Knowledge (XXG)

Collineation

Source 📝

966:
corresponds to "choices of linear structure", with the identity (base point) being the existing linear structure. Given a projective space without an identification as the projectivization of a linear space, there is no natural isomorphism between the collineation group and PΓL, and the choice of a
92:
Simply, a collineation is a one-to-one map from one projective space to another, or from a projective space to itself, such that the images of collinear points are themselves collinear. One may formalize this using various ways of presenting a projective space. Also, the case of the projective line
524:
Projective linear transformations (homographies) are collineations (planes in a vector space correspond to lines in the associated projective space, and linear transformations map planes to planes, so projective linear transformations map lines to lines), but in general not all collineations are
491: 571:
projective space is at least 2, then every collineation is the product of a homography (a projective linear transformation) and an automorphic collineation. More precisely, the collineation group is the
1031:
when they were interchanged by an arbitrary equation. In our particular case, linear equations between homogeneous point coordinates, Möbius called a permutation of both point spaces in particular a
1047:
when they lie on the same line. Möbius' designation can be expressed by saying, collinear points are mapped by a permutation to collinear points, or in plain speech, straight lines stay straight.
1224: 941: 853: 319:
For dimension one, the set of points lying on a single projective line defines a projective space, and the resulting notion of collineation is just any bijection of the set.
1285: 905: 875: 335:
of the points of the projective line. This is different from the behavior in higher dimensions, and thus one gives a more restrictive definition, specified so that the
312:, so in these dimensions this definition is no more general than the linear-algebraic one above, but in dimension two there are other projective planes, namely the 950:), the projective linear group is in general a proper subgroup of the collineation group, which can be thought of as "transformations preserving a projective 293:
specifying which points lie on which lines, satisfying certain axioms), a collineation between projective spaces thus defined then being a bijective function
440: 72:
from a projective space to itself. Some authors restrict the definition of collineation to the case where it is an automorphism. The
1637: 1619: 1584: 1554: 1536: 1672: 1295:
of the plane are frequently described as the collection of all homographies and anti-homographies of the complex plane.
1148: 1609: 780: 573: 1090:
field, all the collineations are homographies in the real projective plane, however due to the field automorphism of
568: 390: 1332:
Geometers still commonly use an exponential type notation for functions and this condition will often appear as
1123: 328: 1237:, and so is an example of a collineation which is not an homography. For example, geometrically, the mapping 1083: 526: 1524: 1015:
What do our geometric transformations mean now? Möbius threw out and fielded this question already in his
910: 313: 114: 1063:. Such a mapping permutes the lines of the incidence structure, and the notion of collineation persists. 967:
linear structure (realization as projectivization of a linear space) corresponds to a choice of subgroup
1079: 829: 327:
For a projective space of dimension one (a projective line; the projectivization of a vector space of
1230: 1060: 1091: 1052: 275: 125: 77: 55: 31: 1240: 888: 858: 1605: 1292: 1288: 1094:, not all collineations of the complex projective line are homographies. In applications such as 1056: 788: 784: 577: 550: 287: 39: 1633: 1615: 1580: 1550: 1532: 1115: 73: 1507: 1499: 1563: 1008: 1004: 996: 584: 305: 271: 110: 51: 1095: 992: 332: 1043:. Möbius’ expression is immediately comprehended when we follow Möbius in calling points 504:
The main examples of collineations are projective linear transformations (also known as
27:
In projective geometry, a bijection between projective spaces that preserves collinearity
691:
is semilinear, one easily checks that this map is properly defined, and furthermore, as
304:
Every projective space of dimension greater than or equal to three is isomorphic to the
1078:. A distinction between the terms arose when the distinction was clarified between the 1067: 1036: 415: 102: 1666: 1119: 309: 316:, and this definition allows one to define collineations in such projective planes. 1593: 1000: 599: 525:
projective linear transformations. The group of projective linear transformations (
106: 69: 17: 1455: 1087: 807: 607: 156: 64: 1656: 1234: 562: 516:
states that all collineations are a combination of these, as described below.
505: 43: 1549:, Student mathematical library, vol. 9, American Mathematical Society, 1127: 1044: 59: 47: 496:
This last requirement ensures that collineations are all semilinear maps.
530: 331:
two), all points are collinear, so the collineation group is exactly the
1652: 972: 710:
The fundamental theorem of projective geometry states the converse:
486:{\displaystyle \alpha (\langle v\rangle )=\langle \beta (v)\rangle } 1011:
that first abstracted this essence of geometrical transformation:
109:), a collineation is a map between the projective spaces that is 54:
to another, or from a projective space to itself, such that the
513: 336: 1059:
consisting of mappings of the underlying space that preserve
301:
between the set of lines, preserving the incidence relation.
1086:. Since there are no non-trivial field automorphisms of the 563:
Homography § Fundamental theorem of projective geometry
62:
points are themselves collinear. A collineation is thus an
695:
is not singular, it is bijective. It is obvious now that
1373:"Preserving the incidence relation" means that if point 954:-linear structure". Correspondingly, the quotient group 512:. For projective spaces coming from a linear space, the 757:
have the same dimension, and there is a semilinear map
1529:
Projective Geometry / From Foundations to Applications
1312: 1243: 1151: 1098:
where the underlying field is the real number field,
1027:, when he said two elements drawn from a domain were 913: 891: 861: 832: 443: 93:
is special, and hence generally treated differently.
297:
between the sets of points and a bijective function
1279: 1219:{\displaystyle f(z)={\frac {az^{*}+b}{cz^{*}+d}}.} 1218: 935: 899: 869: 847: 485: 76:of all collineations of a space to itself form a 1051:Contemporary mathematicians view geometry as an 1003:(points lying on a single line). According to 1035:. This signification would be changed later by 580:of homographies by automorphic collineations. 509: 1503: 8: 1483: 480: 465: 456: 450: 101:For a projective space defined in terms of 557:Fundamental theorem of projective geometry 514:fundamental theorem of projective geometry 337:fundamental theorem of projective geometry 1271: 1262: 1242: 1198: 1177: 1167: 1150: 925: 920: 916: 915: 912: 893: 892: 890: 863: 862: 860: 839: 835: 834: 831: 442: 583:In particular, the collineations of the 1304: 346:has dimension two, a collineation from 1547:Inversion Theory and Conformal Mapping 598:has no non-trivial automorphisms (see 272:projective space defined axiomatically 1577:Projective Geometry / An Introduction 1495: 1471: 1316: 783:, PΓL – this is PGL, twisted by 617:is a nonsingular semilinear map from 7: 1320: 1066:As mentioned by Blaschke and Klein, 936:{\displaystyle \mathbb {F} _{p^{n}}} 549:is a map that, in coordinates, is a 323:Collineations of the projective line 191:respectively. A collineation from 1313:Beutelspacher & Rosenbaum 1998 397:is mapped to the zero subspace of 139:. Consider the projective spaces 25: 1460:Vorlesungen über Höhere Geometrie 594:are exactly the homographies, as 520:Projective linear transformations 68:between projective spaces, or an 848:{\displaystyle \mathbb {F} _{p}} 779:, the collineation group is the 699:is a collineation. We say that 567:If the geometric dimension of a 1570:, Wolfenbütteler Verlagsanstalt 1462:, edited by Blaschke, Seite 138 1229:Thus an anti-homography is the 725:is a vector space over a field 721:with dimension at least three, 717:is a vector space over a field 1614:, Courier Dover Publications, 1531:, Cambridge University Press, 1253: 1247: 1161: 1155: 1019:(1827). There he spoke not of 477: 471: 459: 447: 105:(as the projectivization of a 1: 1106:can be used interchangeably. 1280:{\displaystyle f(z)=1/z^{*}} 1114:The operation of taking the 900:{\displaystyle \mathbb {C} } 870:{\displaystyle \mathbb {Q} } 553:applied to the coordinates. 135:a vector space over a field 1611:Geometry of Complex Numbers 1579:, Oxford University Press, 885:not a prime field (such as 781:projective semilinear group 574:projective semilinear group 533:of the collineation group. 1689: 1600:, London: G. Bell and Sons 971:, these choices forming a 733:is a collineation from PG( 560: 183:) the set of subspaces of 1527:; Rosenbaum, Ute (1998), 1291:. The transformations of 537:Automorphic collineations 529:) is in general a proper 510:automorphic collineations 342:In this definition, when 308:of a linear space over a 124:be a vector space over a 1545:Blair, David E. (2000), 1484:Morley & Morley 1933 629:at least three. Define 625:, with the dimension of 545:automorphic collineation 1628:Yale, Paul B. (2004) , 1596:; Morley, F.V. (1933), 1525:Beutelspacher, Albrecht 1474:, p. 64, Corollary 4.29 1084:complex projective line 749:are isomorphic fields, 414:There is a nonsingular 314:non-Desarguesian planes 1281: 1233:of conjugation with a 1220: 937: 901: 871: 849: 487: 1630:Geometry and Symmetry 1282: 1221: 1134:for the conjugate of 1130:. With the notation 1080:real projective plane 956:PΓL / PGL ≅ Gal( 938: 902: 872: 850: 792:PΓL ≅ PGL ⋊ Gal( 600:Automorphism#Examples 585:real projective plane 488: 155:), consisting of the 1568:Projective Geometrie 1241: 1149: 1017:Barycentric Calculus 995:was abstracted to a 911: 889: 859: 830: 441: 207:) is a map α : 1673:Projective geometry 1606:Schwerdtfeger, Hans 1575:Casse, Rey (2006), 1092:complex conjugation 1070:preferred the term 1053:incidence structure 785:field automorphisms 429:such that, for all 276:incidence structure 32:projective geometry 1598:Inversive Geometry 1504:Schwerdtfeger 2012 1293:inversive geometry 1277: 1216: 1057:automorphism group 933: 897: 867: 845: 789:semidirect product 578:semidirect product 551:field automorphism 483: 288:incidence relation 82:collineation group 18:Collineation group 1564:Blaschke, Wilhelm 1211: 1116:complex conjugate 969:PGL < PΓL 741:). This implies 278:(a set of points 227:α is a bijection. 16:(Redirected from 1680: 1642: 1624: 1601: 1589: 1571: 1559: 1541: 1511: 1493: 1487: 1481: 1475: 1469: 1463: 1453: 1447: 1445: 1421: 1406: 1395: 1384: 1378: 1371: 1365: 1330: 1324: 1309: 1289:circle inversion 1286: 1284: 1283: 1278: 1276: 1275: 1266: 1225: 1223: 1222: 1217: 1212: 1210: 1203: 1202: 1189: 1182: 1181: 1168: 1005:Wilhelm Blaschke 997:ternary relation 970: 965: 949: 942: 940: 939: 934: 932: 931: 930: 929: 919: 906: 904: 903: 898: 896: 880: 876: 874: 873: 868: 866: 854: 852: 851: 846: 844: 843: 838: 818:Linear structure 801: 787:; formally, the 778: 674: 651: 593: 547: 546: 492: 490: 489: 484: 384: 306:projectivization 113:with respect to 111:order-preserving 52:projective space 21: 1688: 1687: 1683: 1682: 1681: 1679: 1678: 1677: 1663: 1662: 1649: 1640: 1627: 1622: 1604: 1592: 1587: 1574: 1562: 1557: 1544: 1539: 1523: 1520: 1515: 1514: 1494: 1490: 1482: 1478: 1470: 1466: 1454: 1450: 1423: 1408: 1407:; formally, if 1397: 1386: 1380: 1374: 1372: 1368: 1331: 1327: 1310: 1306: 1301: 1267: 1239: 1238: 1194: 1190: 1173: 1169: 1147: 1146: 1140:anti-homography 1112: 1110:Anti-homography 1096:computer vision 1021:transformations 989: 968: 955: 944: 921: 914: 909: 908: 887: 886: 878: 857: 856: 833: 828: 827: 826:a prime field ( 820: 791: 773: 653: 652:by saying that 630: 587: 576:, which is the 565: 559: 544: 543: 539: 522: 502: 439: 438: 363: 333:symmetric group 325: 274:in terms of an 268: 99: 90: 28: 23: 22: 15: 12: 11: 5: 1686: 1684: 1676: 1675: 1665: 1664: 1661: 1660: 1648: 1647:External links 1645: 1644: 1643: 1638: 1625: 1620: 1602: 1590: 1585: 1572: 1560: 1555: 1542: 1537: 1519: 1516: 1513: 1512: 1488: 1476: 1464: 1448: 1366: 1325: 1311:For instance, 1303: 1302: 1300: 1297: 1274: 1270: 1265: 1261: 1258: 1255: 1252: 1249: 1246: 1227: 1226: 1215: 1209: 1206: 1201: 1197: 1193: 1188: 1185: 1180: 1176: 1172: 1166: 1163: 1160: 1157: 1154: 1111: 1108: 1068:Michel Chasles 1049: 1048: 999:determined by 991:The idea of a 988: 985: 928: 924: 918: 895: 879:PGL = PΓL 865: 842: 837: 819: 816: 703:is induced by 558: 555: 538: 535: 521: 518: 501: 498: 494: 493: 482: 479: 476: 473: 470: 467: 464: 461: 458: 455: 452: 449: 446: 416:semilinear map 412: 402: 324: 321: 267: 264: 263: 262: 228: 223:), such that: 120:Formally, let 117:of subspaces. 103:linear algebra 98: 97:Linear algebra 95: 89: 86: 26: 24: 14: 13: 10: 9: 6: 4: 3: 2: 1685: 1674: 1671: 1670: 1668: 1658: 1654: 1651: 1650: 1646: 1641: 1639:0-486-43835-X 1635: 1631: 1626: 1623: 1621:9780486135861 1617: 1613: 1612: 1607: 1603: 1599: 1595: 1594:Morley, Frank 1591: 1588: 1586:9780199298860 1582: 1578: 1573: 1569: 1565: 1561: 1558: 1556:9780821826362 1552: 1548: 1543: 1540: 1538:0-521-48364-6 1534: 1530: 1526: 1522: 1521: 1517: 1509: 1505: 1501: 1497: 1492: 1489: 1485: 1480: 1477: 1473: 1468: 1465: 1461: 1458:(1926, 1949) 1457: 1452: 1449: 1443: 1439: 1435: 1431: 1427: 1420: 1416: 1412: 1404: 1400: 1393: 1389: 1383: 1377: 1370: 1367: 1363: 1359: 1355: 1351: 1347: 1343: 1339: 1335: 1329: 1326: 1322: 1318: 1314: 1308: 1305: 1298: 1296: 1294: 1290: 1272: 1268: 1263: 1259: 1256: 1250: 1244: 1236: 1232: 1213: 1207: 1204: 1199: 1195: 1191: 1186: 1183: 1178: 1174: 1170: 1164: 1158: 1152: 1145: 1144: 1143: 1141: 1137: 1133: 1129: 1125: 1122:amounts to a 1121: 1120:complex plane 1117: 1109: 1107: 1105: 1101: 1097: 1093: 1089: 1085: 1081: 1077: 1073: 1069: 1064: 1062: 1058: 1054: 1046: 1042: 1038: 1034: 1030: 1026: 1022: 1018: 1014: 1013: 1012: 1010: 1009:August Möbius 1006: 1002: 998: 994: 986: 984: 982: 978: 974: 963: 959: 953: 947: 926: 922: 884: 840: 825: 817: 815: 813: 809: 805: 799: 795: 790: 786: 782: 776: 770: 768: 764: 760: 756: 752: 748: 744: 740: 736: 732: 728: 724: 720: 716: 711: 708: 706: 702: 698: 694: 690: 686: 682: 678: 672: 668: 664: 660: 656: 649: 645: 641: 637: 633: 628: 624: 620: 616: 611: 609: 605: 602:and footnote 601: 597: 591: 586: 581: 579: 575: 570: 564: 556: 554: 552: 548: 536: 534: 532: 528: 519: 517: 515: 511: 507: 499: 497: 474: 468: 462: 453: 444: 436: 432: 428: 424: 420: 417: 413: 410: 407:is mapped to 406: 403: 400: 396: 392: 391:zero subspace 388: 387: 386: 385:, such that: 382: 378: 374: 370: 366: 361: 357: 353: 349: 345: 340: 338: 334: 330: 322: 320: 317: 315: 311: 310:division ring 307: 302: 300: 296: 292: 289: 285: 281: 277: 273: 266:Axiomatically 265: 260: 256: 252: 248: 244: 240: 236: 232: 229: 226: 225: 224: 222: 218: 214: 210: 206: 202: 198: 194: 190: 186: 182: 178: 174: 170: 166: 162: 158: 154: 150: 146: 142: 138: 134: 130: 127: 123: 118: 116: 112: 108: 104: 96: 94: 87: 85: 83: 80:, called the 79: 75: 71: 67: 66: 61: 57: 53: 49: 45: 41: 37: 33: 19: 1653:projectivity 1629: 1610: 1597: 1576: 1567: 1546: 1528: 1491: 1479: 1467: 1459: 1451: 1441: 1437: 1433: 1429: 1425: 1418: 1414: 1410: 1402: 1398: 1391: 1387: 1381: 1375: 1369: 1361: 1357: 1353: 1349: 1345: 1341: 1337: 1333: 1328: 1319:, p. 56 and 1307: 1228: 1142:is given by 1139: 1135: 1131: 1113: 1104:collineation 1103: 1099: 1076:collineation 1075: 1071: 1065: 1050: 1040: 1033:collineation 1032: 1028: 1025:permutations 1024: 1020: 1016: 1001:collinearity 990: 980: 976: 961: 957: 951: 945: 882: 823: 821: 811: 803: 797: 793: 774: 771: 766: 762: 758: 754: 750: 746: 742: 738: 734: 730: 726: 722: 718: 714: 712: 709: 704: 700: 696: 692: 688: 684: 680: 676: 670: 666: 662: 658: 654: 647: 643: 639: 635: 631: 626: 622: 618: 614: 612: 603: 595: 589: 582: 566: 542: 540: 523: 506:homographies 503: 495: 434: 430: 426: 422: 418: 408: 404: 398: 394: 380: 376: 372: 368: 364: 359: 355: 351: 347: 343: 341: 326: 318: 303: 298: 294: 290: 283: 279: 269: 258: 254: 250: 246: 242: 238: 234: 230: 220: 216: 212: 208: 204: 200: 196: 192: 188: 184: 180: 176: 172: 168: 164: 160: 157:vector lines 152: 148: 144: 140: 136: 132: 128: 121: 119: 107:vector space 100: 91: 81: 70:automorphism 63: 36:collineation 35: 29: 1456:Felix Klein 1379:is on line 1287:amounts to 1231:composition 1088:real number 877:), we have 808:prime field 608:Real number 362:) is a map 65:isomorphism 50:) from one 1657:PlanetMath 1518:References 1508:p. 42 1500:p. 43 1496:Blair 2000 1472:Casse 2006 1317:Casse 2006 1235:homography 1124:reflection 1100:homography 1072:homography 1041:homography 881:, but for 761:such that 561:See also: 245:) for all 88:Definition 40:one-to-one 1632:, Dover, 1321:Yale 2004 1273:∗ 1200:∗ 1179:∗ 1128:real line 1061:incidence 1045:collinear 975:over Gal( 822:Thus for 665:) : 481:⟩ 469:β 466:⟨ 457:⟩ 451:⟨ 445:α 329:dimension 167:. Call 115:inclusion 60:collinear 48:bijection 1667:Category 1608:(2012), 1566:(1948), 1348:for all 1323:, p. 226 1315:, p.21, 1082:and the 1055:with an 1029:permuted 802:, where 765:induces 737:) to PG( 713:Suppose 675:for all 634: : 613:Suppose 531:subgroup 367: : 270:Given a 1486:, p. 38 1126:in the 1118:in the 1037:Chasles 1023:but of 1007:it was 987:History 806:is the 569:pappian 339:holds. 286:and an 46:map (a 1636:  1618:  1583:  1553:  1535:  1396:is in 973:torsor 729:, and 687:). As 588:PG(2, 508:) and 282:lines 241:) ⊆ α( 175:) and 147:) and 56:images 1440:)) ∈ 1422:then 1385:then 1299:Notes 1138:, an 500:Types 421:from 354:) to 199:) to 126:field 78:group 38:is a 1634:ISBN 1616:ISBN 1581:ISBN 1551:ISBN 1533:ISBN 1417:) ∈ 1102:and 993:line 952:semi 943:for 810:for 772:For 753:and 745:and 642:) → 389:The 375:) → 237:⇔ α( 215:) → 187:and 163:and 131:and 44:onto 42:and 34:, a 1655:at 1432:), 1356:in 1074:to 1039:to 983:). 948:≥ 2 907:or 855:or 777:≥ 3 679:in 657:= { 621:to 610:). 606:in 541:An 527:PGL 433:in 425:to 393:of 253:in 159:of 74:set 58:of 30:In 1669:: 1506:, 1502:; 1498:, 1413:, 1364:). 1352:, 1344:⊆ 1340:⇔ 1336:⊆ 814:. 769:. 707:. 669:∈ 437:, 356:PG 348:PG 284:L, 280:P, 261:). 249:, 233:⊆ 201:PG 193:PG 149:PG 141:PG 84:. 1659:. 1510:. 1446:. 1444:′ 1442:I 1438:l 1436:( 1434:g 1430:p 1428:( 1426:f 1424:( 1419:I 1415:l 1411:p 1409:( 1405:) 1403:l 1401:( 1399:g 1394:) 1392:p 1390:( 1388:f 1382:l 1376:p 1362:V 1360:( 1358:D 1354:B 1350:A 1346:B 1342:A 1338:B 1334:A 1269:z 1264:/ 1260:1 1257:= 1254:) 1251:z 1248:( 1245:f 1214:. 1208:d 1205:+ 1196:z 1192:c 1187:b 1184:+ 1175:z 1171:a 1165:= 1162:) 1159:z 1156:( 1153:f 1136:z 1132:z 981:k 979:/ 977:K 964:) 962:k 960:/ 958:K 946:n 927:n 923:p 917:F 894:C 883:K 864:Q 841:p 836:F 824:K 812:K 804:k 800:) 798:k 796:/ 794:K 775:n 767:α 763:φ 759:φ 755:W 751:V 747:L 743:K 739:W 735:V 731:α 727:L 723:W 719:K 715:V 705:φ 701:α 697:α 693:φ 689:φ 685:V 683:( 681:D 677:Z 673:} 671:Z 667:z 663:z 661:( 659:φ 655:Z 650:) 648:W 646:( 644:D 640:V 638:( 636:D 632:α 627:V 623:W 619:V 615:φ 604:d 596:R 592:) 590:R 478:) 475:v 472:( 463:= 460:) 454:v 448:( 435:V 431:v 427:W 423:V 419:β 411:. 409:W 405:V 401:. 399:W 395:V 383:) 381:W 379:( 377:D 373:V 371:( 369:D 365:α 360:W 358:( 352:V 350:( 344:V 299:g 295:f 291:I 259:V 257:( 255:D 251:B 247:A 243:B 239:A 235:B 231:A 221:W 219:( 217:D 213:V 211:( 209:D 205:W 203:( 197:V 195:( 189:W 185:V 181:W 179:( 177:D 173:V 171:( 169:D 165:W 161:V 153:W 151:( 145:V 143:( 137:L 133:W 129:K 122:V 20:)

Index

Collineation group
projective geometry
one-to-one
onto
bijection
projective space
images
collinear
isomorphism
automorphism
set
group
linear algebra
vector space
order-preserving
inclusion
field
vector lines
projective space defined axiomatically
incidence structure
incidence relation
projectivization
division ring
non-Desarguesian planes
dimension
symmetric group
fundamental theorem of projective geometry
zero subspace
semilinear map
homographies

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.