Knowledge (XXG)

Rotation (mathematics)

Source 📝

140: 3150: 2874: 1691: 43: 634: 2194: 539: 403: 1078: 1410: 2270:, are in some ways the least intuitive representation of three-dimensional rotations. They are not the three-dimensional instance of a general approach. They are more compact than matrices and easier to work with than all other methods, so are often preferred in real-world applications. 1994: 1813: 1219: 938: 1686:{\displaystyle {\begin{aligned}e^{i\theta }z&=(\cos \theta +i\sin \theta )(x+iy)\\&=x\cos \theta +iy\cos \theta +ix\sin \theta -y\sin \theta \\&=(x\cos \theta -y\sin \theta )+i(x\sin \theta +y\cos \theta )\\&=x'+iy',\end{aligned}}} 1983: 2804:
If a rotation of Minkowski space is in a space-like plane, then this rotation is the same as a spatial rotation in Euclidean space. By contrast, a rotation in a plane spanned by a space-like dimension and a time-like dimension is a
705:
for details. Instead the rotation has two mutually orthogonal planes of rotation, each of which is fixed in the sense that points in each plane stay within the planes. The rotation has two angles of rotation, one for each
686: 2189:{\displaystyle \mathbf {A} {\begin{pmatrix}x\\y\\z\end{pmatrix}}={\begin{pmatrix}a&b&c\\d&e&f\\g&h&i\end{pmatrix}}{\begin{pmatrix}x\\y\\z\end{pmatrix}}={\begin{pmatrix}x'\\y'\\z'\end{pmatrix}}} 1318: 2693: 2336: 1707: 1415: 1113: 1265: 2420: 1702: 1108: 2438:, is itself a rotation, but in four dimensions. Any four-dimensional rotation about the origin can be represented with two quaternion multiplications: one left and one right, by two 257:
about a point keeping the axes fixed is equivalent to rotating the axes counterclockwise about the same point while the body is kept fixed. These two types of rotation are called
2281:
of the quaternion is 1. This constraint limits the degrees of freedom of the quaternion to three, as required. Unlike matrices and complex numbers two multiplications are needed:
1073:{\displaystyle {\begin{bmatrix}x'\\y'\end{bmatrix}}={\begin{bmatrix}\cos \theta &-\sin \theta \\\sin \theta &\cos \theta \end{bmatrix}}{\begin{bmatrix}x\\y\end{bmatrix}}} 2633: 593:, the second rotates around the line of nodes and the third is an intrinsic rotation (a spin) around an axis fixed in the body that moves. Euler angles are typically denoted as 2472:. Rotations represented in other ways are often converted to matrices before being used. They can be extended to represent rotations and transformations at the same time using 3124: 3082: 2589: 3041: 3003: 1900: 406:
A plane rotation around a point followed by another rotation around a different point results in a total motion which is either a rotation (as in this picture), or a
1385: 644:(pictured at the right) specifies an angle with the axis about which the rotation takes place. It can be easily visualised. There are two variants to represent it: 554:, so the order in which rotations are applied is important even about the same point. Also, unlike the two-dimensional case, a three-dimensional direct motion, in 2468:
Matrices are often used for doing transformations, especially when a large number of points are being transformed, as they are a direct representation of the
3396: 3196: 899: 186:): a clockwise rotation is a negative magnitude so a counterclockwise turn has a positive magnitude. A rotation is different from other types of motions: 702: 566:
for details), the same as the number of dimensions. A three-dimensional rotation can be specified in a number of ways. The most usual methods are:
1835: 563: 60: 859:, a (proper) rotation is different from an arbitrary fixed-point motion in its preservation of the orientation of the vector space. Thus, the 577:
of three rotations defined as the motion obtained by changing one of the Euler angles while leaving the other two constant. They constitute a
356:
of rotations is a particular formalism, either algebraic or geometric, used to parametrize a rotation map. This meaning is somehow inverse to
3785: 3758: 3343: 3801: 3405: 1841: 3525: 2809:, and if this plane contains the time axis of the reference frame, is called a "Lorentz boost". These transformations demonstrate the 905: 2450:
More generally, coordinate rotations in any dimension are represented by orthogonal matrices. The set of all orthogonal matrices in
746:. Rotations in four dimensions about a fixed point have six degrees of freedom. A four-dimensional direct motion in general position 3318: 2503:
The main disadvantage of matrices is that they are more expensive to calculate and do calculations with. Also in calculations where
258: 126: 344:
under the rotation. Unlike the axis, its points are not fixed themselves. The axis (where present) and the plane of a rotation are
107: 3310: 2255: 79: 3389: 2454:
dimensions which describe proper rotations (determinant = +1), together with the operation of matrix multiplication, forms the
2638: 3648: 3449: 3139: 1823: 64: 3226: 641: 86: 2823:
that visualize (1 + 1)-dimensional pseudo-Euclidean geometry on planar drawings. The study of relativity is deals with the
3822: 3773: 3763: 3653: 3472: 3211: 1270: 773: 454:. Any direct Euclidean motion can be represented as a composition of a rotation about the fixed point and a translation. 3827: 3768: 3633: 3573: 3367: 2368: 2287: 1227: 1808:{\displaystyle {\begin{aligned}x'&=x\cos \theta -y\sin \theta \\y'&=x\sin \theta +y\cos \theta .\end{aligned}}} 1214:{\displaystyle {\begin{aligned}x'&=x\cos \theta -y\sin \theta \\y'&=x\sin \theta +y\cos \theta .\end{aligned}}} 2377: 93: 863:
of a rotation orthogonal matrix must be 1. The only other possibility for the determinant of an orthogonal matrix is
2246:
Another possibility to represent a rotation of three-dimensional Euclidean vectors are quaternions described below.
3837: 3561: 3382: 3335: 800:. Alternatively, the vector description of rotations can be understood as a parametrization of geometric rotations 550:
differ from those in two dimensions in a number of important ways. Rotations in three dimensions are generally not
427: 341: 295: 278: 585:, rather than a single frame that is purely external or purely intrinsic. Specifically, the first angle moves the 53: 3832: 3357:"A review of useful theorems involving proper orthogonal matrices referenced to three-dimensional physical space" 2477: 777: 529:
points, in general, do not commute. Any two-dimensional direct motion is either a translation or a rotation; see
242: 75: 2748: 2455: 2435: 2214: 887: 868: 530: 462: 397: 191: 2851: 3186: 2917: 2473: 547: 426:
between any two points unchanged after the transformation. But a (proper) rotation also has to preserve the
211: 3780: 3730: 3673: 3668: 3221: 2810: 2794: 2776: 2490:
matrices. They are not rotation matrices, but a transformation that represents a Euclidean rotation has a
2354: 793: 698: 407: 187: 3623: 3602: 3546: 3048: 2598: 2200: 832: 458: 3047:; and its subgroup representing proper rotations (those that preserve the orientation of space) is the 3095: 3053: 2850:
transformations of the celestial sphere. It is a broader class of the sphere transformations known as
2560: 1978:{\displaystyle \mathbf {A} ={\begin{pmatrix}a&b&c\\d&e&f\\g&h&i\end{pmatrix}}} 1822:, vector rotations in two dimensions are commutative, unlike in higher dimensions. They have only one 3506: 3492: 3436: 3015: 2977: 2204: 805: 769: 574: 498: 474: 357: 290: 226: 3005:, which represent rotations in complex space. The set of all unitary matrices in a given dimension 3638: 3566: 3454: 3216: 2932: 2913: 2806: 2764: 2635:. It can be conveniently described in terms of a Clifford algebra. Unit quaternions give the group 2520: 2504: 2278: 466: 222: 167: 253:
results in the body being at the same coordinates. For example, in two dimensions rotating a body
100: 3700: 3688: 3535: 3530: 3482: 2952: 2798: 2789:, spanned by three space dimensions and one of time. In special relativity, this space is called 2782: 2704: 2237:) as are its columns, making it simple to spot and check if a matrix is a valid rotation matrix. 785: 510: 451: 423: 250: 179: 1401: 249:), because for any motion of a body there is an inverse transformation which if applied to the 3750: 3643: 3628: 3444: 3339: 3314: 2925: 2820: 2715: 2543: 2367:. The quaternion can be related to the rotation vector form of the axis angle rotation by the 2234: 2222: 1847: 883: 845: 819:
on vectors that preserves the same geometric structure but expressed in terms of vectors. For
781: 707: 431: 332: 300: 282: 246: 218: 163: 2797:, have a physical interpretation. These transformations preserve a quadratic form called the 3735: 3725: 3607: 3595: 3231: 2956: 2835: 2754: 2547: 1819: 1355: 872: 820: 655: 582: 555: 490: 337: 312: 171: 864: 3556: 3421: 3413: 3206: 3191: 2940: 2815: 2790: 2760: 2243:
Euler angles and axis–angle representations can be easily converted to a rotation matrix.
923: 816: 763: 514: 447: 415: 393: 317: 203: 1696:
and equating real and imaginary parts gives the same result as a two-dimensional matrix:
3356: 3265: 3254: 3705: 3298: 3135: 2972: 2968: 2554: 2535: 2508: 1334: 828: 804:
their composition with translations. In other words, one vector rotation presents many
139: 3149: 2873: 3816: 3710: 3584: 3514: 3010: 2947:
for more physical aspects. Euclidean rotations and, more generally, Lorentz symmetry
2847: 2824: 849: 586: 542:
Euler rotations of the Earth. Intrinsic (green), precession (blue) and nutation (red)
522: 434:" term refers to isometries that reverse (flip) the orientation. In the language of 3715: 3678: 3663: 3658: 3578: 3519: 922:
to be rotated counterclockwise is written as a column vector, then multiplied by a
789: 663: 624: 570: 482: 435: 368: 364: 17: 3266:
Weisstein, Eric W. "Alias Transformation." From MathWorld--A Wolfram Web Resource.
3255:
Weisstein, Eric W. "Alibi Transformation." From MathWorld--A Wolfram Web Resource.
3683: 3551: 3487: 3363: 2863: 2230: 2226: 860: 751: 648: 573:(pictured at the left). Any rotation about the origin can be represented as the 551: 155: 42: 2813:
nature of the Minkowski space. Hyperbolic rotations are sometimes described as
2229:
1. That it is an orthogonal matrix means that its rows are a set of orthogonal
701:
has only one fixed point, the centre of rotation, and no axis of rotation; see
2592: 2469: 2364: 2261: 876: 633: 559: 371:
are not always clearly distinguished. The former are sometimes referred to as
345: 175: 3306: 2786: 776:, important in pure mathematics, can be erased because there is a canonical 690: 506: 274: 254: 234: 2507:
is a concern matrices can be more prone to it, so calculations to restore
3541: 2944: 2909: 2708: 2539: 1988:
This is multiplied by a vector representing the point to give the result
629:. This presentation is convenient only for rotations about a fixed point. 419: 159: 31: 2553:
In the case of a positive-definite Euclidean quadratic form, the double
538: 3590: 2936: 672: 238: 2511:, which are expensive to do for matrices, need to be done more often. 1826:, as such rotations are entirely determined by the angle of rotation. 581:
system because angles are measured with respect to a mix of different
402: 3720: 3477: 3236: 3201: 3089: 2839: 2785:, where it can be considered to operate on a four-dimensional space, 2534:
In general (even for vectors equipped with a non-Euclidean Minkowski
2266: 910:
In two dimensions, to carry out a rotation using a matrix, the point
3374: 2928:
is an invariance with respect to all rotation about the fixed axis.
658:
obtained by multiplying the angle with this unit vector, called the
2199:
The set of all appropriate matrices together with the operation of
3740: 3426: 801: 728:
then all points not in the planes rotate through an angle between
685: 684: 632: 618: 606: 594: 537: 470: 401: 183: 138: 3464: 2834:
rotations, in physics and astronomy, correspond to rotations of
768:
When one considers motions of the Euclidean space that preserve
600: 562:. Rotations about the origin have three degrees of freedom (see 3378: 2971:-valued matrices analogous to real orthogonal matrices are the 3144: 2868: 612: 36: 1852:
As in two dimensions, a matrix can be used to rotate a point
676: 2827:
generated by the space rotations and hyperbolic rotations.
27:
Motion of a certain space that preserves at least one point
3088:. These complex rotations are important in the context of 710:, through which points in the planes rotate. If these are 375:(although the term is misleading), whereas the latter are 517:, which implies that all two-dimensional rotations about 2931:
As was stated above, Euclidean rotations are applied to
2738:, most of these motions do not have fixed points on the 2688:{\displaystyle \mathrm {Spin} (3)\cong \mathrm {SU} (2)} 754:
Euclidean dimensions), but screw operations exist also.
3161: 2884: 2842:
in the Euclidean 3-space, Lorentz transformations from
2538:) the rotation of a vector space can be expressed as a 143:
Rotation of an object in two dimensions around a point
2143: 2107: 2044: 2008: 1917: 1320:
have the same magnitude and are separated by an angle
1279: 1236: 1049: 986: 947: 3098: 3056: 3018: 2980: 2641: 2601: 2563: 2380: 2290: 1997: 1903: 1705: 1413: 1358: 1273: 1230: 1111: 941: 2277:) consists of four real numbers, constrained so the 1313:{\displaystyle {\begin{bmatrix}x'\\y'\end{bmatrix}}} 815:
A motion that preserves the origin is the same as a
689:
A perspective projection onto three-dimensions of a
3794: 3749: 3616: 3505: 3463: 3435: 3412: 67:. Unsourced material may be challenged and removed. 3118: 3076: 3035: 2997: 2757:geometries are not different from Euclidean ones. 2742:-sphere and, strictly speaking, are not rotations 2687: 2627: 2583: 2414: 2331:{\displaystyle \mathbf {x'} =\mathbf {qxq} ^{-1},} 2330: 2188: 1977: 1807: 1685: 1379: 1349:in the plane is represented by the complex number 1312: 1260:{\displaystyle {\begin{bmatrix}x\\y\end{bmatrix}}} 1259: 1213: 1072: 693:being rotated in four-dimensional Euclidean space. 394:Euclidean space § Rotations and reflections 3134:), as well as respective transformations of the 2753:. Rotations about a fixed point in elliptic and 2431:is the rotation vector treated as a quaternion. 2415:{\displaystyle \mathbf {q} =e^{\mathbf {v} /2},} 2363:is the vector treated as a quaternion with zero 1084:The coordinates of the point after rotation are 867:, and this result means the transformation is a 174:. It can describe, for example, the motion of a 2726:-dimensional Euclidean space about the origin ( 299:in a broader group of (orientation-preserving) 2935:. Moreover, most of mathematical formalism in 489:). The rotation is acting to rotate an object 3390: 2793:, and the four-dimensional rotations, called 2519:As was demonstrated above, there exist three 784:. The same is true for geometries other than 241:, this concept is frequently understood as a 8: 2746:; such motions are sometimes referred to as 886:. Matrices of all proper rotations form the 3197:Rotations and reflections in two dimensions 900:Rotations and reflections in two dimensions 671:Matrices, versors (quaternions), and other 221:. All rotations about a fixed point form a 3460: 3397: 3383: 3375: 2781:A generalization of a rotation applies in 2527:, for two dimensions, and two others with 2500:rotation matrix in the upper left corner. 856: 750:a rotation about certain point (as in all 703:rotations in 4-dimensional Euclidean space 473:is needed to specify a rotation about the 178:around a fixed point. Rotation can have a 3099: 3097: 3057: 3055: 3019: 3017: 2981: 2979: 2959:is not a precise symmetry law of nature. 2668: 2642: 2640: 2602: 2600: 2564: 2562: 2515:More alternatives to the matrix formalism 2399: 2394: 2393: 2381: 2379: 2316: 2305: 2291: 2289: 2138: 2102: 2039: 2003: 1998: 1996: 1912: 1904: 1902: 1706: 1704: 1422: 1414: 1412: 1357: 1274: 1272: 1231: 1229: 1112: 1110: 1044: 981: 942: 940: 127:Learn how and when to remove this message 2767:have not a distinct notion of rotation. 758:Linear and multilinear algebra formalism 678:Linear and Multilinear Algebra Formalism 647:as a pair consisting of the angle and a 320:of its fixed points. They exist only in 30:For broader coverage of this topic, see 3303:New Foundations for Classical Mechanics 3247: 1836:Rotation formalisms in three dimensions 564:rotation formalisms in three dimensions 3130:-dimensional Euclidean rotations (see 2908:Rotations define important classes of 774:distinction between points and vectors 662:(although, strictly speaking, it is a 505:for details. Composition of rotations 2434:A single multiplication by a versor, 2213:is a member of the three-dimensional 1390:This can be rotated through an angle 379:. See the article below for details. 245:(importantly, a transformation of an 7: 3802:List of computer graphics algorithms 2524: 65:adding citations to reliable sources 1842:Three-dimensional rotation operator 1400:, then expanding the product using 502: 289:and is usually identified with the 265:Related definitions and terminology 3103: 3100: 3061: 3058: 3020: 2982: 2948: 2672: 2669: 2652: 2649: 2646: 2643: 2628:{\displaystyle \mathrm {Spin} (n)} 2612: 2609: 2606: 2603: 2568: 2565: 906:Rotation of axes in two dimensions 835:, such operator is expressed with 797: 259:active and passive transformations 190:, which have no fixed points, and 25: 2531:, for three and four dimensions. 2240: 481:that specifies an element of the 3148: 3131: 3119:{\displaystyle \mathrm {SU} (2)} 3077:{\displaystyle \mathrm {SU} (n)} 2872: 2584:{\displaystyle \mathrm {SO} (n)} 2528: 2395: 2382: 2312: 2309: 2306: 2293: 2256:Quaternions and spatial rotation 1999: 1905: 450:, where the former comprise the 438:the distinction is expressed as 233:(of a particular space). But in 217:Mathematically, a rotation is a 194:, each of them having an entire 41: 3036:{\displaystyle \mathrm {U} (n)} 2998:{\displaystyle \mathrm {U} (n)} 2718:) is the same as a rotation of 1333:plane can be also presented as 383:Definitions and representations 358:the meaning in the group theory 281:. This (common) fixed point or 52:needs additional citations for 3140:representation theory of SU(2) 3113: 3107: 3071: 3065: 3030: 3024: 2992: 2986: 2682: 2676: 2662: 2656: 2622: 2616: 2578: 2572: 2550:representation of Lie groups. 2523:rotation formalisms: one with 1641: 1611: 1602: 1572: 1486: 1471: 1468: 1441: 1: 3759:3D computer graphics software 3332:Clifford algebras and spinors 3212:Infinitesimal rotation matrix 2943:) is rotation-invariant; see 1818:Since complex numbers form a 3574:Hidden-surface determination 3368:Sandia National Laboratories 3355:Brannon, Rebecca M. (2002). 2546:and, more generally, in the 2542:. This formalism is used in 170:that preserves at least one 158:is a concept originating in 3285:Hestenes 1999, pp. 580–588. 3227:Rodrigues' rotation formula 2699:In non-Euclidean geometries 823:, this expression is their 306:For a particular rotation: 76:"Rotation" mathematics 3854: 3336:Cambridge University Press 3311:Kluwer Academic Publishers 2861: 2774: 2478:Projective transformations 2253: 1845: 1839: 1833: 926:calculated from the angle 903: 897: 761: 558:, is not a rotation but a 391: 293:. The rotation group is a 29: 3330:Lounesto, Pertti (2001). 2819:and frequently appear on 2707:, a direct motion of the 778:one-to-one correspondence 642:Axis–angle representation 589:around the external axis 365:(affine) spaces of points 243:coordinate transformation 3126:are used to parametrize 2525:U(1), or complex numbers 2456:special orthogonal group 2273:A versor (also called a 2215:special orthogonal group 888:special orthogonal group 788:, but whose space is an 675:things: see the section 531:Euclidean plane isometry 398:Special orthogonal group 237:and, more generally, in 192:(hyperplane) reflections 3786:Vector graphics editors 3781:Raster graphics editors 3187:Aircraft principal axes 2953:symmetry laws of nature 2795:Lorentz transformations 2529:versors, or quaternions 2474:homogeneous coordinates 1884:. The matrix used is a 1094:, and the formulae for 548:three-dimensional space 3669:Checkerboard rendering 3222:Orientation (geometry) 3120: 3078: 3037: 2999: 2881:This section is empty. 2852:Möbius transformations 2777:Lorentz transformation 2689: 2629: 2585: 2557:of the isometry group 2416: 2371:over the quaternions, 2332: 2190: 1979: 1809: 1687: 1394:by multiplying it by 1381: 1380:{\displaystyle z=x+iy} 1314: 1261: 1215: 1074: 882:), or another kind of 848:that is multiplied to 697:A general rotation in 694: 637: 579:mixed axes of rotation 543: 411: 148: 3624:Affine transformation 3603:Surface triangulation 3547:Anisotropic filtering 3276:Lounesto 2001, p. 30. 3121: 3079: 3049:special unitary group 3038: 3000: 2957:reflectional symmetry 2690: 2630: 2586: 2505:numerical instability 2417: 2333: 2201:matrix multiplication 2191: 1980: 1846:Further information: 1810: 1688: 1382: 1315: 1262: 1216: 1075: 869:hyperplane reflection 812:points in the space. 792:with a supplementary 688: 636: 541: 459:one-dimensional space 428:orientation structure 405: 392:Further information: 388:In Euclidean geometry 277:of rotations about a 206:of fixed points in a 142: 3823:Euclidean symmetries 3096: 3054: 3016: 2978: 2639: 2599: 2561: 2436:either left or right 2378: 2288: 2205:rotation group SO(3) 1995: 1901: 1703: 1411: 1356: 1271: 1228: 1109: 939: 162:. Any rotation is a 61:improve this article 3828:Rotational symmetry 3639:Collision detection 3567:Global illumination 3217:Irrational rotation 2955:. In contrast, the 2933:rigid body dynamics 2922:particular rotation 2914:rotational symmetry 2807:hyperbolic rotation 2765:projective geometry 2714:(an example of the 2521:multilinear algebra 2480:are represented by 2275:rotation quaternion 2221:, that is it is an 780:between points and 418:is the same as its 18:Coordinate rotation 3689:Scanline rendering 3483:Parallax scrolling 3473:Isometric graphics 3160:. You can help by 3116: 3092:. The elements of 3074: 3033: 2995: 2951:are thought to be 2920:with respect to a 2858:Discrete rotations 2821:Minkowski diagrams 2799:spacetime interval 2783:special relativity 2705:spherical geometry 2685: 2625: 2581: 2442:unit quaternions. 2412: 2328: 2186: 2180: 2129: 2096: 2030: 1975: 1969: 1805: 1803: 1683: 1681: 1377: 1310: 1304: 1257: 1251: 1211: 1209: 1070: 1064: 1038: 972: 857:was already stated 695: 638: 544: 525:. Rotations about 452:identity component 446:isometries in the 412: 367:and of respective 287:center of rotation 251:frame of reference 149: 3838:Unitary operators 3810: 3809: 3751:Graphics software 3644:Planar projection 3629:Back-face culling 3501: 3500: 3445:Alpha compositing 3406:Computer graphics 3345:978-0-521-00551-7 3178: 3177: 2926:circular symmetry 2901: 2900: 2716:elliptic geometry 2544:geometric algebra 2235:orthonormal basis 2223:orthogonal matrix 1848:3D rotation group 1824:degree of freedom 884:improper rotation 846:orthogonal matrix 821:Euclidean vectors 708:plane of rotation 493:through an angle 479:angle of rotation 461:, there are only 432:improper rotation 333:plane of rotation 247:orthonormal basis 137: 136: 129: 111: 16:(Redirected from 3845: 3833:Linear operators 3736:Volume rendering 3608:Wire-frame model 3461: 3399: 3392: 3385: 3376: 3371: 3361: 3349: 3324: 3286: 3283: 3277: 3274: 3268: 3263: 3257: 3252: 3232:Rotation of axes 3173: 3170: 3152: 3145: 3125: 3123: 3122: 3117: 3106: 3087: 3083: 3081: 3080: 3075: 3064: 3046: 3042: 3040: 3039: 3034: 3023: 3008: 3004: 3002: 3001: 2996: 2985: 2973:unitary matrices 2896: 2893: 2883:You can help by 2876: 2869: 2845: 2836:celestial sphere 2833: 2816:squeeze mappings 2811:pseudo-Euclidean 2741: 2737: 2733: 2725: 2711: 2694: 2692: 2691: 2686: 2675: 2655: 2634: 2632: 2631: 2626: 2615: 2591:is known as the 2590: 2588: 2587: 2582: 2571: 2548:Clifford algebra 2499: 2498: 2495: 2489: 2488: 2485: 2464: 2453: 2430: 2421: 2419: 2418: 2413: 2408: 2407: 2403: 2398: 2385: 2362: 2352: 2346: 2337: 2335: 2334: 2329: 2324: 2323: 2315: 2300: 2299: 2233:(so they are an 2220: 2212: 2195: 2193: 2192: 2187: 2185: 2184: 2177: 2165: 2153: 2134: 2133: 2101: 2100: 2035: 2034: 2002: 1984: 1982: 1981: 1976: 1974: 1973: 1908: 1893: 1892: 1889: 1883: 1867: 1830:Three dimensions 1820:commutative ring 1814: 1812: 1811: 1806: 1804: 1763: 1717: 1692: 1690: 1689: 1684: 1682: 1675: 1661: 1647: 1565: 1492: 1430: 1429: 1399: 1393: 1386: 1384: 1383: 1378: 1348: 1332: 1323: 1319: 1317: 1316: 1311: 1309: 1308: 1301: 1289: 1266: 1264: 1263: 1258: 1256: 1255: 1220: 1218: 1217: 1212: 1210: 1169: 1123: 1101: 1097: 1093: 1079: 1077: 1076: 1071: 1069: 1068: 1043: 1042: 977: 976: 969: 957: 931: 921: 881: 873:point reflection 844: 808:rotations about 798:an example below 782:position vectors 745: 736: 727: 718: 656:Euclidean vector 651:for the axis, or 583:reference frames 556:general position 496: 491:counterclockwise 488: 469:, only a single 377:vector rotations 373:affine rotations 326: 313:axis of rotation 296:point stabilizer 209: 201: 184:sign of an angle 146: 132: 125: 121: 118: 112: 110: 69: 45: 37: 21: 3853: 3852: 3848: 3847: 3846: 3844: 3843: 3842: 3813: 3812: 3811: 3806: 3790: 3745: 3612: 3557:Fluid animation 3497: 3459: 3431: 3422:Diffusion curve 3414:Vector graphics 3408: 3403: 3359: 3354: 3346: 3329: 3321: 3299:Hestenes, David 3297: 3294: 3289: 3284: 3280: 3275: 3271: 3264: 3260: 3253: 3249: 3245: 3207:Squeeze mapping 3192:Charts on SO(3) 3183: 3174: 3168: 3165: 3158:needs expansion 3094: 3093: 3085: 3052: 3051: 3044: 3014: 3013: 3006: 2976: 2975: 2965: 2963:Generalizations 2949:described above 2941:vector calculus 2906: 2897: 2891: 2888: 2867: 2860: 2843: 2831: 2791:Minkowski space 2779: 2773: 2761:Affine geometry 2739: 2735: 2727: 2719: 2709: 2701: 2637: 2636: 2597: 2596: 2559: 2558: 2517: 2496: 2493: 2491: 2486: 2483: 2481: 2470:linear operator 2458: 2451: 2448: 2426: 2389: 2376: 2375: 2369:exponential map 2358: 2348: 2347:is the versor, 2342: 2304: 2292: 2286: 2285: 2258: 2252: 2241:Above-mentioned 2218: 2208: 2179: 2178: 2170: 2167: 2166: 2158: 2155: 2154: 2146: 2139: 2128: 2127: 2121: 2120: 2114: 2113: 2103: 2095: 2094: 2089: 2084: 2078: 2077: 2072: 2067: 2061: 2060: 2055: 2050: 2040: 2029: 2028: 2022: 2021: 2015: 2014: 2004: 1993: 1992: 1968: 1967: 1962: 1957: 1951: 1950: 1945: 1940: 1934: 1933: 1928: 1923: 1913: 1899: 1898: 1890: 1887: 1885: 1869: 1853: 1850: 1844: 1838: 1832: 1802: 1801: 1764: 1756: 1753: 1752: 1718: 1710: 1701: 1700: 1680: 1679: 1668: 1654: 1645: 1644: 1563: 1562: 1490: 1489: 1434: 1418: 1409: 1408: 1402:Euler's formula 1395: 1391: 1354: 1353: 1338: 1335:complex numbers 1328: 1321: 1303: 1302: 1294: 1291: 1290: 1282: 1275: 1269: 1268: 1250: 1249: 1243: 1242: 1232: 1226: 1225: 1208: 1207: 1170: 1162: 1159: 1158: 1124: 1116: 1107: 1106: 1099: 1095: 1085: 1063: 1062: 1056: 1055: 1045: 1037: 1036: 1025: 1013: 1012: 998: 982: 971: 970: 962: 959: 958: 950: 943: 937: 936: 927: 924:rotation matrix 911: 908: 902: 896: 879: 836: 817:linear operator 766: 764:Rotation matrix 760: 744: 738: 735: 729: 726: 720: 717: 711: 699:four dimensions 660:rotation vector 560:screw operation 494: 486: 485:(also known as 448:Euclidean group 416:Euclidean space 400: 390: 385: 321: 267: 207: 195: 144: 133: 122: 116: 113: 70: 68: 58: 46: 35: 28: 23: 22: 15: 12: 11: 5: 3851: 3849: 3841: 3840: 3835: 3830: 3825: 3815: 3814: 3808: 3807: 3805: 3804: 3798: 3796: 3792: 3791: 3789: 3788: 3783: 3778: 3777: 3776: 3771: 3766: 3755: 3753: 3747: 3746: 3744: 3743: 3738: 3733: 3728: 3723: 3718: 3713: 3708: 3706:Shadow mapping 3703: 3698: 3693: 3692: 3691: 3686: 3681: 3676: 3671: 3666: 3661: 3651: 3646: 3641: 3636: 3631: 3626: 3620: 3618: 3614: 3613: 3611: 3610: 3605: 3600: 3599: 3598: 3588: 3581: 3576: 3571: 3570: 3569: 3559: 3554: 3549: 3544: 3539: 3533: 3528: 3522: 3517: 3511: 3509: 3503: 3502: 3499: 3498: 3496: 3495: 3490: 3485: 3480: 3475: 3469: 3467: 3458: 3457: 3452: 3447: 3441: 3439: 3433: 3432: 3430: 3429: 3424: 3418: 3416: 3410: 3409: 3404: 3402: 3401: 3394: 3387: 3379: 3373: 3372: 3351: 3350: 3344: 3326: 3325: 3319: 3293: 3290: 3288: 3287: 3278: 3269: 3258: 3246: 3244: 3241: 3240: 3239: 3234: 3229: 3224: 3219: 3214: 3209: 3204: 3199: 3194: 3189: 3182: 3179: 3176: 3175: 3155: 3153: 3115: 3112: 3109: 3105: 3102: 3073: 3070: 3067: 3063: 3060: 3032: 3029: 3026: 3022: 2994: 2991: 2988: 2984: 2964: 2961: 2905: 2902: 2899: 2898: 2879: 2877: 2859: 2856: 2775:Main article: 2772: 2769: 2700: 2697: 2684: 2681: 2678: 2674: 2671: 2667: 2664: 2661: 2658: 2654: 2651: 2648: 2645: 2624: 2621: 2618: 2614: 2611: 2608: 2605: 2580: 2577: 2574: 2570: 2567: 2555:covering group 2536:quadratic form 2516: 2513: 2509:orthonormality 2447: 2444: 2423: 2422: 2411: 2406: 2402: 2397: 2392: 2388: 2384: 2339: 2338: 2327: 2322: 2319: 2314: 2311: 2308: 2303: 2298: 2295: 2254:Main article: 2251: 2248: 2197: 2196: 2183: 2176: 2173: 2169: 2168: 2164: 2161: 2157: 2156: 2152: 2149: 2145: 2144: 2142: 2137: 2132: 2126: 2123: 2122: 2119: 2116: 2115: 2112: 2109: 2108: 2106: 2099: 2093: 2090: 2088: 2085: 2083: 2080: 2079: 2076: 2073: 2071: 2068: 2066: 2063: 2062: 2059: 2056: 2054: 2051: 2049: 2046: 2045: 2043: 2038: 2033: 2027: 2024: 2023: 2020: 2017: 2016: 2013: 2010: 2009: 2007: 2001: 1986: 1985: 1972: 1966: 1963: 1961: 1958: 1956: 1953: 1952: 1949: 1946: 1944: 1941: 1939: 1936: 1935: 1932: 1929: 1927: 1924: 1922: 1919: 1918: 1916: 1911: 1907: 1834:Main article: 1831: 1828: 1816: 1815: 1800: 1797: 1794: 1791: 1788: 1785: 1782: 1779: 1776: 1773: 1770: 1767: 1765: 1762: 1759: 1755: 1754: 1751: 1748: 1745: 1742: 1739: 1736: 1733: 1730: 1727: 1724: 1721: 1719: 1716: 1713: 1709: 1708: 1694: 1693: 1678: 1674: 1671: 1667: 1664: 1660: 1657: 1653: 1650: 1648: 1646: 1643: 1640: 1637: 1634: 1631: 1628: 1625: 1622: 1619: 1616: 1613: 1610: 1607: 1604: 1601: 1598: 1595: 1592: 1589: 1586: 1583: 1580: 1577: 1574: 1571: 1568: 1566: 1564: 1561: 1558: 1555: 1552: 1549: 1546: 1543: 1540: 1537: 1534: 1531: 1528: 1525: 1522: 1519: 1516: 1513: 1510: 1507: 1504: 1501: 1498: 1495: 1493: 1491: 1488: 1485: 1482: 1479: 1476: 1473: 1470: 1467: 1464: 1461: 1458: 1455: 1452: 1449: 1446: 1443: 1440: 1437: 1435: 1433: 1428: 1425: 1421: 1417: 1416: 1388: 1387: 1376: 1373: 1370: 1367: 1364: 1361: 1327:Points on the 1307: 1300: 1297: 1293: 1292: 1288: 1285: 1281: 1280: 1278: 1254: 1248: 1245: 1244: 1241: 1238: 1237: 1235: 1222: 1221: 1206: 1203: 1200: 1197: 1194: 1191: 1188: 1185: 1182: 1179: 1176: 1173: 1171: 1168: 1165: 1161: 1160: 1157: 1154: 1151: 1148: 1145: 1142: 1139: 1136: 1133: 1130: 1127: 1125: 1122: 1119: 1115: 1114: 1082: 1081: 1067: 1061: 1058: 1057: 1054: 1051: 1050: 1048: 1041: 1035: 1032: 1029: 1026: 1024: 1021: 1018: 1015: 1014: 1011: 1008: 1005: 1002: 999: 997: 994: 991: 988: 987: 985: 980: 975: 968: 965: 961: 960: 956: 953: 949: 948: 946: 898:Main article: 895: 894:Two dimensions 892: 850:column vectors 829:Euclidean norm 762:Main article: 759: 756: 742: 733: 724: 715: 683: 682: 669: 668: 667: 652: 631: 630: 467:two dimensions 465:rotations. In 414:A motion of a 389: 386: 384: 381: 354:representation 350: 349: 328: 285:is called the 271:rotation group 266: 263: 231:rotation group 135: 134: 49: 47: 40: 26: 24: 14: 13: 10: 9: 6: 4: 3: 2: 3850: 3839: 3836: 3834: 3831: 3829: 3826: 3824: 3821: 3820: 3818: 3803: 3800: 3799: 3797: 3793: 3787: 3784: 3782: 3779: 3775: 3772: 3770: 3767: 3765: 3762: 3761: 3760: 3757: 3756: 3754: 3752: 3748: 3742: 3739: 3737: 3734: 3732: 3729: 3727: 3724: 3722: 3719: 3717: 3714: 3712: 3711:Shadow volume 3709: 3707: 3704: 3702: 3699: 3697: 3694: 3690: 3687: 3685: 3682: 3680: 3677: 3675: 3672: 3670: 3667: 3665: 3662: 3660: 3657: 3656: 3655: 3652: 3650: 3647: 3645: 3642: 3640: 3637: 3635: 3632: 3630: 3627: 3625: 3622: 3621: 3619: 3615: 3609: 3606: 3604: 3601: 3597: 3594: 3593: 3592: 3589: 3586: 3585:Triangle mesh 3582: 3580: 3577: 3575: 3572: 3568: 3565: 3564: 3563: 3560: 3558: 3555: 3553: 3550: 3548: 3545: 3543: 3540: 3537: 3534: 3532: 3529: 3527: 3523: 3521: 3518: 3516: 3515:3D projection 3513: 3512: 3510: 3508: 3504: 3494: 3491: 3489: 3486: 3484: 3481: 3479: 3476: 3474: 3471: 3470: 3468: 3466: 3462: 3456: 3455:Text-to-image 3453: 3451: 3448: 3446: 3443: 3442: 3440: 3438: 3434: 3428: 3425: 3423: 3420: 3419: 3417: 3415: 3411: 3407: 3400: 3395: 3393: 3388: 3386: 3381: 3380: 3377: 3369: 3365: 3358: 3353: 3352: 3347: 3341: 3337: 3334:. Cambridge: 3333: 3328: 3327: 3322: 3320:0-7923-5514-8 3316: 3312: 3308: 3304: 3300: 3296: 3295: 3291: 3282: 3279: 3273: 3270: 3267: 3262: 3259: 3256: 3251: 3248: 3242: 3238: 3235: 3233: 3230: 3228: 3225: 3223: 3220: 3218: 3215: 3213: 3210: 3208: 3205: 3203: 3200: 3198: 3195: 3193: 3190: 3188: 3185: 3184: 3180: 3172: 3169:February 2014 3163: 3159: 3156:This section 3154: 3151: 3147: 3146: 3143: 3141: 3137: 3133: 3129: 3110: 3091: 3068: 3050: 3027: 3012: 3011:unitary group 2989: 2974: 2970: 2962: 2960: 2958: 2954: 2950: 2946: 2942: 2939:(such as the 2938: 2934: 2929: 2927: 2923: 2919: 2915: 2911: 2903: 2895: 2892:February 2014 2886: 2882: 2878: 2875: 2871: 2870: 2865: 2857: 2855: 2853: 2849: 2841: 2837: 2828: 2826: 2825:Lorentz group 2822: 2818: 2817: 2812: 2808: 2802: 2800: 2796: 2792: 2788: 2784: 2778: 2771:In relativity 2770: 2768: 2766: 2762: 2758: 2756: 2752: 2750: 2745: 2744:of the sphere 2731: 2723: 2717: 2713: 2706: 2698: 2696: 2679: 2665: 2659: 2619: 2594: 2575: 2556: 2551: 2549: 2545: 2541: 2537: 2532: 2530: 2526: 2522: 2514: 2512: 2510: 2506: 2501: 2479: 2475: 2471: 2466: 2462: 2457: 2446:Further notes 2445: 2443: 2441: 2437: 2432: 2429: 2409: 2404: 2400: 2390: 2386: 2374: 2373: 2372: 2370: 2366: 2361: 2356: 2351: 2345: 2325: 2320: 2317: 2301: 2296: 2284: 2283: 2282: 2280: 2276: 2271: 2269: 2268: 2263: 2257: 2249: 2247: 2244: 2242: 2238: 2236: 2232: 2228: 2224: 2216: 2211: 2207:. The matrix 2206: 2202: 2181: 2174: 2171: 2162: 2159: 2150: 2147: 2140: 2135: 2130: 2124: 2117: 2110: 2104: 2097: 2091: 2086: 2081: 2074: 2069: 2064: 2057: 2052: 2047: 2041: 2036: 2031: 2025: 2018: 2011: 2005: 1991: 1990: 1989: 1970: 1964: 1959: 1954: 1947: 1942: 1937: 1930: 1925: 1920: 1914: 1909: 1897: 1896: 1895: 1881: 1877: 1873: 1865: 1861: 1857: 1849: 1843: 1837: 1829: 1827: 1825: 1821: 1798: 1795: 1792: 1789: 1786: 1783: 1780: 1777: 1774: 1771: 1768: 1766: 1760: 1757: 1749: 1746: 1743: 1740: 1737: 1734: 1731: 1728: 1725: 1722: 1720: 1714: 1711: 1699: 1698: 1697: 1676: 1672: 1669: 1665: 1662: 1658: 1655: 1651: 1649: 1638: 1635: 1632: 1629: 1626: 1623: 1620: 1617: 1614: 1608: 1605: 1599: 1596: 1593: 1590: 1587: 1584: 1581: 1578: 1575: 1569: 1567: 1559: 1556: 1553: 1550: 1547: 1544: 1541: 1538: 1535: 1532: 1529: 1526: 1523: 1520: 1517: 1514: 1511: 1508: 1505: 1502: 1499: 1496: 1494: 1483: 1480: 1477: 1474: 1465: 1462: 1459: 1456: 1453: 1450: 1447: 1444: 1438: 1436: 1431: 1426: 1423: 1419: 1407: 1406: 1405: 1403: 1398: 1374: 1371: 1368: 1365: 1362: 1359: 1352: 1351: 1350: 1346: 1342: 1336: 1331: 1325: 1324:as expected. 1305: 1298: 1295: 1286: 1283: 1276: 1252: 1246: 1239: 1233: 1204: 1201: 1198: 1195: 1192: 1189: 1186: 1183: 1180: 1177: 1174: 1172: 1166: 1163: 1155: 1152: 1149: 1146: 1143: 1140: 1137: 1134: 1131: 1128: 1126: 1120: 1117: 1105: 1104: 1103: 1092: 1088: 1065: 1059: 1052: 1046: 1039: 1033: 1030: 1027: 1022: 1019: 1016: 1009: 1006: 1003: 1000: 995: 992: 989: 983: 978: 973: 966: 963: 954: 951: 944: 935: 934: 933: 930: 925: 919: 915: 907: 901: 893: 891: 889: 885: 878: 874: 870: 866: 862: 858: 853: 851: 847: 843: 839: 834: 830: 826: 822: 818: 813: 811: 807: 803: 799: 795: 791: 787: 783: 779: 775: 771: 765: 757: 755: 753: 749: 741: 732: 723: 714: 709: 704: 700: 692: 687: 680: 679: 674: 670: 665: 661: 657: 653: 650: 646: 645: 643: 640: 639: 635: 628: 627: 622: 621: 616: 615: 610: 609: 604: 603: 598: 597: 592: 588: 587:line of nodes 584: 580: 576: 572: 569: 568: 567: 565: 561: 557: 553: 549: 546:Rotations in 540: 536: 534: 533:for details. 532: 528: 524: 520: 516: 512: 509:their angles 508: 504: 500: 492: 484: 480: 476: 472: 468: 464: 460: 455: 453: 449: 445: 441: 437: 433: 429: 425: 421: 417: 409: 404: 399: 395: 387: 382: 380: 378: 374: 370: 369:vector spaces 366: 363:Rotations of 361: 359: 355: 347: 343: 339: 335: 334: 329: 324: 319: 315: 314: 309: 308: 307: 304: 302: 298: 297: 292: 288: 284: 280: 276: 272: 264: 262: 260: 256: 252: 248: 244: 240: 236: 232: 228: 224: 220: 215: 213: 205: 202:-dimensional 199: 193: 189: 185: 181: 177: 173: 169: 166:of a certain 165: 161: 157: 153: 141: 131: 128: 120: 117:February 2014 109: 106: 102: 99: 95: 92: 88: 85: 81: 78: –  77: 73: 72:Find sources: 66: 62: 56: 55: 50:This article 48: 44: 39: 38: 33: 19: 3716:Shear matrix 3695: 3679:Path tracing 3664:Cone tracing 3659:Beam tracing 3579:Polygon mesh 3520:3D rendering 3331: 3302: 3281: 3272: 3261: 3250: 3166: 3162:adding to it 3157: 3127: 2966: 2930: 2921: 2907: 2889: 2885:adding to it 2880: 2829: 2814: 2803: 2780: 2759: 2751:translations 2747: 2743: 2729: 2721: 2702: 2552: 2533: 2518: 2502: 2467: 2460: 2449: 2439: 2433: 2427: 2424: 2359: 2349: 2343: 2340: 2274: 2272: 2265: 2259: 2245: 2239: 2231:unit vectors 2209: 2198: 1987: 1879: 1875: 1871: 1863: 1859: 1855: 1851: 1817: 1695: 1404:as follows: 1396: 1389: 1344: 1340: 1337:: the point 1329: 1326: 1224:The vectors 1223: 1090: 1086: 1083: 928: 917: 913: 909: 854: 841: 837: 824: 814: 809: 790:affine space 767: 747: 739: 730: 721: 712: 696: 681:for details. 677: 664:pseudovector 659: 625: 619: 613: 607: 601: 595: 590: 578: 571:Euler angles 545: 535: 526: 518: 483:circle group 478: 456: 443: 439: 436:group theory 424:the distance 422:: it leaves 413: 376: 372: 362: 353: 351: 331: 322: 311: 305: 294: 286: 270: 268: 230: 216: 197: 188:translations 151: 150: 123: 114: 104: 97: 90: 83: 71: 59:Please help 54:verification 51: 3731:Translation 3684:Ray casting 3674:Ray tracing 3552:Cel shading 3526:Image-based 3507:3D graphics 3488:Ray casting 3437:2D graphics 3364:Albuquerque 2864:point group 2734:). For odd 2365:scalar part 2262:quaternions 2250:Quaternions 2227:determinant 1868:to a point 861:determinant 649:unit vector 575:composition 552:commutative 408:translation 279:fixed point 229:called the 227:composition 212:dimensional 182:(as in the 156:mathematics 3817:Categories 3795:Algorithms 3649:Reflection 3292:References 3084:of degree 3043:of degree 2918:invariance 2904:Importance 2755:hyperbolic 2593:Spin group 1840:See also: 904:See also: 833:components 806:equivalent 770:the origin 497:about the 346:orthogonal 176:rigid body 87:newspapers 3774:rendering 3764:animation 3654:Rendering 3307:Dordrecht 3243:Footnotes 2862:See: 2848:conformal 2787:spacetime 2666:≅ 2440:different 2318:− 1796:θ 1793:⁡ 1781:θ 1778:⁡ 1750:θ 1747:⁡ 1738:− 1735:θ 1732:⁡ 1639:θ 1636:⁡ 1624:θ 1621:⁡ 1600:θ 1597:⁡ 1588:− 1585:θ 1582:⁡ 1560:θ 1557:⁡ 1548:− 1545:θ 1542:⁡ 1527:θ 1524:⁡ 1509:θ 1506:⁡ 1466:θ 1463:⁡ 1451:θ 1448:⁡ 1427:θ 1202:θ 1199:⁡ 1187:θ 1184:⁡ 1156:θ 1153:⁡ 1144:− 1141:θ 1138:⁡ 1034:θ 1031:⁡ 1023:θ 1020:⁡ 1010:θ 1007:⁡ 1001:− 996:θ 993:⁡ 825:magnitude 794:structure 786:Euclidean 691:tesseract 673:algebraic 527:different 342:invariant 275:Lie group 255:clockwise 235:mechanics 3769:modeling 3696:Rotation 3634:Clipping 3617:Concepts 3596:Deferred 3562:Lighting 3542:Aliasing 3536:Unbiased 3531:Spectral 3301:(1999). 3181:See also 3009:forms a 2945:rotation 2910:symmetry 2840:2-sphere 2830:Whereas 2749:Clifford 2540:bivector 2297:′ 2175:′ 2163:′ 2151:′ 1894:matrix, 1761:′ 1715:′ 1673:′ 1659:′ 1299:′ 1287:′ 1167:′ 1121:′ 967:′ 955:′ 519:the same 444:indirect 420:isometry 340:that is 160:geometry 152:Rotation 32:Rotation 3701:Scaling 3591:Shading 3090:spinors 2969:complex 2937:physics 2846:induce 2844:SO(3;1) 2712:-sphere 2355:inverse 2353:is its 2267:versors 2203:is the 523:commute 463:trivial 430:. The " 301:motions 239:physics 214:space. 101:scholar 3721:Shader 3493:Skybox 3478:Mode 7 3450:Layers 3342:  3317:  3237:Vortex 3202:CORDIC 2924:. The 2916:is an 2425:where 2357:, and 2341:where 855:As it 831:). In 796:; see 772:, the 626:ψ 620:θ 614:φ 608:γ 602:β 596:α 521:point 511:modulo 501:; see 499:origin 477:– the 475:origin 440:direct 396:, and 325:> 2 291:origin 283:center 225:under 164:motion 103:  96:  89:  82:  74:  3741:Voxel 3726:Texel 3427:Pixel 3360:(PDF) 3138:(see 3132:above 3128:three 2838:as a 2832:SO(3) 2264:, or 2260:Unit 2225:with 2219:SO(3) 875:(for 802:up to 654:as a 611:, or 503:below 471:angle 338:plane 336:is a 316:is a 273:is a 223:group 172:point 168:space 108:JSTOR 94:books 3465:2.5D 3340:ISBN 3315:ISBN 3136:spin 2967:The 2763:and 2732:+ 1) 2724:+ 1) 2279:norm 1267:and 1102:are 1098:and 871:, a 752:even 737:and 719:and 515:turn 507:sums 487:U(1) 330:The 318:line 310:The 269:The 204:flat 200:− 1) 180:sign 80:news 3164:. 3142:). 2887:. 2728:SO( 2703:In 2459:SO( 1790:cos 1775:sin 1744:sin 1729:cos 1633:cos 1618:sin 1594:sin 1579:cos 1554:sin 1539:sin 1521:cos 1503:cos 1460:sin 1445:cos 1196:cos 1181:sin 1150:sin 1135:cos 1028:cos 1017:sin 1004:sin 990:cos 877:odd 810:all 457:In 442:vs 219:map 154:in 63:by 3819:: 3366:: 3362:. 3338:. 3313:. 3309:: 3305:. 2912:: 2854:. 2801:. 2695:. 2595:, 2476:. 2465:. 2217:, 1880:z′ 1878:, 1876:y′ 1874:, 1872:x′ 1862:, 1858:, 1343:, 1100:y′ 1096:x′ 1091:y′ 1089:, 1087:x′ 932:: 916:, 890:. 865:−1 852:. 840:× 748:is 666:). 623:, 617:, 605:, 599:, 513:1 360:. 352:A 303:. 261:. 3587:) 3583:( 3538:) 3524:( 3398:e 3391:t 3384:v 3370:. 3348:. 3323:. 3171:) 3167:( 3114:) 3111:2 3108:( 3104:U 3101:S 3086:n 3072:) 3069:n 3066:( 3062:U 3059:S 3045:n 3031:) 3028:n 3025:( 3021:U 3007:n 2993:) 2990:n 2987:( 2983:U 2894:) 2890:( 2866:. 2740:n 2736:n 2730:n 2722:n 2720:( 2710:n 2683:) 2680:2 2677:( 2673:U 2670:S 2663:) 2660:3 2657:( 2653:n 2650:i 2647:p 2644:S 2623:) 2620:n 2617:( 2613:n 2610:i 2607:p 2604:S 2579:) 2576:n 2573:( 2569:O 2566:S 2497:3 2494:× 2492:3 2487:4 2484:× 2482:4 2463:) 2461:n 2452:n 2428:v 2410:, 2405:2 2401:/ 2396:v 2391:e 2387:= 2383:q 2360:x 2350:q 2344:q 2326:, 2321:1 2313:q 2310:x 2307:q 2302:= 2294:x 2210:A 2182:) 2172:z 2160:y 2148:x 2141:( 2136:= 2131:) 2125:z 2118:y 2111:x 2105:( 2098:) 2092:i 2087:h 2082:g 2075:f 2070:e 2065:d 2058:c 2053:b 2048:a 2042:( 2037:= 2032:) 2026:z 2019:y 2012:x 2006:( 2000:A 1971:) 1965:i 1960:h 1955:g 1948:f 1943:e 1938:d 1931:c 1926:b 1921:a 1915:( 1910:= 1906:A 1891:3 1888:× 1886:3 1882:) 1870:( 1866:) 1864:z 1860:y 1856:x 1854:( 1799:. 1787:y 1784:+ 1772:x 1769:= 1758:y 1741:y 1726:x 1723:= 1712:x 1677:, 1670:y 1666:i 1663:+ 1656:x 1652:= 1642:) 1630:y 1627:+ 1615:x 1612:( 1609:i 1606:+ 1603:) 1591:y 1576:x 1573:( 1570:= 1551:y 1536:x 1533:i 1530:+ 1518:y 1515:i 1512:+ 1500:x 1497:= 1487:) 1484:y 1481:i 1478:+ 1475:x 1472:( 1469:) 1457:i 1454:+ 1442:( 1439:= 1432:z 1424:i 1420:e 1397:e 1392:θ 1375:y 1372:i 1369:+ 1366:x 1363:= 1360:z 1347:) 1345:y 1341:x 1339:( 1330:R 1322:θ 1306:] 1296:y 1284:x 1277:[ 1253:] 1247:y 1240:x 1234:[ 1205:. 1193:y 1190:+ 1178:x 1175:= 1164:y 1147:y 1132:x 1129:= 1118:x 1080:. 1066:] 1060:y 1053:x 1047:[ 1040:] 984:[ 979:= 974:] 964:y 952:x 945:[ 929:θ 920:) 918:y 914:x 912:( 880:n 842:n 838:n 827:( 743:2 740:ω 734:1 731:ω 725:2 722:ω 716:1 713:ω 591:z 495:θ 410:. 348:. 327:. 323:n 210:- 208:n 198:n 196:( 147:. 145:O 130:) 124:( 119:) 115:( 105:· 98:· 91:· 84:· 57:. 34:. 20:)

Index

Coordinate rotation
Rotation

verification
improve this article
adding citations to reliable sources
"Rotation" mathematics
news
newspapers
books
scholar
JSTOR
Learn how and when to remove this message

mathematics
geometry
motion
space
point
rigid body
sign
sign of an angle
translations
(hyperplane) reflections
flat
dimensional
map
group
composition
mechanics

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.