford Univ. Press. 2761: 2687: 2613: 2575: 2555: 2535: 2515: 2448: 2410: 2160: 2131: 2102: 2071: 1657: 1595: 1573: 1509: 1474: 1448: 1419: 1353: 1333: 1298: 1272: 1216: 1190: 1166: 1146: 1091: 1066: 921: 889: 869: 841: 795: 733: 435: 415: 396:, respectively, where 390: 346: 289: 265: 246:, respectively, where 240: 202: 151:Like almost always in 3023:doi:10.1038/nphys2091 2762: 2688: 2614: 2576: 2556: 2536: 2516: 2449: 2411: 2166:are called triplets. 2161: 2132: 2103: 2072: 1658: 1596: 1574: 1510: 1475: 1449: 1420: 1354: 1334: 1299: 1273: 1217: 1191: 1163: 1147: 1092: 1067: 922: 920:{\displaystyle (N+1)} 890: 870: 842: 796: 734: 436: 416: 391: 347: 290: 266: 241: 203: 2697: 2623: 2594: 2565: 2545: 2525: 2463: 2422: 2175: 2141: 2112: 2083: 1669: 1605: 1585: 1521: 1484: 1458: 1432: 1379: 1343: 1308: 1282: 1226: 1200: 1174: 1101: 1081: 937: 899: 879: 859: 805: 745: 481: 425: 400: 356: 307: 279: 250: 212: 169: 853:Heisenberg equation 626: 585: 558: 531: 341: 197: 2757: 2683: 2609: 2571: 2551: 2531: 2511: 2444: 2406: 2156: 2127: 2098: 2067: 2065: 1653: 1591: 1569: 1505: 1470: 1444: 1415: 1349: 1329: 1294: 1268: 1212: 1186: 1167: 1142: 1087: 1062: 917: 885: 865: 837: 791: 729: 589: 562: 535: 508: 467:expectation values 457:Classification of 431: 411: 386: 342: 310: 285: 261: 236: 198: 172: 88:Thorvald N. Thiele 23:is a technique in 3086:Quantum mechanics 2997:Physical Review A 2936:Haug, H. (2006). 2919:Physical Review A 2745: 2716: 2671: 2642: 2606: 2574:{\displaystyle C} 2554:{\displaystyle C} 2534:{\displaystyle C} 2494: 2385: 2343: 2313: 2289: 2250: 2216: 2199: 2017: 2002: 1952: 1896: 1881: 1831: 1724: 1409: 1391: 1352:{\displaystyle N} 1127: 1090:{\displaystyle T} 1045: 1006: 975: 961: 888:{\displaystyle N} 868:{\displaystyle N} 821: 787: 767: 717: 695: 684: 673: 654: 637: 616: 599: 572: 561: 545: 518: 496: 443:degree of freedom 441:is some internal 369: 320: 288:{\displaystyle B} 275:. The "hat" over 225: 182: 153:many-body physics 131:quantum chemistry 25:quantum mechanics 3093: 3072: 3053: 3025: 3012: 3006: 2993: 2987: 2974: 2968: 2954: 2948: 2934: 2928: 2915: 2909: 2896: 2890: 2877: 2871: 2857: 2851: 2837: 2766: 2764: 2763: 2758: 2753: 2752: 2747: 2746: 2738: 2734: 2733: 2724: 2723: 2718: 2717: 2709: 2692: 2690: 2689: 2684: 2679: 2678: 2673: 2672: 2664: 2660: 2659: 2650: 2649: 2644: 2643: 2635: 2618: 2616: 2615: 2610: 2608: 2607: 2599: 2580: 2578: 2577: 2572: 2560: 2558: 2557: 2552: 2540: 2538: 2537: 2532: 2520: 2518: 2517: 2512: 2510: 2506: 2496: 2495: 2487: 2473: 2453: 2451: 2450: 2445: 2443: 2432: 2415: 2413: 2412: 2407: 2401: 2397: 2387: 2386: 2378: 2364: 2353: 2349: 2345: 2344: 2336: 2315: 2314: 2306: 2291: 2290: 2282: 2271: 2260: 2256: 2252: 2251: 2243: 2229: 2218: 2217: 2209: 2200: 2198: 2187: 2182: 2165: 2163: 2162: 2157: 2136: 2134: 2133: 2128: 2107: 2105: 2104: 2099: 2076: 2074: 2073: 2068: 2066: 2039: 2015: 2000: 1999: 1998: 1997: 1968: 1950: 1949: 1948: 1947: 1918: 1894: 1879: 1878: 1877: 1876: 1847: 1829: 1828: 1827: 1826: 1797: 1793: 1792: 1791: 1722: 1709: 1708: 1707: 1662: 1660: 1659: 1654: 1652: 1651: 1650: 1600: 1598: 1597: 1592: 1578: 1576: 1575: 1570: 1553: 1552: 1551: 1514: 1512: 1511: 1506: 1504: 1503: 1502: 1479: 1477: 1476: 1471: 1453: 1451: 1450: 1445: 1424: 1422: 1421: 1416: 1411: 1410: 1402: 1393: 1392: 1384: 1358: 1356: 1355: 1350: 1338: 1336: 1335: 1330: 1328: 1327: 1326: 1303: 1301: 1300: 1295: 1277: 1275: 1274: 1269: 1246: 1245: 1244: 1221: 1219: 1218: 1213: 1195: 1193: 1192: 1187: 1151: 1149: 1148: 1143: 1129: 1128: 1120: 1111: 1096: 1094: 1093: 1088: 1071: 1069: 1068: 1063: 1061: 1057: 1047: 1046: 1038: 1027: 1016: 1012: 1008: 1007: 999: 988: 977: 976: 968: 962: 960: 949: 944: 926: 924: 923: 918: 894: 892: 891: 886: 874: 872: 871: 866: 846: 844: 843: 838: 824: 823: 822: 814: 800: 798: 797: 792: 790: 789: 788: 780: 770: 769: 768: 760: 738: 736: 735: 730: 725: 724: 719: 718: 710: 703: 702: 697: 696: 688: 682: 681: 680: 675: 674: 666: 659: 658: 657: 656: 655: 647: 639: 638: 630: 625: 620: 619: 618: 617: 609: 601: 600: 592: 584: 579: 574: 573: 565: 559: 557: 552: 547: 546: 538: 530: 525: 520: 519: 511: 498: 497: 489: 440: 438: 437: 432: 420: 418: 417: 412: 410: 395: 393: 392: 387: 385: 384: 383: 371: 370: 362: 351: 349: 348: 343: 340: 335: 334: 322: 321: 313: 294: 292: 291: 286: 270: 268: 267: 262: 260: 245: 243: 242: 237: 235: 234: 233: 227: 226: 218: 207: 205: 204: 199: 196: 191: 190: 184: 183: 175: 3101: 3100: 3096: 3095: 3094: 3092: 3091: 3090: 3076: 3075: 3069: 3056: 3050: 3037: 3034: 3032:Further reading 3029: 3028: 3021:(10): 799–804. 3013: 3009: 2994: 2990: 2975: 2971: 2955: 2951: 2935: 2931: 2916: 2912: 2900:Nuclear Physics 2897: 2893: 2881:Nuclear Physics 2878: 2874: 2858: 2854: 2838: 2825: 2820: 2797:BBGKY hierarchy 2793: 2735: 2725: 2706: 2695: 2694: 2661: 2651: 2632: 2621: 2620: 2592: 2591: 2587: 2563: 2562: 2543: 2542: 2523: 2522: 2478: 2474: 2461: 2460: 2433: 2420: 2419: 2369: 2365: 2276: 2272: 2234: 2230: 2191: 2173: 2172: 2139: 2138: 2110: 2109: 2081: 2080: 2064: 2063: 2037: 2036: 1988: 1966: 1965: 1938: 1916: 1915: 1867: 1845: 1844: 1817: 1795: 1794: 1782: 1769: 1757: 1756: 1698: 1685: 1667: 1666: 1641: 1603: 1602: 1583: 1582: 1542: 1519: 1518: 1493: 1482: 1481: 1456: 1455: 1430: 1429: 1377: 1376: 1341: 1340: 1317: 1306: 1305: 1280: 1279: 1235: 1224: 1223: 1198: 1197: 1172: 1171: 1158: 1099: 1098: 1079: 1078: 1032: 1028: 993: 989: 953: 935: 934: 897: 896: 877: 876: 857: 856: 808: 803: 802: 774: 754: 743: 742: 707: 685: 663: 641: 627: 603: 479: 478: 463: 423: 422: 398: 397: 359: 354: 353: 305: 304: 277: 276: 248: 247: 215: 210: 209: 167: 166: 96:half-invariants 61: 41:quantum-optical 29:BBGKY hierarchy 17: 12: 11: 5: 3099: 3097: 3089: 3088: 3078: 3077: 3074: 3073: 3068:978-0521818322 3067: 3054: 3049:978-0521875097 3048: 3033: 3030: 3027: 3026: 3016:Nature Physics 3007: 2988: 2969: 2966:978-0521818322 2949: 2946:978-3540256298 2929: 2910: 2891: 2872: 2869:978-0198509721 2852: 2849:978-0521875097 2822: 2821: 2819: 2816: 2815: 2814: 2809: 2804: 2799: 2792: 2789: 2756: 2751: 2744: 2741: 2732: 2728: 2722: 2715: 2712: 2705: 2702: 2682: 2677: 2670: 2667: 2658: 2654: 2648: 2641: 2638: 2631: 2628: 2605: 2602: 2586: 2583: 2570: 2550: 2530: 2509: 2505: 2502: 2499: 2493: 2490: 2484: 2481: 2477: 2472: 2469: 2442: 2439: 2436: 2431: 2428: 2405: 2400: 2396: 2393: 2390: 2384: 2381: 2375: 2372: 2368: 2363: 2360: 2356: 2352: 2348: 2342: 2339: 2333: 2330: 2327: 2324: 2321: 2318: 2312: 2309: 2303: 2300: 2297: 2294: 2288: 2285: 2279: 2275: 2270: 2267: 2263: 2259: 2255: 2249: 2246: 2240: 2237: 2233: 2228: 2224: 2221: 2215: 2212: 2206: 2203: 2197: 2194: 2190: 2185: 2181: 2155: 2152: 2149: 2146: 2126: 2123: 2120: 2117: 2097: 2094: 2091: 2088: 2062: 2058: 2055: 2052: 2049: 2046: 2042: 2040: 2038: 2035: 2032: 2029: 2026: 2023: 2020: 2014: 2011: 2008: 2005: 1996: 1991: 1987: 1984: 1981: 1978: 1975: 1971: 1969: 1967: 1964: 1961: 1958: 1955: 1946: 1941: 1937: 1934: 1931: 1928: 1925: 1921: 1919: 1917: 1914: 1911: 1908: 1905: 1902: 1899: 1893: 1890: 1887: 1884: 1875: 1870: 1866: 1863: 1860: 1857: 1854: 1850: 1848: 1846: 1843: 1840: 1837: 1834: 1825: 1820: 1816: 1813: 1810: 1807: 1804: 1800: 1798: 1796: 1790: 1785: 1781: 1778: 1775: 1772: 1770: 1768: 1765: 1762: 1759: 1758: 1755: 1751: 1748: 1745: 1742: 1739: 1736: 1733: 1730: 1727: 1721: 1718: 1715: 1712: 1706: 1701: 1697: 1694: 1691: 1688: 1686: 1684: 1681: 1678: 1675: 1674: 1649: 1644: 1640: 1637: 1634: 1631: 1628: 1625: 1622: 1619: 1616: 1613: 1610: 1590: 1568: 1565: 1562: 1559: 1556: 1550: 1545: 1541: 1538: 1535: 1532: 1529: 1526: 1501: 1496: 1492: 1489: 1469: 1466: 1463: 1443: 1440: 1437: 1414: 1408: 1405: 1399: 1396: 1390: 1387: 1371:it yields the 1348: 1325: 1320: 1316: 1313: 1293: 1290: 1287: 1267: 1264: 1261: 1258: 1255: 1252: 1249: 1243: 1238: 1234: 1231: 1211: 1208: 1205: 1185: 1182: 1179: 1157: 1154: 1141: 1138: 1135: 1132: 1126: 1123: 1117: 1114: 1110: 1107: 1086: 1060: 1056: 1053: 1050: 1044: 1041: 1035: 1031: 1026: 1023: 1019: 1015: 1011: 1005: 1002: 996: 992: 987: 983: 980: 974: 971: 965: 959: 956: 952: 947: 943: 916: 913: 910: 907: 904: 884: 864: 836: 833: 830: 827: 820: 817: 811: 786: 783: 777: 773: 766: 763: 757: 753: 750: 728: 723: 716: 713: 706: 701: 694: 691: 679: 672: 669: 662: 653: 650: 644: 636: 633: 624: 615: 612: 606: 598: 595: 588: 583: 578: 571: 568: 556: 551: 544: 541: 534: 529: 524: 517: 514: 507: 504: 501: 495: 492: 486: 462: 455: 430: 409: 405: 382: 378: 375: 368: 365: 339: 333: 329: 326: 319: 316: 295:signifies the 284: 259: 255: 232: 224: 221: 195: 189: 181: 178: 76:density matrix 64:Quantum theory 60: 57: 15: 13: 10: 9: 6: 4: 3: 2: 3098: 3087: 3084: 3083: 3081: 3070: 3064: 3060: 3055: 3051: 3045: 3041: 3036: 3035: 3031: 3024: 3020: 3017: 3011: 3008: 3005: 3001: 2998: 2992: 2989: 2986: 2982: 2979: 2973: 2970: 2967: 2963: 2959: 2953: 2950: 2947: 2943: 2939: 2933: 2930: 2927: 2923: 2920: 2914: 2911: 2908: 2904: 2901: 2895: 2892: 2889: 2885: 2882: 2876: 2873: 2870: 2866: 2862: 2856: 2853: 2850: 2846: 2842: 2836: 2834: 2832: 2830: 2828: 2824: 2817: 2813: 2810: 2808: 2805: 2803: 2800: 2798: 2795: 2794: 2790: 2788: 2786: 2782: 2776: 2774: 2770: 2749: 2739: 2730: 2720: 2710: 2675: 2665: 2656: 2646: 2636: 2600: 2584: 2582: 2568: 2548: 2528: 2507: 2500: 2497: 2488: 2475: 2456: 2440: 2437: 2434: 2416: 2403: 2398: 2391: 2388: 2379: 2366: 2354: 2350: 2337: 2325: 2322: 2319: 2307: 2295: 2283: 2273: 2261: 2257: 2244: 2231: 2222: 2210: 2195: 2170: 2167: 2150: 2121: 2092: 2077: 2060: 2053: 2044: 2041: 2033: 2030: 2024: 2009: 1985: 1982: 1979: 1973: 1970: 1959: 1935: 1932: 1929: 1923: 1920: 1912: 1909: 1903: 1888: 1864: 1861: 1858: 1852: 1849: 1838: 1814: 1811: 1808: 1802: 1799: 1779: 1773: 1771: 1763: 1753: 1746: 1737: 1731: 1716: 1710: 1695: 1689: 1687: 1679: 1664: 1638: 1632: 1626: 1620: 1614: 1579: 1563: 1554: 1539: 1533: 1527: 1516: 1490: 1464: 1438: 1426: 1403: 1385: 1374: 1370: 1366: 1363:produces the 1362: 1346: 1314: 1288: 1262: 1253: 1247: 1232: 1206: 1180: 1162: 1155: 1153: 1133: 1130: 1121: 1084: 1077: 1072: 1058: 1051: 1048: 1039: 1029: 1017: 1013: 1000: 990: 981: 969: 957: 932: 930: 911: 908: 905: 882: 862: 854: 849: 834: 831: 828: 825: 815: 809: 781: 775: 771: 761: 755: 751: 748: 739: 721: 711: 704: 699: 689: 677: 667: 660: 648: 642: 631: 622: 610: 604: 593: 586: 581: 576: 566: 554: 549: 539: 532: 527: 522: 512: 502: 490: 476: 475: 473: 468: 460: 456: 454: 452: 448: 444: 428: 376: 373: 363: 337: 327: 324: 314: 302: 298: 282: 274: 219: 193: 176: 165: 162: 158: 154: 149: 147: 143: 138: 136: 132: 128: 124: 120: 115: 113: 109: 105: 101: 97: 93: 90:proposed the 89: 85: 81: 77: 73: 69: 68:probabilistic 65: 58: 56: 54: 50: 46: 42: 38: 34: 30: 26: 22: 3058: 3039: 3018: 3015: 3010: 2999: 2996: 2991: 2980: 2977: 2972: 2957: 2952: 2940:. Springer. 2937: 2932: 2921: 2918: 2913: 2902: 2899: 2894: 2883: 2880: 2875: 2860: 2855: 2840: 2777: 2588: 2457: 2417: 2171: 2168: 2078: 1665: 1580: 1517: 1427: 1168: 1073: 933: 928: 850: 740: 477: 471: 470: 464: 458: 150: 139: 127:Josef Paldus 116: 95: 72:wavefunction 62: 20: 18: 2905:: 477–485. 2886:: 421–424. 33:numerically 2983:(2): A17. 2818:References 2585:Extensions 1581:where the 1367:while for 1076:functional 451:band index 445:, such as 123:Jiři Čížek 84:observable 59:Background 2755:⟩ 2743:^ 2721:† 2714:^ 2701:⟨ 2681:⟩ 2669:^ 2647:† 2640:^ 2627:⟨ 2604:^ 2504:⟩ 2492:^ 2483:⟨ 2480:Δ 2438:⋯ 2395:⟩ 2383:^ 2374:⟨ 2371:Δ 2347:⟩ 2341:^ 2332:⟨ 2329:Δ 2323:⋯ 2317:⟩ 2311:^ 2302:⟨ 2299:Δ 2293:⟩ 2287:^ 2278:⟨ 2254:⟩ 2248:^ 2239:⟨ 2236:Δ 2220:⟩ 2214:^ 2205:⟨ 2202:Δ 2193:∂ 2189:∂ 2184:ℏ 2154:⟩ 2148:⟨ 2145:Δ 2125:⟩ 2119:⟨ 2116:Δ 2096:⟩ 2090:⟨ 2087:Δ 2057:⟩ 2051:⟨ 2048:Δ 2034:… 2028:⟩ 2022:⟨ 2019:Δ 2013:⟩ 2007:⟨ 2004:Δ 1990:⟩ 1983:− 1977:⟨ 1963:⟩ 1957:⟨ 1954:Δ 1940:⟩ 1933:− 1927:⟨ 1913:… 1907:⟩ 1901:⟨ 1898:Δ 1892:⟩ 1886:⟨ 1883:Δ 1869:⟩ 1862:− 1856:⟨ 1842:⟩ 1836:⟨ 1833:Δ 1819:⟩ 1812:− 1806:⟨ 1784:⟩ 1777:⟨ 1767:⟩ 1761:⟨ 1750:⟩ 1744:⟨ 1741:Δ 1735:⟩ 1729:⟨ 1726:Δ 1720:⟩ 1714:⟨ 1700:⟩ 1693:⟨ 1683:⟩ 1677:⟨ 1643:⟩ 1636:⟨ 1633:− 1630:⟩ 1624:⟨ 1618:⟩ 1612:⟨ 1609:Δ 1589:Δ 1567:⟩ 1561:⟨ 1558:Δ 1544:⟩ 1537:⟨ 1531:⟩ 1525:⟨ 1495:⟩ 1488:⟨ 1468:⟩ 1462:⟨ 1442:⟩ 1436:⟨ 1413:⟩ 1407:^ 1398:⟨ 1395:→ 1389:^ 1319:⟩ 1312:⟨ 1292:⟩ 1286:⟨ 1266:⟩ 1260:⟨ 1257:⟩ 1251:⟨ 1237:⟩ 1230:⟨ 1210:⟩ 1204:⟨ 1184:⟩ 1178:⟨ 1137:⟩ 1125:^ 1116:⟨ 1055:⟩ 1043:^ 1034:⟨ 1010:⟩ 1004:^ 995:⟨ 979:⟩ 973:^ 964:⟨ 955:∂ 951:∂ 946:ℏ 819:^ 785:^ 765:^ 727:⟩ 715:^ 705:⋯ 693:^ 671:^ 661:⋯ 652:^ 635:^ 623:† 614:^ 597:^ 587:⋯ 582:† 570:^ 555:† 543:^ 533:⋯ 528:† 516:^ 506:⟨ 503:≡ 500:⟩ 494:^ 485:⟨ 429:λ 404:ℏ 374:λ 367:^ 338:† 325:λ 318:^ 254:ℏ 223:^ 194:† 180:^ 92:cumulants 37:many-body 3080:Category 2791:See also 2773:Gaussian 1361:Fermions 297:operator 112:kurtosis 108:skewness 104:variance 301:Fermion 119:nuclear 78:, or a 39:and/or 3065:  3046:  2964:  2944:  2867:  2847:  2785:lasers 2016:  2001:  1951:  1895:  1880:  1830:  1723:  1369:Bosons 1074:where 741:where 683:  560:  273:photon 142:solids 3002:(2). 2924:(1). 161:Boson 3063:ISBN 3044:ISBN 2962:ISBN 2942:ISBN 2865:ISBN 2845:ISBN 801:and 447:spin 352:and 208:and 125:and 100:mean 74:, a 51:and 19:The 449:or 140:In 3082:: 3000:78 2981:29 2922:73 2903:17 2826:^ 2787:. 453:. 148:. 110:, 106:, 102:, 55:. 3071:. 3052:. 3019:7 2884:7 2750:K 2740:B 2731:J 2727:] 2711:B 2704:[ 2676:K 2666:B 2657:J 2653:] 2637:B 2630:[ 2601:B 2569:C 2549:C 2529:C 2508:] 2501:1 2498:+ 2489:C 2476:[ 2471:i 2468:H 2441:] 2435:[ 2430:L 2427:N 2404:, 2399:] 2392:1 2389:+ 2380:N 2367:[ 2362:i 2359:H 2355:+ 2351:] 2338:N 2326:, 2320:, 2308:2 2296:, 2284:1 2274:[ 2269:L 2266:N 2262:+ 2258:] 2245:N 2232:[ 2227:T 2223:= 2211:N 2196:t 2180:i 2151:3 2122:2 2093:N 2061:, 2054:N 2045:+ 2031:+ 2025:2 2010:3 1995:S 1986:5 1980:N 1974:+ 1960:3 1945:S 1936:3 1930:N 1924:+ 1910:+ 1904:2 1889:2 1874:S 1865:4 1859:N 1853:+ 1839:2 1824:S 1815:2 1809:N 1803:+ 1789:S 1780:N 1774:= 1764:N 1754:, 1747:3 1738:+ 1732:2 1717:1 1711:+ 1705:S 1696:3 1690:= 1680:3 1648:S 1639:2 1627:2 1621:= 1615:2 1564:2 1555:+ 1549:S 1540:2 1534:= 1528:2 1500:S 1491:2 1465:2 1439:2 1404:B 1386:B 1347:N 1324:S 1315:N 1289:1 1263:1 1254:1 1248:= 1242:S 1233:2 1207:2 1181:1 1140:] 1134:1 1131:+ 1122:N 1113:[ 1109:i 1106:H 1085:T 1059:] 1052:1 1049:+ 1040:N 1030:[ 1025:i 1022:H 1018:+ 1014:] 1001:N 991:[ 986:T 982:= 970:N 958:t 942:i 915:) 912:1 909:+ 906:N 903:( 883:N 863:N 835:K 832:+ 829:J 826:= 816:B 810:N 782:a 776:N 772:+ 762:B 756:N 752:= 749:N 722:1 712:B 700:J 690:B 678:1 668:a 649:a 643:N 632:a 611:a 605:N 594:a 577:1 567:a 550:K 540:B 523:1 513:B 491:N 472:N 459:N 408:k 381:k 377:, 364:a 332:k 328:, 315:a 283:B 258:q 231:q 220:B 188:q 177:B

Index

quantum mechanics
BBGKY hierarchy
numerically
many-body
quantum-optical
semiconductor quantum optics
semiconductor Bloch equations
semiconductor luminescence equations
Quantum theory
probabilistic
wavefunction
density matrix
phase-space distribution
observable
Thorvald N. Thiele
cumulants
mean
variance
skewness
kurtosis
nuclear
Jiři Čížek
Josef Paldus
quantum chemistry
coupled-cluster approach
solids
semiconductor quantum optics
many-body physics
second-quantization formalism
Boson

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.