Knowledge (XXG)

Combined cycle power plant

Source đź“ť

2557:
piping system. Those limitations also influence the fast start-up capability of the gas turbine by requiring waiting times. And waiting gas turbines consume gas. The solar component, if the plant is started after sunshine, or before, if there is heat storage, allows the preheat of the steam to the required conditions. That is, the plant is started faster and with less consumption of gas before achieving operating conditions. Economic benefits are that the solar components costs are 25% to 75% those of a
1708: 2073:
MW (for 50 Hz applications). Combined cycle units are made up of one or more such gas turbines, each with a waste heat steam generator arranged to supply steam to a single or multiple steam turbines, thus forming a combined cycle block or unit. Combined cycle block sizes offered by three major manufacturers (Alstom, General Electric and Siemens) can range anywhere from 50 MW to well over 1300 MW with costs approaching $ 670/kW.
1797:, with steam plants for the low temperature "bottoming" cycle. Very low temperature bottoming cycles have been too costly due to the very large sizes of equipment needed to handle the large mass flows and small temperature differences. However, in cold climates it is common to sell hot power plant water for hot water and space heating. Vacuum-insulated piping can let this utility reach as far as 90 km. The approach is called " 3814: 95: 4393: 1665: 2413:
aircraft, is to pressurise hot-stage turbine blades with coolant. This is also bled-off in proprietary ways to improve the aerodynamic efficiencies of the turbine blades. Different vendors have experimented with different coolants. Air is common but steam is increasingly used. Some vendors might now utilize single-crystal turbine blades in the hot section, a technique already common in military aircraft engines.
2119: 1988: 1935: 1880: 2421:. The latter has the advantage of greater improvements due to the lower temperatures available. Furthermore, ice storage can be used as a means of load control or load shifting since ice can be made during periods of low power demand and, potentially in the future the anticipated high availability of other resources such as renewables during certain periods. 33: 2107: 2318:
disconnected with a synchro-self-shifting (SSS) clutch, for start up or for simple cycle operation of the gas turbine. Another less common set of options enable more heat or standalone operation of the steam turbine to increase reliability: Duct burning, perhaps with a fresh air blower in the duct and a clutch on the gas turbine side of the shaft.
2310:
firing can provide a wider range of temperatures or heat to electric power. Systems burning low quality fuels such as brown coal or peat might use relatively expensive closed-cycle helium turbines as the topping cycle to avoid even more expensive fuel processing and gasification that would be needed by a conventional gas turbine.
2093:. Feed water comes in through the economizer and then exits after having attained saturation temperature in the water or steam circuit. Finally it flows through the evaporator and super heater. If the temperature of the gases entering the heat recovery boiler is higher, then the temperature of the exiting gases is also high. 2030:. For gas turbines the amount of metal that must withstand the high temperatures and pressures is small, and lower quantities of expensive materials can be used. In this type of cycle, the input temperature to the turbine (the firing temperature), is relatively high (900 to 1,400 Â°C). The output temperature of the 2416:
The efficiency of CCGT and GT can also be boosted by pre-cooling combustion air. This increases its density, also increasing the expansion ratio of the turbine. This is practised in hot climates and also has the effect of increasing power output. This is achieved by evaporative cooling of water using
2329:
Multiple-pressure reheat steam cycles are applied to combined-cycle systems with gas turbines with exhaust gas temperatures near 600 Â°C. Single- and multiple-pressure non-reheat steam cycles are applied to combined-cycle systems with gas turbines that have exhaust gas temperatures of 540 Â°C
2183:
ratio to burn the fuel. Often in gas turbine designs part of the compressed air flow bypasses the burner in order to cool the turbine blades. The turbine exhaust is already hot, so a regenerative air preheater is not required as in a conventional steam plant. However, a fresh air fan blowing directly
2556:
Major factors limiting the load output of a combined cycle power plant are the allowed pressure and temperature transients of the steam turbine and the heat recovery steam generator waiting times to establish required steam chemistry conditions and warm-up times for the balance of plant and the main
2309:
Supplementary-fired and multishaft combined-cycle systems are usually selected for specific fuels, applications or situations. For example, cogeneration combined-cycle systems sometimes need more heat, or higher temperatures, and electricity is a lower priority. Multishaft systems with supplementary
2195:
Duct burning raises the flue temperature, which increases the quantity or temperature of the steam (e.g. to 84 bar, 525 degree Celsius). This improves the efficiency of the steam cycle. Supplementary firing lets the plant respond to fluctuations of electrical load, because duct burners can have very
2139:
drums. The low-pressure drum is connected to the low-pressure economizer or evaporator. The low-pressure steam is generated in the low temperature zone of the turbine exhaust gasses. The low-pressure steam is supplied to the low-temperature turbine. A super heater can be provided in the low-pressure
2072:
Gas turbines for large-scale power generation are manufactured by at least four separate groups – General Electric, Siemens, Mitsubishi-Hitachi, and Ansaldo Energia. These groups are also developing, testing and/or marketing gas turbine sizes in excess of 300 MW (for 60 Hz applications) and 400
2428:
Another active area of research is the steam generator for the Rankine cycle. Typical plants already use a two-stage steam turbine, reheating the steam between the two stages. When the heat-exchangers' thermal conductivity can be improved, efficiency improves. As in nuclear reactors, tubes might be
2424:
Combustion technology is a proprietary but very active area of research, because fuels, gasification and carburation all affect fuel efficiency. A typical focus is to combine aerodynamic and chemical computer simulations to find combustor designs that assure complete fuel burn up, yet minimize both
2338:
By combining both gas and steam cycles, high input temperatures and low output temperatures can be achieved. The efficiency of the cycles add, because they are powered by the same fuel source. So, a combined cycle plant has a thermodynamic cycle that operates between the gas-turbine's high firing
2260:
Gas turbines burn mainly natural gas and light oil. Crude oil, residual, and some distillates contain corrosive components and as such require fuel treatment equipment. In addition, ash deposits from these fuels result in gas turbine deratings of up to 15%. They may still be economically attractive
1962:
is a simplified form of combined cycle where the steam turbine is eliminated by injecting steam directly into the combustion turbine. This has been used since the mid 1970s and allows recovery of waste heat with less total complexity, but at the loss of the additional power and redundancy of a true
2325:
The overall plant size and the associated number of gas turbines required can also determine which type of plant is more economical. A collection of single shaft combined cycle power plants can be more costly to operate and maintain, because there are more pieces of equipment. However, it can save
2313:
A typical single-shaft system has one gas turbine, one steam turbine, one generator and one heat recovery steam generator (HRSG). The gas turbine and steam turbine are both coupled in tandem to a single electrical generator on a single shaft. This arrangement is simpler to operate, smaller, with a
2321:
A multi-shaft system usually has only one steam system for up to three gas turbines. Having only one large steam turbine and heat sink has economies of scale and can have lower cost operations and maintenance. A larger steam turbine can also use higher pressures, for a more efficient steam cycle.
2435:
Modern CCGT plants also need software that is precisely tuned to every choice of fuel, equipment, temperature, humidity and pressure. When a plant is improved, the software becomes a moving target. CCGT software is also expensive to test, because actual time is limited on the multimillion-dollar
2264:
Sodium and potassium are removed from residual, crude and heavy distillates by a water washing procedure. A simpler and less expensive purification system will do the same job for light crude and light distillates. A magnesium additive system may also be needed to reduce the corrosive effects if
2412:
Efficiency of the turbine is increased when combustion can run hotter, so the working fluid expands more. Therefore efficiency is limited by whether the first stage of turbine blades can survive higher temperatures. Cooling and materials research are continuing. A common technique, adopted from
2199:
Supplementary firing can raise exhaust temperatures from 600 Â°C (GT exhaust) to 800 or even 1000 Â°C. Supplemental firing does not raise the efficiency of most combined cycles. For single boilers it can raise the efficiency if fired to 700–750 Â°C; for multiple boilers however, the
2646:
Bottoming cycles producing electricity from the steam condenser's heat exhaust are theoretically possible, but conventional turbines are uneconomically large. The small temperature differences between condensing steam and outside air or water require very large movements of mass to drive the
2317:
Single-shaft arrangements can have less flexibility and reliability than multi-shaft systems. With some expense, there are ways to add operational flexibility: Most often, the operator desires to operate the gas turbine as a peaking plant. In these plants, the steam turbine's shaft can be
2305:
The most fuel-efficient power generation cycles use an unfired heat recovery steam generator (HRSG) with modular pre-engineered components. These unfired steam cycles are also the lowest in initial cost, and they are often part of a single shaft system that is installed as a unit.
1776:
By generating power from multiple streams of work, the overall efficiency can be increased by 50–60%. That is, from an overall efficiency of the system of say 34% for a simple cycle, to as much as 64% net for the turbine alone in specified conditions for a combined cycle.
1972: 2375:
A limitation of combined cycles is that efficiency is reduced when not running at continuous output. During start up, the second cycle can take time to start up. Thus efficiency is initially much lower until the second cycle is running, which can take an hour or more.
2529:). Syngas can be produced from a number of sources, including coal and biomass. The system uses gas and steam turbines, the steam turbine operating from the heat left over from the gas turbine. This process can raise electricity generation efficiency to around 50%. 1847:
Multiple stage turbine or steam cycles can also be used, but CCGT plants have advantages for both electricity generation and marine power. The gas turbine cycle can often start very quickly, which gives immediate power. This avoids the need for separate expensive
2488:
9HA, that claimed 41.5% simple cycle efficiency and 61.4% in combined cycle mode, with a gas turbine output of 397 MW to 470 MW and a combined output of 592 MW to 701 MW. Its firing temperature is between 2,600 and 2,900 Â°F (1,430 and 1,590 Â°C), its
2330:
or less. Selection of the steam cycle for a specific application is determined by an economic evaluation that considers a plant's installed cost, fuel cost and quality, duty cycle, and the costs of interest, business risks, and operations and maintenance.
2068:
For large-scale power generation, a typical set would be a 270 MW primary gas turbine coupled to a 130 MW secondary steam turbine, giving a total output of 400 MW. A typical power station might consist of between 1 and 6 such sets.
1871:. They gave costs of between 78 and 100 €/MWh for CCGT plants powered by natural gas. In addition the capital costs of combined cycle power is relatively low, at around $ 1000/kW, making it one of the cheapest types of generation to install. 2956: 3160: 2015:. These alloys limit practical steam temperatures to 655 Â°C while the lower temperature of a steam plant is fixed by the temperature of the cooling water. With these limits, a steam plant has a fixed upper efficiency of 35–42%. 2549:
field is integrated within a combined cycle plant. In ISCC plants, solar energy is used as an auxiliary heat supply, supporting the steam cycle, which results in increased generation capacity or a reduction of fossil fuel use.
2247:
Where the extension of a gas pipeline is impractical or cannot be economically justified, electricity needs in remote areas can be met with small-scale combined cycle plants using renewable fuels. Instead of natural gas, these
1384: 1995:
The efficiency of a heat engine, the fraction of input heat energy that can be converted to useful work, is limited by the temperature difference between the heat entering the engine and the exhaust heat leaving the engine.
1963:
combined cycle system. It has no additional steam turbine or generator, and therefore it cannot be used as a backup or supplementary power. It is named after American professor D. Y. Cheng who patented the design in 1976.
2601: 2196:
good efficiency with partial loads. It can enable higher steam production to compensate for the failure of another unit. Also, coal can be burned in the steam generator as an economical supplementary fuel.
1978: 1977: 1974: 1973: 2749: 1979: 2265:
vanadium is present. Fuels requiring such treatment must have a separate fuel-treatment plant and a system of accurate fuel monitoring to assure reliable, low-maintenance operation of gas turbines.
2593: 2191:
of a combined cycle power plant is higher. But more flexible plant operations make a marine CCGT safer by permitting a ship to operate with equipment failures. A flexible stationary plant can
3190: 1828:
of around 64% in base-load operation. In contrast, a single cycle steam power plant is limited to efficiencies from 35 to 42%. Many new power plants utilize CCGTs. Stationary CCGTs burn
1976: 2444:
There is active competition to reach higher efficiencies. Research aimed at 1,370 Â°C (2,500 Â°F) turbine inlet temperature has led to even more efficient combined cycles.
2957:"The difference between LCV and HCV (or Lower and Higher Heating Value, or Net and Gross) is clearly understood by all energy engineers. There is no 'right' or 'wrong' definition" 2890: 2425:
pollution and dilution of the hot exhaust gases. Some combustors inject other materials, such air or steam, to reduce pollution by reducing the formation of nitrates and ozone.
1914:
The cycle a-b-c-d-e-f-a which is the Rankine steam cycle takes place at a lower temperature and is known as the bottoming cycle. Transfer of heat energy from high temperature
2436:
prototypes of new CCGT plants. Testing usually simulates unusual fuels and conditions, but validates the simulations with selected data points measured on actual equipment.
2585: 1219: 1164: 1109: 1860: 916: 869: 784: 737: 649: 602: 1694: 820: 688: 1054: 2432:
There is also some development of modified Rankine cycles. Two promising areas are ammonia/water mixtures, and turbines that utilize supercritical carbon dioxide.
3665: 3351: 1395: 3000:
Wagar, W.R.; Zamfirescu, C.; Dincer, I. (December 2010). "Thermodynamic performance assessment of an ammonia–water Rankine cycle for power and heat production".
2451:, using a GE H-technology gas turbine with a NEM 3 pressure reheat boiler, using steam from the heat recovery steam generator (HRSG) to cool the turbine blades. 553: 1283: 892: 845: 760: 713: 625: 578: 1991:
Working principle of a combined cycle power plant (Legend: 1-Electric generators, 2-Steam turbine, 3-Condenser, 4-Pump, 5-Boiler/heat exchanger, 6-Gas turbine)
2244:
power plants can use the higher temperature range of a Brayton top cycle, as well as the increase in thermal efficiency offered by a Rankine bottoming cycle.
4338: 517: 1769:(the exhaust) is still hot enough that a second subsequent heat engine can extract energy from the heat in the exhaust. Usually the heat passes through a 2573: 2131:
In order to remove the maximum amount of heat from the gasses exiting the high temperature cycle, a dual pressure boiler is often employed. It has two
1975: 3046: 2688: 1373: 3124: 2372:
and Gross Output basis. Most combined cycle units, especially the larger units, have peak, steady-state efficiencies on the LHV basis of 55 to 59%.
2735: 2294:
is being retrofitted to a natural gas/hydrogen power plant that can run on 30% hydrogen as well, and is scheduled to run on pure hydrogen by 2045.
2236:
combined cycle power stations combine the energy harvested from solar radiation with another fuel to cut fuel costs and environmental impact (See:
3513: 2877: 2429:
made thinner (e.g. from stronger or more corrosion-resistant steel). Another approach might use silicon carbide sandwiches, which do not corrode.
1406: 3194: 2891:
https://www.startribune.com/xcel-energy-long-term-plan-prairie-island-nuclear-gas-plants-wind-solar-large-scale-battery/600340390/?refresh=true
2708: 2522: 2516: 3174: 2034:
is also high (450 to 650 Â°C). This is therefore high enough to provide heat for a second cycle which uses steam as the working fluid (a
976: 2347:
of the cycle is high. The actual efficiency, while lower than the Carnot efficiency, is still higher than that of either plant on its own.
4396: 2565: 2003:, water is the working medium. High pressure steam requires strong, bulky components. High temperatures require expensive alloys made from 1687: 1274: 510: 388: 943: 4235: 2913: 2683: 326: 42: 4343: 3813: 3658: 3344: 3254:
Steam & Gas Turbines And Power Plant Engineering ISBN C039000000001, R Yadav., Sanjay., Rajay, Central Publishing House, Allahabad
2283: 1458: 1432: 953: 407: 2864:"US Patent for Parallel-compound dual-fluid heat engine Patent (Patent # 3,978,661 issued September 7, 1976) - Justia Patents Search" 2302:
Combined-cycle systems can have single-shaft or multi-shaft configurations. Also, there are several configurations of steam systems.
2203:"Maximum supplementary firing" is the condition when the maximum fuel is fired with the oxygen available in the gas turbine exhaust. 4427: 3963: 3579: 3286: 3262: 359: 3296:
Sanjay, Y; Singh, Onkar; Prasad, BN (December 2007). "Energy and exergy analysis of steam cooled reheat gas-steam combined cycle".
2650:
Although not reduced to practice, a vortex of air can concentrate the mass flows for a bottoming cycle. Theoretical studies of the
1511: 2049:
temperature between 420 and 580 Â°C. The condenser of the Rankine cycle is usually cooled by water from a lake, river, sea or
2617: 982: 381: 2901: 2357:
As with single cycle thermal units, combined cycle units may also deliver low temperature heat energy for industrial processes,
4422: 4126: 4051: 3922: 3617: 2703: 2558: 2237: 1680: 51: 3234: 1611: 143: 3269:
Sanjay; Singh, Onkar; Prasad, B. N. (2003). "Thermodynamic Evaluation of Advanced Combined Cycle Using Latest Gas Turbine".
2354:
of the fuel consumed, can be over 60% when operating new, i.e. unaged, and at continuous output which are ideal conditions.
2350:
The electric efficiency of a combined cycle power station, if calculated as electric energy produced as a percentage of the
1506: 4432: 4298: 4230: 4220: 4096: 3996: 3651: 3337: 3140: 2698: 2693: 2168: 2042: 1868: 1790: 1586: 1359: 336: 2041:
In a combined cycle power plant, the heat of the gas turbine's exhaust is used to generate steam by passing it through a
4151: 4111: 3688: 3564: 3064: 2418: 971: 174: 164: 1911:
cycle is the topping cycle. It depicts the heat and work transfer process taking place in the high temperature region.
4378: 4373: 4091: 4066: 4056: 4032: 4027: 3733: 3208: 2389: 179: 169: 2503:
In December 2017, GE claimed 64% in its latest 826 MW HA plant, up from 63.7%. They said this was due to advances in
2484:
was certified by Guinness World Records as the worlds most efficient combined cycle power plant at 62.22%. It uses a
2477: 4417: 4293: 4011: 3758: 3478: 3368: 2404:
is 55.50 MJ/kg (23,860 BTU/lb), compared to a 50.00 MJ/kg (21,500 BTU/lb) LHV: a 11% increase.
2143:
Some part of the feed water from the low-pressure zone is transferred to the high-pressure economizer by a booster
1794: 1711: 1501: 1463: 1427: 139: 1926:
reject heat. The feed water, wet and super heated steam absorb some of this heat in the process a-b, b-c and c-d.
4437: 4348: 3837: 3798: 3632: 2609: 2291: 1762:(COGAS) plant. Combining two or more thermodynamic cycles improves overall efficiency, which reduces fuel costs. 1743: 1256: 1004: 450: 263: 253: 70: 4323: 4131: 4071: 3728: 2448: 2287: 2278: 1919: 1864: 77: 3587: 2774:
Polyzakis, A.L.; Koroneos, C.; Xydis, G. (2008). "Optimum gas turbine cycle for combined cycle power plant".
2654:
show that if built at scale it is an economical bottoming cycle for a large steam Rankine cycle power plant.
4262: 4252: 4242: 3612: 3597: 3543: 1908: 1798: 1668: 1496: 1293: 996: 935: 471: 460: 126: 3035:
Dostal, Vaclav. "A Supercritical Carbondioxide Cycle for Next Generation Nuclear Reactors" (Document). MIT.
4183: 4046: 3829: 3718: 3121: 2678: 2504: 2490: 2459: 2148: 1786: 1759: 1707: 1601: 1521: 1318: 402: 156: 131: 2171:
can be designed to burn supplementary fuel after the gas turbine. Supplementary burners are also called
4318: 4086: 4081: 4061: 3458: 3418: 2713: 2613: 2241: 2000: 1755: 1715: 1536: 1113: 426: 272: 121: 2081:
The heat recovery boiler is item 5 in the COGAS figure shown above. Hot gas turbine exhaust enters the
2878:"Combined-cycle, gas-fired unit costs coming in below expectations: Duke | S&P Global Platts" 3912: 3674: 3602: 3305: 3047:"Siemens pushes world record in efficiency to over 60% while achieving maximum operating flexibility" 3009: 2783: 2179:. Temperature limits at the gas turbine inlet force the turbine to use excess air, above the optimal 1616: 1541: 1531: 331: 205: 193: 47: 4283: 4116: 4016: 3991: 3944: 3753: 3743: 3708: 3607: 3508: 3360: 2397: 2369: 2351: 1922:
boiler in the bottoming cycle. During the constant pressure process 4-1 the exhaust gases from the
1888: 1719: 1561: 1556: 1323: 345: 311: 306: 219: 3171: 3091:"Here's Why The Latest Guinness World Record Will Keep France Lit Up Long After Soccer Fans Leave" 2458:
announced they had achieved a 60.75% efficiency with a 578 megawatt SGT5-8000H gas turbine at the
4157: 3768: 3464: 2818:"Cost and Performance Characteristics of New Generating Technologies, Annual Energy Outlook 2019" 2817: 2799: 2393: 2385: 2062: 1825: 1650: 1313: 1261: 1174: 1119: 1064: 493: 477: 364: 316: 301: 291: 100: 94: 1950:. The Waste Heat Recovery Boiler (WHRB) has 3 sections: Economiser, evaporator and superheater. 1308: 898: 851: 766: 719: 631: 584: 4308: 4188: 3793: 3627: 3449: 3282: 3258: 2663: 2507:
and combustion. Their press release said that they planned to achieve 65% by the early 2020s.
2344: 2184:
into the duct permits a duct-burning steam plant to operate even when the gas turbine cannot.
1813: 1739: 1645: 1606: 1596: 1168: 966: 802: 794: 667: 296: 286: 228: 2972:"Experimental investigation of compact silicon carbide heat exchangers for high temperatures" 2920: 2902:
https://www.utilitydive.com/news/chevron-mitsubishi-hydrogen-storage-aces-delata-utah/693782/
4257: 4198: 3902: 3897: 3874: 3783: 3723: 3569: 3313: 3274: 3094: 3017: 2791: 2485: 2470: 2358: 2274: 1566: 1551: 1491: 1486: 1303: 1298: 1024: 948: 416: 281: 2943: 2252:
and burn agricultural and forestry waste, which is often readily available in rural areas.
4288: 4247: 4225: 4106: 4076: 4041: 4001: 3803: 3592: 3178: 3128: 2628:
In most successful combined cycles, the bottoming cycle for power is a conventional steam
2228:
or other fuels can be used. The supplementary fuel may be natural gas, fuel oil, or coal.
2175:. Duct burning is possible because the turbine exhaust gas (flue gas) still contains some 1942:
The steam power plant takes its input heat from the high temperature exhaust gases from a
1853: 1516: 1364: 1018: 659: 482: 243: 210: 17: 3317: 3309: 3013: 2787: 2500:
claimed a LHV efficiency of greater than 63% for some members of its J Series turbines.
535: 4313: 4303: 4101: 3713: 3559: 3518: 3503: 3488: 3423: 3413: 3408: 3383: 2466: 2180: 2019: 1852:, or lets a ship maneuver. Over time the secondary steam cycle will warm up, improving 1770: 1571: 1341: 877: 830: 745: 698: 610: 563: 441: 321: 258: 248: 116: 86: 3108: 2365:
and such power plants are often referred to as a combined heat and power (CHP) plant.
2061:
Plant size is important in the cost of the plant. The larger plant sizes benefit from
4411: 4333: 4121: 4006: 3986: 3917: 3907: 3864: 3748: 3703: 3622: 3538: 3493: 3454: 3428: 3398: 3393: 2803: 2651: 2639:) to drive community heating systems from a steam power plant's condenser heat. Such 2629: 2343:
temperature from the condensers of the steam cycle. This large range means that the
2225: 2050: 2035: 1947: 1904: 1900: 1892: 1833: 1817: 1809: 1766: 1640: 958: 527: 488: 200: 1891:
of the basic combined cycle consists of two power plant cycles. One is the Joule or
4353: 4328: 4193: 4162: 3976: 3778: 3528: 3523: 3498: 3444: 3403: 3021: 2795: 2673: 2640: 2553:
Thermodynamic benefits are that daily steam turbine startup losses are eliminated.
2546: 2362: 2233: 2082: 1849: 1591: 1576: 1526: 1009: 3238: 4178: 4146: 3939: 3927: 3847: 3773: 3763: 3693: 2668: 2473:
power plant 405 MW 7HA is expected to have 62% gross combined cycle efficiency.
2217: 1959: 1943: 1923: 1915: 1896: 1829: 1805: 1804:
In stationary and marine power plants, a widely used combined cycle has a large
1735: 1546: 354: 2971: 4141: 4136: 3949: 3932: 3788: 3533: 3050: 2497: 2455: 2340: 2086: 2046: 1758:. The same principle is also used for marine propulsion, where it is called a 1723: 1635: 1581: 3068: 3857: 3852: 3738: 3698: 2863: 2118: 2023: 1983:
Explanation of the layout and principle of a combined cycle power generator.
1934: 233: 3212: 1987: 1879: 1765:
The principle is that after completing its cycle in the first engine, the
3971: 3278: 2481: 2326:
interest costs by letting a business add plant capacity as it is needed.
2221: 2031: 1841: 1349: 1266: 1058: 466: 238: 66:
Assembly of heat engines that work in tandem from the same source of heat
3109:"MHPS Enables the Power Plant of the Future for Dominion Virginia Power" 3892: 3882: 3643: 3329: 3161:
Operational Flexibility Enhancements of Combined Cycle Power Plants p.3
2636: 2605: 2597: 2577: 2401: 2229: 2156: 2106: 2027: 455: 2620:
boost section (44 MW and 9 MW), but the projects never became active.
3887: 3090: 2736:"HA technology now available at industry-first 64 percent efficiency" 2526: 2368:
In general, combined cycle efficiencies in service are over 50% on a
2249: 2176: 2152: 2151:. This saturated water goes through the high-temperature zone of the 2090: 2008: 2004: 1738:
that work in tandem from the same source of heat, converting it into
76:"Combined cycle gas turbine" redirects here. Not to be confused with 3141:"Fossil Fuels + Solar Energy = The Future of Electricity Generation" 2089:
and finally through the economiser section as it flows out from the
2112:
Steam turbine plant lay out with dual pressure heat recovery boiler
2581: 2569: 2447:
Nearly 60% LHV efficiency (54% HHV efficiency) was reached in the
2322:
However, a multi-shaft system is about 5% higher in initial cost.
2136: 2132: 2012: 1986: 1970: 1933: 1878: 1706: 3842: 3265:, R Yadav., Sanjay., Rajay, Central Publishing House, Allahabad. 3065:"Air-cooled 7HA and 9HA designs rated at over 61% CC efficiency" 2589: 2144: 1837: 431: 3647: 3333: 3111:(Press release). Mitsubishi Hitachi Power Systems. 2016-12-07. 26: 2750:"Levelized cost of electricity renewable energy technologies" 1946:
power plant. The steam thus generated can be used to drive a
1824:(CCGT) plant. These achieve a best-of-class real (see below) 3235:"Iran - Yazd integrated solar combined cycle power station" 2065:(lower initial cost per kilowatt) and improved efficiency. 2417:
a moist matrix placed in the turbine's inlet, or by using
1773:
so that the two engines can use different working fluids.
2200:
flexibility of the plant should be the major attraction.
3209:"Yazd Solar Energy Power Plant 1st in its kind in world" 2207:
Combined cycle advanced Rankine subatmospheric reheating
2643:
systems can yield theoretical efficiencies above 95%.
2286:
is going to build two natural gas power plants in the
2261:
fuels however, particularly in combined-cycle plants.
3143:. POWER magazine. 2009-01-04. p. 1 (paragraph 7) 1177: 1122: 1067: 1027: 901: 880: 854: 833: 805: 769: 748: 722: 701: 670: 634: 613: 587: 566: 538: 4362: 4272: 4209: 4171: 4025: 3962: 3873: 3828: 3821: 3681: 3578: 3552: 3477: 3437: 3378: 3367: 2124:
Heat exchange in dual pressure heat recovery boiler
3211:. Payvand Iran news. 13 April 2007. Archived from 2580:, and in 2011 by the Kuraymat ISCC Power Plant in 1785:Historically successful combined cycles have used 1213: 1158: 1103: 1048: 910: 886: 863: 839: 814: 778: 754: 731: 707: 682: 643: 619: 596: 572: 547: 2525:, or IGCC, is a power plant using synthesis gas ( 1861:Fraunhofer Institute for Solar Energy Systems ISE 3191:"ENEL a Priolo inaugura la centrale "Archimede"" 2384:Heat engine efficiency can be based on the fuel 2290:that can mix 30% hydrogen with the natural gas. 2053:. This temperature can be as low as 15 Â°C. 69:"NGCC" redirects here. For the ship prefix, see 3067:. Gas Turbine World. April 2014. Archived from 2979:International Journal of Heat and Mass Transfer 2635:It is already common in cold climates (such as 1938:Heat transfer from hot gases to water and steam 2823:. U.S. Energy Information Administration. 2019 3659: 3345: 2564:The first such system to come online was the 2511:Integrated gasification combined cycle (IGCC) 2216:Combined cycle plants are usually powered by 1688: 8: 2738:(Press release). GE Power. December 4, 2017. 2147:. This economizer heats up the water to its 3825: 3666: 3652: 3644: 3375: 3352: 3338: 3330: 2574:Martin Next Generation Solar Energy Center 1695: 1681: 1244: 396: 215: 93: 82: 3237:. Helios CSP. 21 May 2011. Archived from 2689:Combined cycle powered railway locomotive 1176: 1121: 1066: 1026: 900: 879: 853: 832: 804: 768: 747: 721: 700: 669: 633: 612: 586: 565: 537: 2852:. Tata Mc Graw Hill. pp. chapter 5. 2730: 2728: 2018:An open circuit gas turbine cycle has a 1907:cycle. The cycle 1-2-3-4-1 which is the 3514:Homogeneous charge compression ignition 3172:Integrated Solar Combined Cycle Systems 2843: 2841: 2839: 2837: 2724: 1441: 1418: 1372: 1332: 1282: 1247: 440: 415: 344: 271: 218: 85: 3122:Integrated solar combined cycle plants 2709:Integrated gasification combined cycle 2533:Integrated solar combined cycle (ISCC) 2523:integrated gasification combined cycle 2517:integrated gasification combined cycle 1812:). The turbine's hot exhaust powers a 2561:plant of the same collector surface. 2155:and is supplied to the high-pressure 7: 3318:10.1016/j.applthermaleng.2007.03.011 3193:. ENEL. 14 July 2010. Archived from 2566:Archimede combined cycle power plant 2545:) is a hybrid technology in which a 2476:On April 28, 2016, the plant run by 2256:Managing low-grade fuels in turbines 2212:Fuel for combined cycle power plants 1918:to water and steam takes place in a 1867:for newly built power plants in the 2919:. SSS Gears Limited. Archived from 2684:Combined cycle hydrogen power plant 43:Combined cycle hydrogen power plant 4344:Renewable energy commercialization 2959:. Claverton Energy Research Group. 2187:Without supplementary firing, the 902: 855: 770: 723: 635: 588: 408:Intensive and extensive properties 25: 1746:the most common type is called a 4392: 4391: 3812: 3002:Energy Conversion and Management 2914:"SSS Clutch Operating Principle" 2776:Energy Conversion and Management 2400:(LHV), excluding it. The HHV of 2117: 2105: 1714:, a 530-megawatt combined cycle 1664: 1663: 983:Table of thermodynamic equations 31: 2704:Hydrogen-cooled turbo generator 2559:Solar Energy Generating Systems 2539:Integrated Solar Combined Cycle 2361:and other uses. This is called 1716:natural gas-fired power station 1459:Maxwell's thermodynamic surface 3022:10.1016/j.enconman.2010.05.014 2850:Turbines, compressors and fans 2796:10.1016/j.enconman.2007.08.002 1791:magnetohydrodynamic generators 1193: 1181: 1138: 1126: 1083: 1071: 1043: 1031: 1: 4339:Renewable Energy Certificates 4299:Cost of electricity by source 4221:Arc-fault circuit interrupter 4097:High-voltage shore connection 3089:Tomas Kellner (17 Jun 2016). 2699:Heat recovery steam generator 2694:Cost of electricity by source 2392:that would be recuperated in 2232:can also be used. Integrated 2043:heat recovery steam generator 1856:and providing further power. 1360:Mechanical equivalent of heat 57:Proposed since February 2024. 4354:Spark/Dark/Quark/Bark spread 4152:Transmission system operator 4112:Mains electricity by country 3689:Automatic generation control 2419:Ice storage air conditioning 1899:cycle and the other is the 1883:Topping and bottoming cycles 1754:) plant, which is a kind of 972:Onsager reciprocal relations 4379:List of electricity sectors 4374:Electric energy consumption 4092:High-voltage direct current 4067:Electric power transmission 4057:Electric power distribution 3734:Energy return on investment 3419:Stirling (pseudo/adiabatic) 3298:Applied Thermal Engineering 2944:"Efficiency by the Numbers" 2612:and Macquarie Generation’s 2608:. In Australia CS Energy’s 2390:latent heat of vaporisation 1795:molten carbonate fuel cells 1464:Entropy as energy dispersal 1275:"Perpetual motion" machines 1214:{\displaystyle G(T,p)=H-TS} 1159:{\displaystyle A(T,V)=U-TS} 1104:{\displaystyle H(S,p)=U+pV} 40:It has been suggested that 4454: 4294:Carbon offsets and credits 4012:Three-phase electric power 2970:Fend, Thomas; et al. 2616:started construction of a 2514: 2272: 2085:, then passes through the 2011:, rather than inexpensive 1822:combined cycle gas turbine 1748:combined cycle gas turbine 1732:combined cycle power plant 1712:Gateway Generating Station 911:{\displaystyle \partial T} 864:{\displaystyle \partial V} 779:{\displaystyle \partial p} 732:{\displaystyle \partial V} 644:{\displaystyle \partial T} 597:{\displaystyle \partial S} 75: 68: 18:Combined-cycle gas turbine 4387: 4349:Renewable Energy Payments 3838:Fossil fuel power station 3810: 3271:Volume 3: Turbo Expo 2003 2292:Intermountain Power Plant 1869:German electricity sector 1385:An Inquiry Concerning the 71:Canadian Coast Guard Ship 4428:Power station technology 4132:Single-wire earth return 4072:Electrical busbar system 3729:Energy demand management 2449:Baglan Bay power station 2279:Midcontinent Rift System 1865:levelised cost of energy 1742:. On land, when used to 1398:Heterogeneous Substances 815:{\displaystyle \alpha =} 683:{\displaystyle \beta =-} 78:Closed-cycle gas turbine 4263:Residual-current device 4253:Power system protection 4243:Generator interlock kit 3257:Applied Thermodynamics 2242:next generation nuclear 1909:gas turbine power plant 1799:combined heat and power 1787:mercury vapour turbines 4423:Mechanical engineering 4047:Distributed generation 3719:Electric power quality 2755:. Fraunhofer ISE. 2013 2679:Combined gas and steam 2505:additive manufacturing 2491:overall pressure ratio 2460:Irsching Power Station 2149:saturation temperature 1992: 1984: 1939: 1884: 1859:In November 2013, the 1760:combined gas and steam 1727: 1215: 1160: 1105: 1050: 1049:{\displaystyle U(S,V)} 912: 888: 865: 841: 816: 780: 756: 733: 709: 684: 645: 621: 598: 574: 549: 528:Specific heat capacity 132:Quantum thermodynamics 4319:Fossil fuel phase-out 4087:Electricity retailing 4082:Electrical substation 4062:Electric power system 2714:Compound steam engine 2614:Liddell Power Station 2572:in 2010, followed by 2478:ÉlectricitĂ© de France 2001:thermal power station 1990: 1982: 1937: 1882: 1756:gas-fired power plant 1710: 1396:On the Equilibrium of 1216: 1161: 1114:Helmholtz free energy 1106: 1051: 913: 889: 866: 842: 817: 781: 757: 734: 710: 685: 646: 622: 599: 575: 550: 4433:Thermodynamic cycles 3675:Electricity delivery 3603:Regenerative cooling 3481:combustion / thermal 3380:Without phase change 3371:combustion / thermal 3361:Thermodynamic cycles 3304:(17–18): 2779–2790. 3279:10.1115/GT2003-38096 2386:Higher Heating Value 2339:temperature and the 2314:lower startup cost. 2163:Supplementary firing 2097:Dual pressure boiler 1875:Basic combined cycle 1409:Motive Power of Fire 1175: 1120: 1065: 1025: 977:Bridgman's equations 954:Fundamental relation 899: 878: 852: 831: 803: 767: 746: 720: 699: 668: 632: 611: 585: 564: 536: 50:into this article. ( 4284:Availability factor 4236:Sulfur hexafluoride 4117:Overhead power line 4017:Virtual power plant 3992:Induction generator 3945:Sustainable biofuel 3754:Home energy storage 3744:Grid energy storage 3709:Droop speed control 3310:2007AppTE..27.2779S 3273:. pp. 95–101. 3014:2010ECM....51.2501W 2788:2008ECM....49..551P 2408:Boosting efficiency 2398:Lower Heating Value 2370:lower heating value 2352:lower heating value 1920:waste heat recovery 1889:thermodynamic cycle 1720:Contra Costa County 1387:Source ... Friction 1319:Loschmidt's paradox 511:Material properties 389:Conjugate variables 4158:Transmission tower 3769:Nameplate capacity 3241:on 12 August 2014. 3177:2013-09-25 at the 3127:2013-09-28 at the 2946:by Lee S. Langston 2496:In December 2016, 2394:condensing boilers 2380:Fuel heating value 2189:thermal efficiency 2063:economies of scale 1993: 1985: 1940: 1885: 1826:thermal efficiency 1816:(operating by the 1808:(operating by the 1734:is an assembly of 1728: 1651:Order and disorder 1407:Reflections on the 1314:Heat death paradox 1211: 1156: 1101: 1046: 908: 884: 861: 837: 812: 776: 752: 729: 705: 680: 641: 617: 594: 570: 548:{\displaystyle c=} 545: 518:Property databases 494:Reduced properties 478:Chemical potential 442:Functions of state 365:Thermal efficiency 101:Carnot heat engine 4418:Energy conversion 4405: 4404: 4309:Environmental tax 4189:Cascading failure 3958: 3957: 3794:Utility frequency 3641: 3640: 3618:Vapor-compression 3544:Staged combustion 3473: 3472: 3438:With phase change 3093:(Press release). 3049:(Press release). 3008:(12): 2501–2509. 2664:Allam power cycle 2388:(HHV), including 2345:Carnot efficiency 1980: 1967:Design principles 1814:steam power plant 1781:Historical cycles 1740:mechanical energy 1705: 1704: 1646:Self-organization 1471: 1470: 1169:Gibbs free energy 967:Maxwell relations 925: 924: 921: 920: 887:{\displaystyle V} 840:{\displaystyle 1} 795:Thermal expansion 789: 788: 755:{\displaystyle V} 708:{\displaystyle 1} 654: 653: 620:{\displaystyle N} 573:{\displaystyle T} 501: 500: 417:Process functions 403:Property diagrams 382:System properties 372: 371: 337:Endoreversibility 229:Equation of state 64: 63: 59: 16:(Redirected from 4445: 4438:Turbo generators 4395: 4394: 4304:Energy subsidies 4258:Protective relay 4199:Rolling blackout 3826: 3816: 3784:Power-flow study 3724:Electrical fault 3668: 3661: 3654: 3645: 3613:Vapor absorption 3376: 3354: 3347: 3340: 3331: 3321: 3292: 3243: 3242: 3231: 3225: 3224: 3222: 3220: 3205: 3199: 3198: 3187: 3181: 3169: 3163: 3158: 3152: 3151: 3149: 3148: 3137: 3131: 3119: 3113: 3112: 3105: 3099: 3098: 3095:General Electric 3086: 3080: 3079: 3077: 3076: 3061: 3055: 3054: 3043: 3037: 3036: 3032: 3026: 3025: 2997: 2991: 2990: 2988: 2986: 2976: 2967: 2961: 2960: 2953: 2947: 2941: 2935: 2934: 2932: 2931: 2925: 2918: 2910: 2904: 2899: 2893: 2888: 2882: 2881: 2874: 2868: 2867: 2860: 2854: 2853: 2845: 2832: 2831: 2829: 2828: 2822: 2814: 2808: 2807: 2771: 2765: 2764: 2762: 2760: 2754: 2746: 2740: 2739: 2732: 2624:Bottoming cycles 2586:Yazd power plant 2486:General Electric 2471:Nishi-ku, Nagoya 2359:district heating 2275:Natural hydrogen 2193:make more money. 2121: 2109: 1981: 1930:Steam generators 1744:make electricity 1697: 1690: 1683: 1667: 1666: 1374:Key publications 1355: 1354:("living force") 1304:Brownian ratchet 1299:Entropy and life 1294:Entropy and time 1245: 1220: 1218: 1217: 1212: 1165: 1163: 1162: 1157: 1110: 1108: 1107: 1102: 1055: 1053: 1052: 1047: 949:Clausius theorem 944:Carnot's theorem 917: 915: 914: 909: 893: 891: 890: 885: 870: 868: 867: 862: 846: 844: 843: 838: 825: 824: 821: 819: 818: 813: 785: 783: 782: 777: 761: 759: 758: 753: 738: 736: 735: 730: 714: 712: 711: 706: 693: 692: 689: 687: 686: 681: 650: 648: 647: 642: 626: 624: 623: 618: 603: 601: 600: 595: 579: 577: 576: 571: 558: 557: 554: 552: 551: 546: 524: 523: 397: 216: 97: 83: 55: 35: 34: 27: 21: 4453: 4452: 4448: 4447: 4446: 4444: 4443: 4442: 4408: 4407: 4406: 4401: 4383: 4367: 4365: 4358: 4289:Capacity factor 4277: 4275: 4268: 4248:Numerical relay 4226:Circuit breaker 4214: 4212: 4205: 4167: 4107:Load management 4077:Electrical grid 4042:Demand response 4035: 4030: 4021: 4002:Microgeneration 3954: 3869: 3817: 3808: 3804:Vehicle-to-grid 3677: 3672: 3642: 3637: 3574: 3548: 3480: 3469: 3459:Organic Rankine 3433: 3387: 3384:hot air engines 3381: 3370: 3363: 3358: 3328: 3295: 3289: 3268: 3251: 3249:Further reading 3246: 3233: 3232: 3228: 3218: 3216: 3215:on 27 July 2011 3207: 3206: 3202: 3197:on 25 May 2015. 3189: 3188: 3184: 3179:Wayback Machine 3170: 3166: 3159: 3155: 3146: 3144: 3139: 3138: 3134: 3129:Wayback Machine 3120: 3116: 3107: 3106: 3102: 3088: 3087: 3083: 3074: 3072: 3063: 3062: 3058: 3045: 3044: 3040: 3034: 3033: 3029: 2999: 2998: 2994: 2984: 2982: 2974: 2969: 2968: 2964: 2955: 2954: 2950: 2942: 2938: 2929: 2927: 2923: 2916: 2912: 2911: 2907: 2900: 2896: 2889: 2885: 2876: 2875: 2871: 2862: 2861: 2857: 2847: 2846: 2835: 2826: 2824: 2820: 2816: 2815: 2811: 2773: 2772: 2768: 2758: 2756: 2752: 2748: 2747: 2743: 2734: 2733: 2726: 2722: 2660: 2626: 2602:Ain Beni Mathar 2535: 2519: 2513: 2442: 2410: 2382: 2336: 2300: 2281: 2271: 2258: 2214: 2209: 2165: 2129: 2128: 2127: 2126: 2125: 2122: 2114: 2113: 2110: 2099: 2079: 2059: 1971: 1969: 1956: 1932: 1877: 1854:fuel efficiency 1783: 1701: 1656: 1655: 1631: 1623: 1622: 1621: 1481: 1473: 1472: 1451: 1437: 1412: 1408: 1401: 1397: 1390: 1386: 1353: 1346: 1328: 1309:Maxwell's demon 1271: 1242: 1241: 1225: 1224: 1223: 1173: 1172: 1171: 1118: 1117: 1116: 1063: 1062: 1061: 1023: 1022: 1021: 1019:Internal energy 1014: 999: 989: 988: 963: 938: 928: 927: 926: 897: 896: 876: 875: 850: 849: 829: 828: 801: 800: 765: 764: 744: 743: 718: 717: 697: 696: 666: 665: 660:Compressibility 630: 629: 609: 608: 583: 582: 562: 561: 534: 533: 513: 503: 502: 483:Particle number 436: 395: 384: 374: 373: 332:Irreversibility 244:State of matter 211:Isolated system 196: 186: 185: 184: 159: 149: 148: 144:Non-equilibrium 136: 111: 103: 81: 74: 67: 60: 36: 32: 23: 22: 15: 12: 11: 5: 4451: 4449: 4441: 4440: 4435: 4430: 4425: 4420: 4410: 4409: 4403: 4402: 4400: 4399: 4388: 4385: 4384: 4382: 4381: 4376: 4370: 4368: 4364:Statistics and 4363: 4360: 4359: 4357: 4356: 4351: 4346: 4341: 4336: 4331: 4326: 4321: 4316: 4314:Feed-in tariff 4311: 4306: 4301: 4296: 4291: 4286: 4280: 4278: 4273: 4270: 4269: 4267: 4266: 4260: 4255: 4250: 4245: 4240: 4239: 4238: 4233: 4223: 4217: 4215: 4210: 4207: 4206: 4204: 4203: 4202: 4201: 4191: 4186: 4181: 4175: 4173: 4169: 4168: 4166: 4165: 4160: 4155: 4149: 4144: 4139: 4134: 4129: 4124: 4119: 4114: 4109: 4104: 4102:Interconnector 4099: 4094: 4089: 4084: 4079: 4074: 4069: 4064: 4059: 4054: 4052:Dynamic demand 4049: 4044: 4038: 4036: 4026: 4023: 4022: 4020: 4019: 4014: 4009: 4004: 3999: 3994: 3989: 3984: 3982:Combined cycle 3979: 3974: 3968: 3966: 3960: 3959: 3956: 3955: 3953: 3952: 3947: 3942: 3937: 3936: 3935: 3930: 3925: 3920: 3915: 3905: 3900: 3895: 3890: 3885: 3879: 3877: 3871: 3870: 3868: 3867: 3862: 3861: 3860: 3855: 3850: 3845: 3834: 3832: 3823: 3819: 3818: 3811: 3809: 3807: 3806: 3801: 3796: 3791: 3786: 3781: 3776: 3771: 3766: 3761: 3759:Load-following 3756: 3751: 3746: 3741: 3736: 3731: 3726: 3721: 3716: 3714:Electric power 3711: 3706: 3701: 3696: 3691: 3685: 3683: 3679: 3678: 3673: 3671: 3670: 3663: 3656: 3648: 3639: 3638: 3636: 3635: 3630: 3625: 3620: 3615: 3610: 3605: 3600: 3595: 3590: 3584: 3582: 3576: 3575: 3573: 3572: 3567: 3562: 3556: 3554: 3550: 3549: 3547: 3546: 3541: 3536: 3531: 3526: 3521: 3516: 3511: 3506: 3501: 3496: 3491: 3485: 3483: 3475: 3474: 3471: 3470: 3468: 3467: 3462: 3452: 3447: 3441: 3439: 3435: 3434: 3432: 3431: 3426: 3421: 3416: 3411: 3406: 3401: 3396: 3390: 3388: 3379: 3373: 3365: 3364: 3359: 3357: 3356: 3349: 3342: 3334: 3327: 3326:External links 3324: 3323: 3322: 3293: 3287: 3266: 3255: 3250: 3247: 3245: 3244: 3226: 3200: 3182: 3164: 3153: 3132: 3114: 3100: 3081: 3056: 3053:. 19 May 2011. 3038: 3027: 2992: 2962: 2948: 2936: 2905: 2894: 2883: 2869: 2855: 2833: 2809: 2782:(4): 551–563. 2766: 2741: 2723: 2721: 2718: 2717: 2716: 2711: 2706: 2701: 2696: 2691: 2686: 2681: 2676: 2671: 2666: 2659: 2656: 2625: 2622: 2534: 2531: 2515:Main article: 2512: 2509: 2493:is 21.8 to 1. 2467:Chubu Electric 2441: 2438: 2409: 2406: 2381: 2378: 2335: 2332: 2299: 2296: 2270: 2267: 2257: 2254: 2213: 2210: 2208: 2205: 2181:stoichiometric 2164: 2161: 2123: 2116: 2115: 2111: 2104: 2103: 2102: 2101: 2100: 2098: 2095: 2078: 2077:Unfired boiler 2075: 2058: 2055: 2051:cooling towers 2045:(HRSG) with a 1968: 1965: 1955: 1952: 1931: 1928: 1876: 1873: 1782: 1779: 1771:heat exchanger 1703: 1702: 1700: 1699: 1692: 1685: 1677: 1674: 1673: 1672: 1671: 1658: 1657: 1654: 1653: 1648: 1643: 1638: 1632: 1629: 1628: 1625: 1624: 1620: 1619: 1614: 1609: 1604: 1599: 1594: 1589: 1584: 1579: 1574: 1569: 1564: 1559: 1554: 1549: 1544: 1539: 1534: 1529: 1524: 1519: 1514: 1509: 1504: 1499: 1494: 1489: 1483: 1482: 1479: 1478: 1475: 1474: 1469: 1468: 1467: 1466: 1461: 1453: 1452: 1450: 1449: 1446: 1442: 1439: 1438: 1436: 1435: 1430: 1428:Thermodynamics 1424: 1421: 1420: 1416: 1415: 1414: 1413: 1404: 1402: 1393: 1391: 1382: 1377: 1376: 1370: 1369: 1368: 1367: 1362: 1357: 1345: 1344: 1342:Caloric theory 1338: 1335: 1334: 1330: 1329: 1327: 1326: 1321: 1316: 1311: 1306: 1301: 1296: 1290: 1287: 1286: 1280: 1279: 1278: 1277: 1270: 1269: 1264: 1259: 1253: 1250: 1249: 1243: 1240: 1239: 1236: 1232: 1231: 1230: 1227: 1226: 1222: 1221: 1210: 1207: 1204: 1201: 1198: 1195: 1192: 1189: 1186: 1183: 1180: 1166: 1155: 1152: 1149: 1146: 1143: 1140: 1137: 1134: 1131: 1128: 1125: 1111: 1100: 1097: 1094: 1091: 1088: 1085: 1082: 1079: 1076: 1073: 1070: 1056: 1045: 1042: 1039: 1036: 1033: 1030: 1015: 1013: 1012: 1007: 1001: 1000: 995: 994: 991: 990: 987: 986: 979: 974: 969: 962: 961: 956: 951: 946: 940: 939: 934: 933: 930: 929: 923: 922: 919: 918: 907: 904: 894: 883: 872: 871: 860: 857: 847: 836: 822: 811: 808: 798: 791: 790: 787: 786: 775: 772: 762: 751: 740: 739: 728: 725: 715: 704: 690: 679: 676: 673: 663: 656: 655: 652: 651: 640: 637: 627: 616: 605: 604: 593: 590: 580: 569: 555: 544: 541: 531: 522: 521: 520: 514: 509: 508: 505: 504: 499: 498: 497: 496: 491: 486: 475: 464: 445: 444: 438: 437: 435: 434: 429: 423: 420: 419: 413: 412: 411: 410: 405: 386: 385: 380: 379: 376: 375: 370: 369: 368: 367: 362: 357: 349: 348: 342: 341: 340: 339: 334: 329: 324: 322:Free expansion 319: 314: 309: 304: 299: 294: 289: 284: 276: 275: 269: 268: 267: 266: 261: 259:Control volume 256: 251: 249:Phase (matter) 246: 241: 236: 231: 223: 222: 214: 213: 208: 203: 197: 192: 191: 188: 187: 183: 182: 177: 172: 167: 161: 160: 155: 154: 151: 150: 147: 146: 135: 134: 129: 124: 119: 113: 112: 109: 108: 105: 104: 99:The classical 98: 90: 89: 87:Thermodynamics 65: 62: 61: 39: 37: 30: 24: 14: 13: 10: 9: 6: 4: 3: 2: 4450: 4439: 4436: 4434: 4431: 4429: 4426: 4424: 4421: 4419: 4416: 4415: 4413: 4398: 4390: 4389: 4386: 4380: 4377: 4375: 4372: 4371: 4369: 4361: 4355: 4352: 4350: 4347: 4345: 4342: 4340: 4337: 4335: 4334:Pigouvian tax 4332: 4330: 4327: 4325: 4322: 4320: 4317: 4315: 4312: 4310: 4307: 4305: 4302: 4300: 4297: 4295: 4292: 4290: 4287: 4285: 4282: 4281: 4279: 4271: 4264: 4261: 4259: 4256: 4254: 4251: 4249: 4246: 4244: 4241: 4237: 4234: 4232: 4231:Earth-leakage 4229: 4228: 4227: 4224: 4222: 4219: 4218: 4216: 4208: 4200: 4197: 4196: 4195: 4192: 4190: 4187: 4185: 4182: 4180: 4177: 4176: 4174: 4172:Failure modes 4170: 4164: 4161: 4159: 4156: 4153: 4150: 4148: 4145: 4143: 4140: 4138: 4135: 4133: 4130: 4128: 4125: 4123: 4122:Power station 4120: 4118: 4115: 4113: 4110: 4108: 4105: 4103: 4100: 4098: 4095: 4093: 4090: 4088: 4085: 4083: 4080: 4078: 4075: 4073: 4070: 4068: 4065: 4063: 4060: 4058: 4055: 4053: 4050: 4048: 4045: 4043: 4040: 4039: 4037: 4034: 4029: 4024: 4018: 4015: 4013: 4010: 4008: 4007:Rankine cycle 4005: 4003: 4000: 3998: 3995: 3993: 3990: 3988: 3987:Cooling tower 3985: 3983: 3980: 3978: 3975: 3973: 3970: 3969: 3967: 3965: 3961: 3951: 3948: 3946: 3943: 3941: 3938: 3934: 3931: 3929: 3926: 3924: 3921: 3919: 3916: 3914: 3911: 3910: 3909: 3906: 3904: 3901: 3899: 3896: 3894: 3891: 3889: 3886: 3884: 3881: 3880: 3878: 3876: 3872: 3866: 3863: 3859: 3856: 3854: 3851: 3849: 3846: 3844: 3841: 3840: 3839: 3836: 3835: 3833: 3831: 3830:Non-renewable 3827: 3824: 3820: 3815: 3805: 3802: 3800: 3797: 3795: 3792: 3790: 3787: 3785: 3782: 3780: 3777: 3775: 3772: 3770: 3767: 3765: 3762: 3760: 3757: 3755: 3752: 3750: 3749:Grid strength 3747: 3745: 3742: 3740: 3737: 3735: 3732: 3730: 3727: 3725: 3722: 3720: 3717: 3715: 3712: 3710: 3707: 3705: 3704:Demand factor 3702: 3700: 3697: 3695: 3692: 3690: 3687: 3686: 3684: 3680: 3676: 3669: 3664: 3662: 3657: 3655: 3650: 3649: 3646: 3634: 3631: 3629: 3626: 3624: 3621: 3619: 3616: 3614: 3611: 3609: 3608:Transcritical 3606: 3604: 3601: 3599: 3596: 3594: 3591: 3589: 3588:Hampson–Linde 3586: 3585: 3583: 3581: 3580:Refrigeration 3577: 3571: 3568: 3566: 3563: 3561: 3558: 3557: 3555: 3551: 3545: 3542: 3540: 3537: 3535: 3532: 3530: 3527: 3525: 3522: 3520: 3517: 3515: 3512: 3510: 3509:Gas-generator 3507: 3505: 3502: 3500: 3497: 3495: 3494:Brayton/Joule 3492: 3490: 3487: 3486: 3484: 3482: 3476: 3466: 3463: 3460: 3456: 3453: 3451: 3448: 3446: 3443: 3442: 3440: 3436: 3430: 3427: 3425: 3422: 3420: 3417: 3415: 3412: 3410: 3407: 3405: 3402: 3400: 3399:Brayton/Joule 3397: 3395: 3392: 3391: 3389: 3385: 3377: 3374: 3372: 3366: 3362: 3355: 3350: 3348: 3343: 3341: 3336: 3335: 3332: 3325: 3319: 3315: 3311: 3307: 3303: 3299: 3294: 3290: 3288:0-7918-3686-X 3284: 3280: 3276: 3272: 3267: 3264: 3263:9788185444031 3260: 3256: 3253: 3252: 3248: 3240: 3236: 3230: 3227: 3214: 3210: 3204: 3201: 3196: 3192: 3186: 3183: 3180: 3176: 3173: 3168: 3165: 3162: 3157: 3154: 3142: 3136: 3133: 3130: 3126: 3123: 3118: 3115: 3110: 3104: 3101: 3096: 3092: 3085: 3082: 3071:on 2016-07-20 3070: 3066: 3060: 3057: 3052: 3048: 3042: 3039: 3031: 3028: 3023: 3019: 3015: 3011: 3007: 3003: 2996: 2993: 2980: 2973: 2966: 2963: 2958: 2952: 2949: 2945: 2940: 2937: 2926:on 2016-12-29 2922: 2915: 2909: 2906: 2903: 2898: 2895: 2892: 2887: 2884: 2880:. 2015-08-11. 2879: 2873: 2870: 2865: 2859: 2856: 2851: 2844: 2842: 2840: 2838: 2834: 2819: 2813: 2810: 2805: 2801: 2797: 2793: 2789: 2785: 2781: 2777: 2770: 2767: 2751: 2745: 2742: 2737: 2731: 2729: 2725: 2719: 2715: 2712: 2710: 2707: 2705: 2702: 2700: 2697: 2695: 2692: 2690: 2687: 2685: 2682: 2680: 2677: 2675: 2672: 2670: 2667: 2665: 2662: 2661: 2657: 2655: 2653: 2652:Vortex engine 2648: 2644: 2642: 2638: 2633: 2631: 2630:Rankine cycle 2623: 2621: 2619: 2618:solar Fresnel 2615: 2611: 2607: 2603: 2599: 2595: 2591: 2587: 2583: 2579: 2575: 2571: 2567: 2562: 2560: 2554: 2551: 2548: 2547:solar thermal 2544: 2540: 2532: 2530: 2528: 2524: 2518: 2510: 2508: 2506: 2501: 2499: 2494: 2492: 2487: 2483: 2479: 2474: 2472: 2468: 2463: 2461: 2457: 2452: 2450: 2445: 2439: 2437: 2433: 2430: 2426: 2422: 2420: 2414: 2407: 2405: 2403: 2399: 2395: 2391: 2387: 2379: 2377: 2373: 2371: 2366: 2364: 2360: 2355: 2353: 2348: 2346: 2342: 2333: 2331: 2327: 2323: 2319: 2315: 2311: 2307: 2303: 2298:Configuration 2297: 2295: 2293: 2289: 2285: 2280: 2276: 2268: 2266: 2262: 2255: 2253: 2251: 2245: 2243: 2239: 2235: 2231: 2227: 2226:synthesis gas 2223: 2219: 2211: 2206: 2204: 2201: 2197: 2194: 2190: 2185: 2182: 2178: 2174: 2170: 2162: 2160: 2158: 2154: 2150: 2146: 2141: 2138: 2134: 2120: 2108: 2096: 2094: 2092: 2088: 2084: 2076: 2074: 2070: 2066: 2064: 2056: 2054: 2052: 2048: 2044: 2039: 2037: 2036:Rankine cycle 2033: 2029: 2025: 2021: 2016: 2014: 2010: 2006: 2002: 1997: 1989: 1966: 1964: 1961: 1953: 1951: 1949: 1948:steam turbine 1945: 1936: 1929: 1927: 1925: 1921: 1917: 1912: 1910: 1906: 1905:steam turbine 1902: 1901:Rankine cycle 1898: 1894: 1893:Brayton cycle 1890: 1881: 1874: 1872: 1870: 1866: 1863:assessed the 1862: 1857: 1855: 1851: 1850:peaker plants 1845: 1843: 1840:. Ships burn 1839: 1835: 1834:synthesis gas 1831: 1827: 1823: 1820:). This is a 1819: 1818:Rankine cycle 1815: 1811: 1810:Brayton cycle 1807: 1802: 1800: 1796: 1792: 1788: 1780: 1778: 1774: 1772: 1768: 1767:working fluid 1763: 1761: 1757: 1753: 1749: 1745: 1741: 1737: 1733: 1725: 1721: 1717: 1713: 1709: 1698: 1693: 1691: 1686: 1684: 1679: 1678: 1676: 1675: 1670: 1662: 1661: 1660: 1659: 1652: 1649: 1647: 1644: 1642: 1641:Self-assembly 1639: 1637: 1634: 1633: 1627: 1626: 1618: 1615: 1613: 1612:van der Waals 1610: 1608: 1605: 1603: 1600: 1598: 1595: 1593: 1590: 1588: 1585: 1583: 1580: 1578: 1575: 1573: 1570: 1568: 1565: 1563: 1560: 1558: 1555: 1553: 1550: 1548: 1545: 1543: 1540: 1538: 1537:von Helmholtz 1535: 1533: 1530: 1528: 1525: 1523: 1520: 1518: 1515: 1513: 1510: 1508: 1505: 1503: 1500: 1498: 1495: 1493: 1490: 1488: 1485: 1484: 1477: 1476: 1465: 1462: 1460: 1457: 1456: 1455: 1454: 1447: 1444: 1443: 1440: 1434: 1431: 1429: 1426: 1425: 1423: 1422: 1417: 1411: 1410: 1403: 1400: 1399: 1392: 1389: 1388: 1381: 1380: 1379: 1378: 1375: 1371: 1366: 1363: 1361: 1358: 1356: 1352: 1348: 1347: 1343: 1340: 1339: 1337: 1336: 1331: 1325: 1322: 1320: 1317: 1315: 1312: 1310: 1307: 1305: 1302: 1300: 1297: 1295: 1292: 1291: 1289: 1288: 1285: 1281: 1276: 1273: 1272: 1268: 1265: 1263: 1260: 1258: 1255: 1254: 1252: 1251: 1246: 1237: 1234: 1233: 1229: 1228: 1208: 1205: 1202: 1199: 1196: 1190: 1187: 1184: 1178: 1170: 1167: 1153: 1150: 1147: 1144: 1141: 1135: 1132: 1129: 1123: 1115: 1112: 1098: 1095: 1092: 1089: 1086: 1080: 1077: 1074: 1068: 1060: 1057: 1040: 1037: 1034: 1028: 1020: 1017: 1016: 1011: 1008: 1006: 1003: 1002: 998: 993: 992: 985: 984: 980: 978: 975: 973: 970: 968: 965: 964: 960: 959:Ideal gas law 957: 955: 952: 950: 947: 945: 942: 941: 937: 932: 931: 905: 895: 881: 874: 873: 858: 848: 834: 827: 826: 823: 809: 806: 799: 796: 793: 792: 773: 763: 749: 742: 741: 726: 716: 702: 695: 694: 691: 677: 674: 671: 664: 661: 658: 657: 638: 628: 614: 607: 606: 591: 581: 567: 560: 559: 556: 542: 539: 532: 529: 526: 525: 519: 516: 515: 512: 507: 506: 495: 492: 490: 489:Vapor quality 487: 485: 484: 479: 476: 474: 473: 468: 465: 462: 458: 457: 452: 449: 448: 447: 446: 443: 439: 433: 430: 428: 425: 424: 422: 421: 418: 414: 409: 406: 404: 401: 400: 399: 398: 394: 390: 383: 378: 377: 366: 363: 361: 358: 356: 353: 352: 351: 350: 347: 343: 338: 335: 333: 330: 328: 327:Reversibility 325: 323: 320: 318: 315: 313: 310: 308: 305: 303: 300: 298: 295: 293: 290: 288: 285: 283: 280: 279: 278: 277: 274: 270: 265: 262: 260: 257: 255: 252: 250: 247: 245: 242: 240: 237: 235: 232: 230: 227: 226: 225: 224: 221: 217: 212: 209: 207: 204: 202: 201:Closed system 199: 198: 195: 190: 189: 181: 178: 176: 173: 171: 168: 166: 163: 162: 158: 153: 152: 145: 141: 138: 137: 133: 130: 128: 125: 123: 120: 118: 115: 114: 107: 106: 102: 96: 92: 91: 88: 84: 79: 72: 58: 53: 49: 45: 44: 38: 29: 28: 19: 4329:Net metering 4276:and policies 4194:Power outage 4163:Utility pole 4127:Pumped hydro 4033:distribution 4028:Transmission 3981: 3977:Cogeneration 3779:Power factor 3465:Regenerative 3394:Bell Coleman 3301: 3297: 3270: 3239:the original 3229: 3217:. Retrieved 3213:the original 3203: 3195:the original 3185: 3167: 3156: 3145:. Retrieved 3135: 3117: 3103: 3084: 3073:. Retrieved 3069:the original 3059: 3041: 3030: 3005: 3001: 2995: 2983:. Retrieved 2978: 2965: 2951: 2939: 2928:. Retrieved 2921:the original 2908: 2897: 2886: 2872: 2858: 2849: 2848:Yahya, S.M. 2825:. Retrieved 2812: 2779: 2775: 2769: 2757:. Retrieved 2744: 2674:Cogeneration 2649: 2645: 2641:cogeneration 2634: 2627: 2563: 2555: 2552: 2542: 2538: 2536: 2520: 2502: 2495: 2475: 2464: 2454:In May 2011 2453: 2446: 2443: 2434: 2431: 2427: 2423: 2415: 2411: 2383: 2374: 2367: 2363:cogeneration 2356: 2349: 2337: 2328: 2324: 2320: 2316: 2312: 2308: 2304: 2301: 2282: 2263: 2259: 2246: 2238:ISCC section 2215: 2202: 2198: 2192: 2188: 2186: 2173:duct burners 2172: 2166: 2142: 2130: 2083:super heater 2080: 2071: 2067: 2060: 2057:Typical size 2040: 2017: 1998: 1994: 1957: 1941: 1913: 1886: 1858: 1846: 1821: 1803: 1784: 1775: 1764: 1751: 1747: 1736:heat engines 1731: 1729: 1502:CarathĂ©odory 1433:Heat engines 1405: 1394: 1383: 1365:Motive power 1350: 1010:Free entropy 981: 481: 480: / 470: 469: / 461:introduction 454: 453: / 392: 355:Heat engines 142: / 56: 41: 4324:Load factor 4179:Black start 4147:Transformer 3848:Natural gas 3799:Variability 3774:Peak demand 3764:Merit order 3694:Backfeeding 3633:Ionocaloric 3628:Vuilleumier 3450:Hygroscopic 2669:Cheng cycle 2610:Kogan Creek 2594:Hassi R'mel 2440:Competition 2284:Xcel Energy 2220:, although 2218:natural gas 1960:Cheng cycle 1954:Cheng cycle 1944:gas turbine 1924:gas turbine 1916:exhaust gas 1903:which is a 1897:gas turbine 1895:which is a 1830:natural gas 1806:gas turbine 1324:Synergetics 1005:Free energy 451:Temperature 312:Quasistatic 307:Isenthalpic 264:Instruments 254:Equilibrium 206:Open system 140:Equilibrium 122:Statistical 4412:Categories 4366:production 4211:Protective 4142:Super grid 4137:Smart grid 3964:Generation 3898:Geothermal 3789:Repowering 3598:Pulse tube 3570:Mixed/dual 3147:2017-12-25 3075:2015-06-01 3051:Siemens AG 2985:19 October 2981:. Elsevier 2930:2010-09-13 2827:2019-05-10 2720:References 2647:turbines. 2498:Mitsubishi 2456:Siemens AG 2341:waste heat 2334:Efficiency 2273:See also: 2087:evaporator 2047:live steam 2020:compressor 1724:California 1636:Nucleation 1480:Scientists 1284:Philosophy 997:Potentials 360:Heat pumps 317:Polytropic 302:Isentropic 292:Isothermal 4274:Economics 3997:Micro CHP 3875:Renewable 3858:Petroleum 3853:Oil shale 3739:Grid code 3699:Base load 3593:Kleemenko 3479:Internal 2804:109274670 2396:, or the 2140:circuit. 2024:combustor 1801:" (CHP). 1617:Waterston 1567:von Mayer 1522:de Donder 1512:Clapeyron 1492:Boltzmann 1487:Bernoulli 1448:Education 1419:Timelines 1203:− 1148:− 936:Equations 903:∂ 856:∂ 807:α 771:∂ 724:∂ 678:− 672:β 636:∂ 589:∂ 297:Adiabatic 287:Isochoric 273:Processes 234:Ideal gas 117:Classical 4397:Category 4184:Brownout 3972:AC power 3682:Concepts 3560:Combined 3519:Humphrey 3504:Expander 3489:Atkinson 3424:Stoddard 3414:Stirling 3409:Ericsson 3369:External 3219:16 April 3175:Archived 3125:Archived 2658:See also 2482:Bouchain 2269:Hydrogen 2240:). Many 2230:Biofuels 2222:fuel oil 2032:flue gas 1842:fuel oil 1669:Category 1607:Thompson 1517:Clausius 1497:Bridgman 1351:Vis viva 1333:Theories 1267:Gas laws 1059:Enthalpy 467:Pressure 282:Isobaric 239:Real gas 127:Chemical 110:Branches 4213:devices 3923:Thermal 3918:Osmotic 3913:Current 3893:Biomass 3883:Biofuel 3865:Nuclear 3822:Sources 3623:Siemens 3539:Scuderi 3455:Rankine 3306:Bibcode 3010:Bibcode 2784:Bibcode 2637:Finland 2606:Morocco 2598:Algeria 2578:Florida 2402:methane 2288:Midwest 2157:turbine 2028:turbine 1592:Smeaton 1587:Rankine 1577:Onsager 1562:Maxwell 1557:Massieu 1262:Entropy 1257:General 1248:History 1238:Culture 1235:History 459: ( 456:Entropy 393:italics 194:Systems 52:Discuss 3908:Marine 3888:Biogas 3529:Miller 3524:Lenoir 3499:Diesel 3445:Kalina 3429:Manson 3404:Carnot 3285:  3261:  2802:  2527:syngas 2250:gasify 2177:oxygen 2153:boiler 2091:boiler 2026:and a 2009:cobalt 2005:nickel 1582:Planck 1572:Nernst 1547:Kelvin 1507:Carnot 797:  662:  530:  472:Volume 387:Note: 346:Cycles 175:Second 165:Zeroth 48:merged 4265:(GFI) 4154:(TSO) 3940:Solar 3928:Tidal 3903:Hydro 3553:Mixed 2975:(PDF) 2924:(PDF) 2917:(PDF) 2821:(PDF) 2800:S2CID 2759:6 May 2753:(PDF) 2582:Egypt 2570:Italy 2234:solar 2137:steam 2133:water 2013:steel 1999:In a 1836:from 1630:Other 1597:Stahl 1552:Lewis 1542:Joule 1532:Gibbs 1527:Duhem 220:State 180:Third 170:First 4031:and 3950:Wind 3933:Wave 3843:Coal 3565:HEHC 3534:Otto 3283:ISBN 3259:ISBN 3221:2010 2987:2019 2761:2014 2590:Iran 2543:ISCC 2465:The 2277:and 2169:HRSG 2167:The 2145:pump 2022:, a 1958:The 1887:The 1838:coal 1793:and 1752:CCGT 1602:Tait 432:Heat 427:Work 157:Laws 3314:doi 3275:doi 3018:doi 2792:doi 2604:in 2596:in 2588:in 2576:in 2537:An 2521:An 2480:in 2469:’s 2038:). 2007:or 1832:or 1718:in 1445:Art 391:in 46:be 4414:: 3312:. 3302:27 3300:. 3281:. 3016:. 3006:51 3004:. 2977:. 2836:^ 2798:. 2790:. 2780:49 2778:. 2727:^ 2632:. 2600:, 2592:, 2584:, 2568:, 2462:. 2224:, 2159:. 1844:. 1789:, 1730:A 1722:, 3667:e 3660:t 3653:v 3461:) 3457:( 3386:) 3382:( 3353:e 3346:t 3339:v 3320:. 3316:: 3308:: 3291:. 3277:: 3223:. 3150:. 3097:. 3078:. 3024:. 3020:: 3012:: 2989:. 2933:. 2866:. 2830:. 2806:. 2794:: 2786:: 2763:. 2541:( 2135:/ 1750:( 1726:. 1696:e 1689:t 1682:v 1209:S 1206:T 1200:H 1197:= 1194:) 1191:p 1188:, 1185:T 1182:( 1179:G 1154:S 1151:T 1145:U 1142:= 1139:) 1136:V 1133:, 1130:T 1127:( 1124:A 1099:V 1096:p 1093:+ 1090:U 1087:= 1084:) 1081:p 1078:, 1075:S 1072:( 1069:H 1044:) 1041:V 1038:, 1035:S 1032:( 1029:U 906:T 882:V 859:V 835:1 810:= 774:p 750:V 727:V 703:1 675:= 639:T 615:N 592:S 568:T 543:= 540:c 463:) 80:. 73:. 54:) 20:)

Index

Combined-cycle gas turbine
Combined cycle hydrogen power plant
merged
Discuss
Canadian Coast Guard Ship
Closed-cycle gas turbine
Thermodynamics

Carnot heat engine
Classical
Statistical
Chemical
Quantum thermodynamics
Equilibrium
Non-equilibrium
Laws
Zeroth
First
Second
Third
Systems
Closed system
Open system
Isolated system
State
Equation of state
Ideal gas
Real gas
State of matter
Phase (matter)

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑