Knowledge (XXG)

Comparison of topologies

Source 📝

51:
which are considered to be "open". (An alternative definition is that it is the collection of subsets which are considered "closed". These two ways of defining the topology are essentially equivalent because the
139: 263: 956: 925: 355: 874: 829: 999: 979: 894: 849: 805: 1239: 1101: 374: 370: 104: 1234: 750: 483: 312: 381: 399:
is closed if and only if it consists of all solutions to some system of polynomial equations. Since any such
228: 53: 56:
of an open set is closed and vice versa. In the following, it doesn't matter which definition is used.)
1045: 351: 28: 930: 899: 1006: 808: 528: 757:
of those topologies (the union of two topologies need not be a topology) but rather the topology
754: 1097: 777: 600: 453: 332: 729:
that is also closed under arbitrary intersections. That is, any collection of topologies on
1196: 1163: 1130: 1081: 1018: 854: 781: 769: 726: 388: 340: 814: 1002: 765: 308: 1024: 984: 964: 879: 834: 790: 362: 347: 32: 1168: 1151: 1093: 1021:, the coarsest topology on a set to make a family of mappings from that set continuous 713:). Intuitively, this makes sense: a finer topology should have smaller neighborhoods. 1228: 1089: 1077: 773: 1027:, the finest topology on a set to make a family of mappings into that set continuous 63:
of a topological space, since that is the standard meaning of the word "topology".
24: 1135: 1118: 1082: 366: 343:; this topology only admits the empty set and the whole space as open sets. 1201: 1184: 746: 531:
and therefore it is strongly open if and only if it is relatively open.)
516: 20: 59:
For definiteness the reader should think of a topology as the family of
758: 738: 48: 387:
may be equipped with either its usual (Euclidean) topology, or its
335:; this topology makes all subsets open. The coarsest topology on 534:
Two immediate corollaries of the above equivalent statements are
407:, the Zariski topology is strictly weaker than the ordinary one. 927:
is the trivial topology and the topology generated by the union
753:
of those topologies. The join, however, is not generally the
27:, the set of all possible topologies on a given set forms a 1152:"The lattice of topologies: Structure and complementation" 981:
has at least three elements, the lattice of topologies on
776:. In the case of topologies, the greatest element is the 47:
A topology on a set may be defined as the collection of
725:
together with the partial ordering relation ⊆ forms a
987: 967: 933: 902: 882: 857: 837: 817: 793: 356:
topologies on the set of operators on a Hilbert space
354:
there are often a number of possible topologies. See
231: 107: 403:
also is a closed set in the ordinary sense, but not
993: 973: 950: 919: 888: 868: 843: 823: 799: 257: 133: 1156:Transactions of the American Mathematical Society 749:). The meet of a collection of topologies is the 433:. Then the following statements are equivalent: 1185:"The Lattice of all Topologies is Complemented" 580:remains open (resp. closed) if the topology on 8: 1117:Larson, Roland E.; Andima, Susan J. (1975). 134:{\displaystyle \tau _{1}\subseteq \tau _{2}} 1200: 1167: 1134: 986: 966: 932: 901: 881: 856: 836: 816: 792: 315:on the set of all possible topologies on 249: 236: 230: 125: 112: 106: 1215: 1069: 1056:with opposite meaning (Munkres, p. 78). 1037: 258:{\displaystyle \tau _{1}\neq \tau _{2}} 599:One can also compare topologies using 550:remains continuous if the topology on 1123:Rocky Mountain Journal of Mathematics 1119:"The lattice of topologies: A survey" 7: 1044:There are some authors, especially 787:The lattice of topologies on a set 721:The set of all topologies on a set 634:) be a local base for the topology 1088:(2nd ed.). Saddle River, NJ: 358:for some intricate relationships. 14: 1169:10.1090/S0002-9947-1966-0190893-2 764:Every complete lattice is also a 951:{\displaystyle \tau \cup \tau '} 920:{\displaystyle \tau \cap \tau '} 768:, which is to say that it has a 1189:Canadian Journal of Mathematics 1: 780:and the least element is the 1183:Van Rooij, A. C. M. (1968). 811:; that is, given a topology 517:strongly/relatively open map 37:comparison of the topologies 896:such that the intersection 617:be two topologies on a set 568:An open (resp. closed) map 429:be two topologies on a set 80:be two topologies on a set 1256: 958:is the discrete topology. 391:. In the latter, a subset 145:That is, every element of 1240:Comparison (mathematical) 695:) contains some open set 313:partial ordering relation 1136:10.1216/RMJ-1975-5-2-177 851:there exists a topology 1150:Steiner, A. K. (1966). 669:if and only if for all 327:The finest topology on 1202:10.4153/CJM-1968-079-9 995: 975: 952: 921: 890: 870: 869:{\displaystyle \tau '} 845: 825: 801: 259: 152:is also an element of 135: 996: 976: 953: 922: 891: 871: 846: 826: 824:{\displaystyle \tau } 802: 717:Lattice of topologies 373:and coarser than the 260: 136: 29:partially ordered set 23:and related areas of 16:Mathematical exercise 1048:, who use the terms 985: 965: 931: 900: 880: 855: 835: 815: 809:complemented lattice 791: 523:(The identity map id 382:complex vector space 229: 159:. Then the topology 105: 588:or the topology on 558:or the topology on 489:the identity map id 369:are finer than the 991: 971: 948: 917: 886: 866: 841: 821: 797: 601:neighborhood bases 255: 131: 1078:Munkres, James R. 994:{\displaystyle X} 974:{\displaystyle X} 889:{\displaystyle X} 844:{\displaystyle X} 800:{\displaystyle X} 778:discrete topology 538:A continuous map 333:discrete topology 222:If additionally 1247: 1235:General topology 1219: 1213: 1207: 1206: 1204: 1180: 1174: 1173: 1171: 1147: 1141: 1140: 1138: 1114: 1108: 1107: 1087: 1074: 1057: 1042: 1019:Initial topology 1005:, and hence not 1000: 998: 997: 992: 980: 978: 977: 972: 957: 955: 954: 949: 947: 926: 924: 923: 918: 916: 895: 893: 892: 887: 875: 873: 872: 867: 865: 850: 848: 847: 842: 830: 828: 827: 822: 806: 804: 803: 798: 782:trivial topology 727:complete lattice 677:, each open set 389:Zariski topology 363:polar topologies 341:trivial topology 277:strictly coarser 264: 262: 261: 256: 254: 253: 241: 240: 196:is said to be a 166:is said to be a 140: 138: 137: 132: 130: 129: 117: 116: 91:is contained in 35:can be used for 1255: 1254: 1250: 1249: 1248: 1246: 1245: 1244: 1225: 1224: 1223: 1222: 1214: 1210: 1182: 1181: 1177: 1149: 1148: 1144: 1116: 1115: 1111: 1104: 1076: 1075: 1071: 1066: 1061: 1060: 1043: 1039: 1034: 1015: 983: 982: 963: 962: 940: 929: 928: 909: 898: 897: 878: 877: 858: 853: 852: 833: 832: 813: 812: 789: 788: 766:bounded lattice 719: 708: 701: 690: 683: 668: 661: 642: 629: 616: 609: 526: 514: 503: 492: 481: 470: 459: 449: 442: 428: 421: 413: 375:strong topology 348:function spaces 325: 309:binary relation 303: 292: 285: 274: 245: 232: 227: 226: 218: 195: 188: 165: 158: 151: 121: 108: 103: 102: 97: 90: 79: 72: 45: 17: 12: 11: 5: 1253: 1251: 1243: 1242: 1237: 1227: 1226: 1221: 1220: 1218:, Theorem 3.1. 1208: 1175: 1162:(2): 379–398. 1142: 1129:(2): 177–198. 1109: 1102: 1068: 1067: 1065: 1062: 1059: 1058: 1036: 1035: 1033: 1030: 1029: 1028: 1025:Final topology 1022: 1014: 1011: 990: 970: 946: 943: 939: 936: 915: 912: 908: 905: 885: 864: 861: 840: 820: 796: 718: 715: 706: 699: 688: 681: 666: 659: 638: 625: 614: 607: 597: 596: 566: 524: 521: 520: 512: 501: 490: 487: 484:continuous map 479: 468: 457: 450: 447: 440: 426: 419: 412: 409: 350:and spaces of 324: 321: 301: 295:strictly finer 290: 283: 272: 266: 265: 252: 248: 244: 239: 235: 216: 193: 186: 163: 156: 149: 143: 142: 128: 124: 120: 115: 111: 95: 88: 77: 70: 44: 41: 33:order relation 15: 13: 10: 9: 6: 4: 3: 2: 1252: 1241: 1238: 1236: 1233: 1232: 1230: 1217: 1212: 1209: 1203: 1198: 1194: 1190: 1186: 1179: 1176: 1170: 1165: 1161: 1157: 1153: 1146: 1143: 1137: 1132: 1128: 1124: 1120: 1113: 1110: 1105: 1103:0-13-181629-2 1099: 1095: 1091: 1090:Prentice Hall 1086: 1085: 1079: 1073: 1070: 1063: 1055: 1051: 1047: 1041: 1038: 1031: 1026: 1023: 1020: 1017: 1016: 1012: 1010: 1008: 1004: 988: 968: 959: 944: 941: 937: 934: 913: 910: 906: 903: 883: 862: 859: 838: 818: 810: 794: 785: 783: 779: 775: 774:least element 771: 767: 762: 760: 756: 752: 748: 744: 740: 736: 732: 728: 724: 716: 714: 712: 705: 698: 694: 687: 680: 676: 672: 665: 658: 654: 650: 646: 641: 637: 633: 628: 624: 620: 613: 606: 602: 594: 591: 587: 583: 579: 575: 571: 567: 564: 561: 557: 553: 549: 545: 541: 537: 536: 535: 532: 530: 518: 511: 507: 500: 496: 488: 485: 478: 474: 467: 463: 455: 451: 446: 439: 436: 435: 434: 432: 425: 418: 410: 408: 406: 402: 398: 394: 390: 386: 383: 378: 376: 372: 371:weak topology 368: 364: 361:All possible 359: 357: 353: 349: 344: 342: 338: 334: 330: 322: 320: 318: 314: 310: 305: 300: 296: 289: 282: 278: 271: 250: 246: 242: 237: 233: 225: 224: 223: 220: 215: 211: 207: 203: 199: 192: 185: 181: 177: 173: 169: 162: 155: 148: 126: 122: 118: 113: 109: 101: 100: 99: 94: 87: 83: 76: 69: 64: 62: 57: 55: 50: 42: 40: 38: 34: 30: 26: 22: 1216:Steiner 1966 1211: 1192: 1188: 1178: 1159: 1155: 1145: 1126: 1122: 1112: 1083: 1072: 1053: 1049: 1040: 1007:distributive 960: 786: 763: 759:generated by 751:intersection 742: 734: 730: 722: 720: 710: 703: 696: 692: 685: 678: 674: 670: 663: 656: 655:= 1,2. Then 652: 648: 644: 639: 635: 631: 626: 622: 618: 611: 604: 598: 592: 589: 585: 581: 577: 573: 569: 562: 559: 555: 551: 547: 543: 539: 533: 522: 509: 505: 498: 494: 476: 472: 465: 461: 454:identity map 444: 437: 430: 423: 416: 414: 404: 400: 396: 392: 384: 379: 360: 345: 336: 328: 326: 316: 311:⊆ defines a 306: 298: 294: 287: 280: 276: 269: 267: 221: 213: 209: 205: 201: 197: 190: 183: 179: 175: 171: 167: 160: 153: 146: 144: 92: 85: 81: 74: 67: 65: 60: 58: 46: 36: 18: 1195:: 805–807. 1092:. pp.  961:If the set 761:the union. 25:mathematics 1229:Categories 1064:References 529:surjective 411:Properties 405:vice versa 84:such that 54:complement 43:Definition 942:τ 938:∪ 935:τ 911:τ 907:∩ 904:τ 860:τ 819:τ 493: : ( 460: : ( 367:dual pair 247:τ 243:≠ 234:τ 123:τ 119:⊆ 110:τ 61:open sets 1084:Topology 1080:(2000). 1046:analysts 1013:See also 1009:either. 945:′ 914:′ 863:′ 770:greatest 747:supremum 741:) and a 621:and let 584:becomes 572: : 554:becomes 542: : 352:measures 323:Examples 210:topology 202:stronger 180:topology 21:topology 1003:modular 1001:is not 739:infimum 733:have a 593:coarser 556:coarser 515:) is a 482:) is a 339:is the 331:is the 268:we say 189:, and 176:smaller 168:coarser 49:subsets 31:. This 1100:  1054:strong 603:. Let 279:than 206:larger 172:weaker 1096:–78. 1032:Notes 807:is a 755:union 586:finer 563:finer 504:) → ( 471:) → ( 365:on a 297:than 212:than 198:finer 182:than 1098:ISBN 1052:and 1050:weak 772:and 745:(or 743:join 737:(or 735:meet 651:for 610:and 452:the 422:and 415:Let 380:The 307:The 286:and 73:and 66:Let 1197:doi 1164:doi 1160:122 1131:doi 876:on 831:on 702:in 684:in 643:at 527:is 395:of 346:In 293:is 275:is 204:or 174:or 19:In 1231:: 1193:20 1191:. 1187:. 1158:. 1154:. 1125:. 1121:. 1094:77 784:. 673:∈ 662:⊆ 647:∈ 576:→ 546:→ 508:, 497:, 475:, 464:, 456:id 443:⊆ 377:. 319:. 304:. 219:. 208:) 178:) 98:: 39:. 1205:. 1199:: 1172:. 1166:: 1139:. 1133:: 1127:5 1106:. 989:X 969:X 884:X 839:X 795:X 731:X 723:X 711:x 709:( 707:2 704:B 700:2 697:U 693:x 691:( 689:1 686:B 682:1 679:U 675:X 671:x 667:2 664:τ 660:1 657:τ 653:i 649:X 645:x 640:i 636:τ 632:x 630:( 627:i 623:B 619:X 615:2 612:τ 608:1 605:τ 595:. 590:X 582:Y 578:Y 574:X 570:f 565:. 560:X 552:Y 548:Y 544:X 540:f 525:X 519:. 513:2 510:τ 506:X 502:1 499:τ 495:X 491:X 486:. 480:1 477:τ 473:X 469:2 466:τ 462:X 458:X 448:2 445:τ 441:1 438:τ 431:X 427:2 424:τ 420:1 417:τ 401:V 397:C 393:V 385:C 337:X 329:X 317:X 302:1 299:τ 291:2 288:τ 284:2 281:τ 273:1 270:τ 251:2 238:1 217:1 214:τ 200:( 194:2 191:τ 187:2 184:τ 170:( 164:1 161:τ 157:2 154:τ 150:1 147:τ 141:. 127:2 114:1 96:2 93:τ 89:1 86:τ 82:X 78:2 75:τ 71:1 68:τ

Index

topology
mathematics
partially ordered set
order relation
subsets
complement
binary relation
partial ordering relation
discrete topology
trivial topology
function spaces
measures
topologies on the set of operators on a Hilbert space
polar topologies
dual pair
weak topology
strong topology
complex vector space
Zariski topology
identity map
continuous map
strongly/relatively open map
surjective
neighborhood bases
complete lattice
infimum
supremum
intersection
union
generated by

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.