Knowledge

Digital topology

Source đź“ť

1053: 836: 1074: 1042: 1111: 1084: 1064: 107:
proposed digital connectivity such as 4-connectivity and 8-connectivity in two dimensions as well as 6-connectivity and 26-connectivity in three dimensions. The labeling method for inferring a connected component was studied in the 1970s. Theodosios Pavlidis (1982) suggested the use of
84:(1931–2004), whose publications on the subject played a major role in establishing and developing the field. The term "digital topology" was itself invented by Rosenfeld, who used it in a 1973 publication for the first time. 168:. Grid cell topology also applies to multilevel (e.g., color) 2D or 3D images, for example based on a total order of possible image values and applying a 'maximum-label rule' (see the book by Klette and Rosenfeld, 2004). 139:
were studied. David Morgenthaler and Rosenfeld (1981) gave a mathematical definition of surfaces in three-dimensional digital space. This definition contains a total of nine types of digital surfaces. The
144:
was studied in the 1990s. A recursive definition of the digital k-manifold was proposed intuitively by Chen and Zhang in 1993. Many applications were found in image processing and computer vision.
296: 175:. The main differences between them are: (1) digital topology mainly studies digital objects that are formed by grid cells (the cells of integer lattices), rather than more general 423: 567: 327: 361: 1114: 132:. The book from 2008 contains new definitions of topological balls and spheres independent of a metric and numerous applications to digital image analysis. 116:(1989) extended the Alexandrov–Hopf 2D grid cell topology to three and higher dimensions. He also proposed (2008) a more general axiomatic theory of 717: 499: 160:) to ensure the basic topological duality of separation and connectedness. This alternative use corresponds to open or closed sets in the 2D 748: 623: 1102: 1097: 687: 633: 612: 585: 526: 1092: 704: 113: 164:, and the result generalizes to 3D: the alternative use of 6- or 26-adjacency corresponds to open or closed sets in the 3D 152:
A basic (early) result in digital topology says that 2D binary images require the alternative use of 4- or 8-adjacency or "
994: 645: 1002: 1135: 458: 187: 117: 219: 202: 1073: 801: 1087: 121: 77: 38: 1022: 1017: 943: 820: 808: 781: 741: 453: 448: 443: 366: 172: 92: 864: 791: 65: 1052: 543: 1012: 964: 938: 786: 468: 426: 191: 198:
is a special kind of combinatorial manifold which is defined in digital space i.e. grid cell space.
1063: 859: 473: 129: 54: 643:
Morgenthaler, David G.; Rosenfeld, Azriel (1981). "Surfaces in three-dimensional digital images".
1057: 1007: 928: 918: 796: 776: 165: 161: 153: 109: 88: 1027: 60:
Concepts and results of digital topology are used to specify and justify important (low-level)
1045: 911: 869: 734: 713: 683: 629: 608: 581: 522: 495: 771: 654: 573: 438: 195: 141: 96: 81: 697: 666: 595: 509: 305: 884: 879: 693: 662: 591: 505: 136: 34: 340: 974: 906: 676: 538: 488: 125: 61: 42: 27:
Properties of 2D or 3D digital images that correspond to classic topological properties
682:. Lecture Notes in Mathematics. Vol. 877. Rockville, MD: Computer Science Press. 658: 17: 1129: 984: 894: 874: 50: 1077: 969: 889: 835: 605:
Discrete Surfaces and Manifolds: A Theory of Digital-Discrete Geometry and Topology
176: 68:, border or surface tracing, counting of components or tunnels, or region-filling. 186:
is a kind of manifold which is a discretization of a manifold. It usually means a
1067: 979: 494:. Applied and Numerical Harmonic Analysis. Boston, MA: Birkhäuser Boston, Inc. 923: 854: 813: 577: 213:
in direct adjacency (i.e., a (6,26)-surface in 3D). The formula for genus is
100: 948: 933: 901: 850: 757: 463: 210: 46: 572:. Algorithms and Combinatorics. Vol. 11. Berlin: Springer-Verlag. 157: 179:, and (2) digital topology also deals with non-Jordan manifolds. 730: 333:
adjacent points on the surface (Chen and Rong, ICPR 2008). If
76:
Digital topology was first studied in the late 1960s by the
726: 712:. Berlin: Publishing House Dr. Baerbel Kovalevski. 2008. 329:
indicates the set of surface-points each of which has
546: 369: 343: 308: 222: 993: 957: 843: 764: 519:
Topological Algorithms for Digital Image Processing
675: 561: 537: 487: 417: 355: 321: 290: 91:, which could be considered as a link to classic 517:Kong, Tat Yung; Rosenfeld, Azriel, eds. (1996). 742: 8: 678:Algorithms for graphics and image processing 540:Discrete Images, Objects, and Functions in 1110: 1083: 749: 735: 727: 291:{\displaystyle g=1+(M_{5}+2M_{6}-M_{3})/8} 553: 549: 548: 545: 409: 393: 374: 368: 342: 313: 307: 280: 271: 258: 242: 221: 112:method for finding connected components. 108:graph-theoretic algorithms such as the 622:Klette, R.; Rosenfeld, Azriel (2004). 171:Digital topology is highly related to 64:algorithms, including algorithms for 33:deals with properties and features of 7: 418:{\displaystyle M_{3}=8+M_{5}+2M_{6}} 25: 710:Geometry of Locally Finite Spaces 118:locally finite topological spaces 103:, Topologie I (1935). Rosenfeld 53:) or topological features (e.g., 1109: 1082: 1072: 1062: 1051: 1041: 1040: 834: 562:{\displaystyle \mathbb {Z} ^{n}} 156:" (for "object" or "non-object" 277: 235: 1: 659:10.1016/S0019-9958(81)90290-4 337:is simply connected, i.e., 1152: 1003:Banach fixed-point theorem 490:Geometry of Digital Spaces 95:, appeared in the book of 87:A related work called the 1036: 832: 578:10.1007/978-3-642-46779-0 486:Herman, Gabor T. (1998). 459:Topological data analysis 188:piecewise linear manifold 705:Vladimir A. Kovalevsky. 674:Pavlidis, Theo (1982). 646:Information and Control 209:be a closed digital 2D 122:abstract cell complexes 78:computer image analysis 1058:Mathematics portal 958:Metrics and properties 944:Second-countable space 563: 454:Computational topology 449:Computational geometry 444:Combinatorial topology 419: 357: 323: 292: 201:A digital form of the 184:combinatorial manifold 173:combinatorial topology 124:formerly suggested by 114:Vladimir A. Kovalevsky 93:combinatorial topology 18:Combinatorial manifold 564: 420: 358: 324: 322:{\displaystyle M_{i}} 293: 1013:Invariance of domain 965:Euler characteristic 939:Bundle (mathematics) 544: 536:Voss, Klaus (1993). 469:Discrete mathematics 427:Euler characteristic 367: 341: 306: 220: 203:Gauss–Bonnet theorem 192:simplicial complexes 135:In the early 1980s, 1023:Tychonoff's theorem 1018:PoincarĂ© conjecture 772:General (point-set) 628:. Morgan Kaufmann. 474:Geospatial topology 356:{\displaystyle g=0} 130:Alexandrov topology 45:that correspond to 1008:De Rham cohomology 929:Polyhedral complex 919:Simplicial complex 559: 415: 353: 319: 288: 166:grid cell topology 162:grid cell topology 154:pixel connectivity 128:(1908). It is the 110:depth-first search 89:grid cell topology 49:properties (e.g., 1123: 1122: 912:fundamental group 719:978-3-9812252-0-4 603:Chen, L. (2004). 501:978-0-8176-3897-9 39:three-dimensional 16:(Redirected from 1143: 1136:Digital topology 1113: 1112: 1086: 1085: 1076: 1066: 1056: 1055: 1044: 1043: 838: 751: 744: 737: 728: 723: 701: 681: 670: 639: 625:Digital Geometry 618: 607:. SP Computing. 599: 571: 568: 566: 565: 560: 558: 557: 552: 532: 513: 493: 439:Digital geometry 424: 422: 421: 416: 414: 413: 398: 397: 379: 378: 362: 360: 359: 354: 328: 326: 325: 320: 318: 317: 297: 295: 294: 289: 284: 276: 275: 263: 262: 247: 246: 196:digital manifold 142:digital manifold 137:digital surfaces 97:Pavel Alexandrov 82:Azriel Rosenfeld 31:Digital topology 21: 1151: 1150: 1146: 1145: 1144: 1142: 1141: 1140: 1126: 1125: 1124: 1119: 1050: 1032: 1028:Urysohn's lemma 989: 953: 839: 830: 802:low-dimensional 760: 755: 720: 708: 690: 673: 642: 636: 621: 615: 602: 588: 547: 542: 541: 535: 529: 516: 502: 485: 482: 435: 405: 389: 370: 365: 364: 339: 338: 309: 304: 303: 267: 254: 238: 218: 217: 150: 74: 35:two-dimensional 28: 23: 22: 15: 12: 11: 5: 1149: 1147: 1139: 1138: 1128: 1127: 1121: 1120: 1118: 1117: 1107: 1106: 1105: 1100: 1095: 1080: 1070: 1060: 1048: 1037: 1034: 1033: 1031: 1030: 1025: 1020: 1015: 1010: 1005: 999: 997: 991: 990: 988: 987: 982: 977: 975:Winding number 972: 967: 961: 959: 955: 954: 952: 951: 946: 941: 936: 931: 926: 921: 916: 915: 914: 909: 907:homotopy group 899: 898: 897: 892: 887: 882: 877: 867: 862: 857: 847: 845: 841: 840: 833: 831: 829: 828: 823: 818: 817: 816: 806: 805: 804: 794: 789: 784: 779: 774: 768: 766: 762: 761: 756: 754: 753: 746: 739: 731: 725: 724: 718: 702: 688: 671: 653:(3): 227–247. 640: 634: 619: 613: 600: 586: 556: 551: 533: 527: 514: 500: 481: 478: 477: 476: 471: 466: 461: 456: 451: 446: 441: 434: 431: 412: 408: 404: 401: 396: 392: 388: 385: 382: 377: 373: 352: 349: 346: 316: 312: 300: 299: 287: 283: 279: 274: 270: 266: 261: 257: 253: 250: 245: 241: 237: 234: 231: 228: 225: 177:cell complexes 149: 146: 126:Ernst Steinitz 73: 70: 62:image analysis 57:) of objects. 43:digital images 26: 24: 14: 13: 10: 9: 6: 4: 3: 2: 1148: 1137: 1134: 1133: 1131: 1116: 1108: 1104: 1101: 1099: 1096: 1094: 1091: 1090: 1089: 1081: 1079: 1075: 1071: 1069: 1065: 1061: 1059: 1054: 1049: 1047: 1039: 1038: 1035: 1029: 1026: 1024: 1021: 1019: 1016: 1014: 1011: 1009: 1006: 1004: 1001: 1000: 998: 996: 992: 986: 985:Orientability 983: 981: 978: 976: 973: 971: 968: 966: 963: 962: 960: 956: 950: 947: 945: 942: 940: 937: 935: 932: 930: 927: 925: 922: 920: 917: 913: 910: 908: 905: 904: 903: 900: 896: 893: 891: 888: 886: 883: 881: 878: 876: 873: 872: 871: 868: 866: 863: 861: 858: 856: 852: 849: 848: 846: 842: 837: 827: 824: 822: 821:Set-theoretic 819: 815: 812: 811: 810: 807: 803: 800: 799: 798: 795: 793: 790: 788: 785: 783: 782:Combinatorial 780: 778: 775: 773: 770: 769: 767: 763: 759: 752: 747: 745: 740: 738: 733: 732: 729: 721: 715: 711: 706: 703: 699: 695: 691: 689:0-914894-65-X 685: 680: 679: 672: 668: 664: 660: 656: 652: 648: 647: 641: 637: 635:1-55860-861-3 631: 627: 626: 620: 616: 614:0-9755122-1-8 610: 606: 601: 597: 593: 589: 587:0-387-55943-4 583: 579: 575: 570: 569: 554: 534: 530: 528:0-444-89754-2 524: 520: 515: 511: 507: 503: 497: 492: 491: 484: 483: 479: 475: 472: 470: 467: 465: 462: 460: 457: 455: 452: 450: 447: 445: 442: 440: 437: 436: 432: 430: 428: 410: 406: 402: 399: 394: 390: 386: 383: 380: 375: 371: 350: 347: 344: 336: 332: 314: 310: 285: 281: 272: 268: 264: 259: 255: 251: 248: 243: 239: 232: 229: 226: 223: 216: 215: 214: 212: 208: 204: 199: 197: 193: 189: 185: 180: 178: 174: 169: 167: 163: 159: 155: 148:Basic results 147: 145: 143: 138: 133: 131: 127: 123: 119: 115: 111: 106: 102: 98: 94: 90: 85: 83: 79: 71: 69: 67: 63: 58: 56: 52: 51:connectedness 48: 44: 40: 36: 32: 19: 1115:Publications 980:Chern number 970:Betti number 853: / 844:Key concepts 825: 792:Differential 709: 677: 650: 644: 624: 604: 539: 521:. Elsevier. 518: 489: 425:. (See also 334: 330: 301: 206: 200: 183: 181: 170: 151: 134: 104: 86: 75: 59: 30: 29: 1078:Wikiversity 995:Key results 80:researcher 47:topological 924:CW complex 865:Continuity 855:Closed set 814:cohomology 480:References 101:Heinz Hopf 55:boundaries 1103:geometric 1098:algebraic 949:Cobordism 885:Hausdorff 880:connected 797:Geometric 787:Continuum 777:Algebraic 265:− 205:is: Let 1130:Category 1068:Wikibook 1046:Category 934:Manifold 902:Homotopy 860:Interior 851:Open set 809:Homology 758:Topology 707:(2008). 464:Topology 433:See also 211:manifold 190:made by 66:thinning 37:(2D) or 1093:general 895:uniform 875:compact 826:Digital 698:0643798 667:0686842 596:1224678 510:1711168 363:, then 72:History 1088:Topics 890:metric 765:Fields 716:  696:  686:  665:  632:  611:  594:  584:  525:  508:  498:  302:where 158:pixels 105:et al. 870:Space 41:(3D) 714:ISBN 684:ISBN 630:ISBN 609:ISBN 582:ISBN 523:ISBN 496:ISBN 194:. A 120:and 99:and 655:doi 574:doi 429:.) 1132:: 694:MR 692:. 663:MR 661:. 651:51 649:. 592:MR 590:. 580:. 506:MR 504:. 182:A 750:e 743:t 736:v 722:. 700:. 669:. 657:: 638:. 617:. 598:. 576:: 555:n 550:Z 531:. 512:. 411:6 407:M 403:2 400:+ 395:5 391:M 387:+ 384:8 381:= 376:3 372:M 351:0 348:= 345:g 335:M 331:i 315:i 311:M 298:, 286:8 282:/ 278:) 273:3 269:M 260:6 256:M 252:2 249:+ 244:5 240:M 236:( 233:+ 230:1 227:= 224:g 207:M 20:)

Index

Combinatorial manifold
two-dimensional
three-dimensional
digital images
topological
connectedness
boundaries
image analysis
thinning
computer image analysis
Azriel Rosenfeld
grid cell topology
combinatorial topology
Pavel Alexandrov
Heinz Hopf
depth-first search
Vladimir A. Kovalevsky
locally finite topological spaces
abstract cell complexes
Ernst Steinitz
Alexandrov topology
digital surfaces
digital manifold
pixel connectivity
pixels
grid cell topology
grid cell topology
combinatorial topology
cell complexes
piecewise linear manifold

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑