Knowledge

Competitive Lotka–Volterra equations

Source 📝

1555:
large regions with clear boundaries. As predicted by the theory, chaos was also found; taking place however over much smaller islands of the parameter space which causes difficulties in the identification of their location by a random search algorithm. These regions where chaos occurs are, in the three cases analyzed in, situated at the interface between a non-chaotic four species region and a region where extinction occurs. This implies a high sensitivity of biodiversity with respect to parameter variations in the chaotic regions. Additionally, in regions where extinction occurs which are adjacent to chaotic regions, the computation of local Lyapunov exponents revealed that a possible cause of extinction is the overly strong fluctuations in
2821: 1568: 2404: 2900: 1937: 3160: 1102: 472: 1674: 2816:{\displaystyle {\begin{aligned}\operatorname {Re} (\lambda _{k})&=\operatorname {Re} \left(1+\alpha _{-2}e^{i2\pi k(N-2)/N}+\alpha _{-1}e^{i2\pi k(N-1)/N}+\alpha _{1}e^{i2\pi k/N}+\alpha _{2}e^{i4\pi k/N}\right)\\&=1+(\alpha _{-2}+\alpha _{2})\cos \left({\frac {4\pi k}{N}}\right)+(\alpha _{-1}+\alpha _{1})\cos \left({\frac {2\pi k}{N}}\right)>0\end{aligned}}} 1296: 2917: 191: 1131: 1523: 1608:
There are many situations where the strength of species' interactions depends on the physical distance of separation. Imagine bee colonies in a field. They will compete for food strongly with the colonies located near to them, weakly with further colonies, and not at all with colonies that are far
1932:{\displaystyle \alpha _{ij}={\begin{bmatrix}1&\alpha _{1}&0&0&\alpha _{-1}\\\alpha _{-1}&1&\alpha _{1}&0&0\\0&\alpha _{-1}&1&\alpha _{1}&0\\0&0&\alpha _{-1}&1&\alpha _{1}\\\alpha _{1}&0&0&\alpha _{-1}&1\end{bmatrix}}.} 1554:
A detailed study of the parameter dependence of the dynamics was performed by Roques and Chekroun in. The authors observed that interaction and growth parameters leading respectively to extinction of three species, or coexistence of two, three or four species, are for the most part arranged in
2834:. Now, instead of having to integrate the system over thousands of time steps to see if any dynamics other than a fixed point attractor exist, one need only determine if the Lyapunov function exists (note: the absence of the Lyapunov function doesn't guarantee a limit cycle, torus, or chaos). 1653:. It is much easier, however, to keep the format of the equations the same and instead modify the interaction matrix. For simplicity, consider a five species example where all of the species are aligned on a circle, and each interacts only with the two neighbors on either side with strength 2907:
It is also possible to arrange the species into a line. The interaction matrix for this system is very similar to that of a circle except the interaction terms in the lower left and upper right of the matrix are deleted (those that describe the interactions between species 1 and
3155:{\displaystyle \alpha _{ij}={\begin{bmatrix}1&\alpha _{1}&0&0&0\\\alpha _{-1}&1&\alpha _{1}&0&0\\0&\alpha _{-1}&1&\alpha _{1}&0\\0&0&\alpha _{-1}&1&\alpha _{1}\\0&0&0&\alpha _{-1}&1\end{bmatrix}}} 1357:
of 0.0203. From the theorems by Hirsch, it is one of the lowest-dimensional chaotic competitive Lotka–Volterra systems. The Kaplan–Yorke dimension, a measure of the dimensionality of the attractor, is 2.074. This value is not a whole number, indicative of the
2082: 499:-values are positive. Also, note that each species can have its own growth rate and carrying capacity. A complete classification of this dynamics, even for all sign patterns of above coefficients, is available, which is based upon equivalence to the 3-type 3175:
shape. The eigenvalues from a short line form a sideways Y, but those of a long line begin to resemble the trefoil shape of the circle. This could be due to the fact that a long line is indistinguishable from a circle to those species far from the ends.
671: 1391: 467:{\displaystyle {\begin{aligned}{dx_{1} \over dt}&=r_{1}x_{1}\left(1-\left({x_{1}+\alpha _{12}x_{2} \over K_{1}}\right)\right)\\{dx_{2} \over dt}&=r_{2}x_{2}\left(1-\left({x_{2}+\alpha _{21}x_{1} \over K_{2}}\right)\right).\end{aligned}}} 1546:
eigenvalue pair. If the real part were negative, this point would be stable and the orbit would attract asymptotically. The transition between these two states, where the real part of the complex eigenvalue pair is equal to zero, is called a
798: 494:
represents the effect species 1 has on the population of species 2. These values do not have to be equal. Because this is the competitive version of the model, all interactions must be harmful (competition) and therefore all
2146:-torus are zero while that of a strange attractor is positive). If the derivative is less than zero everywhere except the equilibrium point, then the equilibrium point is a stable fixed point attractor. When searching a 1069: 1291:{\displaystyle r={\begin{bmatrix}1\\0.72\\1.53\\1.27\end{bmatrix}}\quad \alpha ={\begin{bmatrix}1&1.09&1.52&0\\0&1&0.44&1.36\\2.33&0&1&0.47\\1.21&0.51&0.35&1\end{bmatrix}}} 2239: 196: 1960: 1084:
systems Lotka–Volterra models are either unstable or have low connectivity. Kondoh and Ackland and Gallagher have independently shown that large, stable Lotka–Volterra systems arise if the elements of
142: 54:
for predation in that the equation for each species has one term for self-interaction and one term for the interaction with other species. In the equations for predation, the base population model is
533: 2409: 676: 2301: 188:, with logistic dynamics, the Lotka–Volterra formulation adds an additional term to account for the species' interactions. Thus the competitive Lotka–Volterra equations are: 3164:
This change eliminates the Lyapunov function described above for the system on a circle, but most likely there are other Lyapunov functions that have not been discovered.
2887:
then the real part of one of the complex eigenvalue pair becomes positive and there is a strange attractor. The disappearance of this Lyapunov function coincides with a
1331: 970: 839:). If it is also assumed that the population of any species will increase in the absence of competition unless the population is already at the carrying capacity ( 1351: 1518:{\displaystyle {\overline {x}}=\left(\alpha \right)^{-1}{\begin{bmatrix}1\\1\\1\\1\end{bmatrix}}={\begin{bmatrix}0.3013\\0.4586\\0.1307\\0.3557\end{bmatrix}}.} 929:
dimensions, and chaos cannot occur in less than three dimensions. So, Hirsch proved that competitive Lotka–Volterra systems cannot exhibit a limit cycle for
673:
or, if the carrying capacity is pulled into the interaction matrix (this doesn't actually change the equations, only how the interaction matrix is defined),
1671:
respectively. Thus, species 3 interacts only with species 2 and 4, species 1 interacts only with species 2 and 5, etc. The interaction matrix will now be
3430:
Hirsch, Morris W. (1990). "Systems of Differential Equations That are Competitive or Cooperative. IV: Structural Stability in Three-Dimensional Systems".
2150:
for non-fixed point attractors, the existence of a Lyapunov function can help eliminate regions of parameter space where these dynamics are impossible.
2164: 1641:. Therefore, if the competitive Lotka–Volterra equations are to be used for modeling such a system, they must incorporate this spatial structure. 35: 3570:
Vano, J A; Wildenberg, J C; Anderson, M B; Noel, J K; Sprott, J C (2006-09-15). "Chaos in low-dimensional Lotka–Volterra models of competition".
72: 1571:
An illustration of spatial structure in nature. The strength of the interaction between bee colonies is a function of their proximity. Colonies
2118:. It is often useful to imagine a Lyapunov function as the energy of the system. If the derivative of the function is equal to zero for some 1535: 1071:
and is a global attractor of every point excluding the origin. This carrying simplex contains all of the asymptotic dynamics of the system.
514:
This model can be generalized to any number of species competing against each other. One can think of the populations and growth rates as
3516:
Ackland, G. J.; Gallagher, I. D. (2004-10-08). "Stabilization of Large Generalized Lotka-Volterra Foodwebs By Evolutionary Feedback".
1649:
One possible way to incorporate this spatial structure is to modify the nature of the Lotka–Volterra equations to something like a
1650: 821:
The definition of a competitive Lotka–Volterra system assumes that all values in the interaction matrix are positive or 0 (
51: 20: 3821: 3826: 3757:
Wildenberg, J.C.; Vano, J.A.; Sprott, J.C. (2006). "Complex spatiotemporal dynamics in Lotka–Volterra ring systems".
2077:{\displaystyle {\overline {x}}_{i}={\frac {1}{\sum _{j=1}^{N}\alpha _{ij}}}={\frac {1}{\alpha _{-1}+1+\alpha _{1}}}.} 3836: 3831: 1941:
If each species is identical in its interactions with neighboring species, then each row of the matrix is just a
884: 1945:
of the first row. A simple, but non-realistic, example of this type of system has been characterized by Sprott
3465:
Kondoh, M. (2003-02-28). "Foraging Adaptation and the Relationship Between Food-Web Complexity and Stability".
666:{\displaystyle {\frac {dx_{i}}{dt}}=r_{i}x_{i}\left(1-{\frac {\sum _{j=1}^{N}\alpha _{ij}x_{j}}{K_{i}}}\right)} 3709:
Sprott, J.C.; Wildenberg, J.C.; Azizi, Yousef (2005). "A simple spatiotemporal chaotic Lotka–Volterra model".
3625: 949: 3795:, 1988. The Theory of Evolution and Dynamical Systems. Cambridge University Press, Cambridge, U.K, p. 352. 2259: 2096: 3338:"Systems of Differential Equations that are Competitive or Cooperative II: Convergence Almost Everywhere" 3811: 1379: 2899: 1567: 875:
Smale showed that Lotka–Volterra systems that meet the above conditions and have five or more species (
3718: 3675: 3579: 3525: 3388: 1371: 1122:
A simple 4-dimensional example of a competitive Lotka–Volterra system has been characterized by Vano
523: 55: 1610: 500: 31: 1542:, −0.3342, and −1.0319. This point is unstable due to the positive value of the real part of the 3816: 3603: 3498: 3412: 3318: 3267: 3221: 2153:
The spatial system introduced above has a Lyapunov function that has been explored by Wildenberg
2115: 515: 3377:"Systems of differential equations which are competitive or cooperative: III. Competing species" 3774: 3734: 3691: 3648: 3595: 3549: 3541: 3490: 3482: 3447: 3404: 3357: 3310: 3302: 3259: 3213: 2139: 2135: 2123: 2092: 1950: 1556: 1375: 1367: 1363: 1354: 899: 793:{\displaystyle {\frac {dx_{i}}{dt}}=r_{i}x_{i}\left(1-\sum _{j=1}^{N}\alpha _{ij}x_{j}\right)} 159: 59: 3196:(1983). "Lotka-Volterra equation and replicator dynamics: A two-dimensional classification". 1303: 3766: 3726: 3683: 3640: 3587: 3533: 3474: 3439: 3396: 3349: 3294: 3251: 3205: 2888: 2158: 2147: 2119: 1548: 2157:
If all species are identical in their spatial interactions, then the interaction matrix is
921:−1. This is important because a limit cycle cannot exist in fewer than two dimensions, an 1954: 3242:(1995). "Lotka-Volterra equation and replicator dynamics: new issues in classification". 3722: 3679: 3583: 3529: 3392: 1531:
equilibrium points, but all others have at least one species' population equal to zero.
1101: 3239: 3193: 1609:
away. This doesn't mean, however, that those far colonies can be ignored. There is a
1543: 1336: 804:
is the total number of interacting species. For simplicity all self-interacting terms
34:
of species competing for some common resource. They can be further generalised to the
3591: 19:
This article is about the competition equations. For the predator-prey equations, see
3805: 3687: 3502: 3416: 3225: 3168: 2308: 1383: 957: 3400: 3322: 3271: 3792: 3607: 2903:
The eigenvalues of a circle, short line, and long line plotted in the complex plane
1092:(i.e. the features of the species) can evolve in accordance with natural selection. 3537: 3770: 3644: 3730: 1942: 1106: 888: 3473:(5611). American Association for the Advancement of Science (AAAS): 1388–1391. 2877:
then all eigenvalues are negative and the only attractor is a fixed point. If
2327:
The Lyapunov function exists if the real part of the eigenvalues are positive (
1064:{\displaystyle \Delta _{N-1}=\left\{x_{i}:x_{i}\geq 0,\sum _{i}x_{i}=1\right\}} 941:< 4. This is still in agreement with Smale that any dynamics can occur for 853:), then some definite statements can be made about the behavior of the system. 3778: 3738: 3695: 3652: 3599: 3545: 3486: 3451: 3408: 3361: 3306: 3285:
Smale, S. (1976). "On the differential equations of species in competition".
3263: 3217: 857:
The populations of all species will be bounded between 0 and 1 at all times (
3478: 3376: 3337: 2127: 914: 880: 3553: 3494: 1370:, the point at which all derivatives are equal to zero but that is not the 3314: 3438:(5). Society for Industrial & Applied Mathematics (SIAM): 1225–1234. 906: 39: 3666:
Nese, Jon M. (1989). "Quantifying local predictability in phase space".
3348:(3). Society for Industrial & Applied Mathematics (SIAM): 423–439. 3298: 3255: 3209: 3172: 1359: 965: 485:
represents the effect species 2 has on the population of species 1 and
66: 3443: 3353: 905:
Hirsch proved that all of the dynamics of the attractor occur on a
2898: 1566: 1100: 934: 892: 2234:{\displaystyle \lambda _{k}=\sum _{j=0}^{N-1}c_{j}\gamma ^{kj}} 1595:
do not interact directly, but affect each other through colony
3626:"Probing chaos and biodiversity in a simple competition model" 1126:
Here the growth rates and interaction matrix have been set to
137:{\displaystyle {dx \over dt}=rx\left(1-{x \over K}\right).} 913:−1. This essentially says that the attractor cannot have 3250:(5). Springer Science and Business Media LLC: 447–453. 3204:(3). Springer Science and Business Media LLC: 201–211. 2942: 2161:. The eigenvalues of a circulant matrix are given by 1953:
for these systems has a very simple form given by the
1699: 1477: 1434: 1193: 1146: 1080:
matrix must have all positive eigenvalues. For large-
2920: 2407: 2262: 2167: 1963: 1677: 1613:
effect that permeates through the system. If colony
1394: 1339: 1306: 1134: 973: 679: 536: 194: 75: 3167:
The eigenvalues of the circle system plotted in the
3293:(1). Springer Science and Business Media LLC: 5–7. 2324:th value in the first row of the circulant matrix. 3154: 2815: 2295: 2233: 2076: 1931: 1517: 1345: 1325: 1290: 1063: 872:) as long as the populations started out positive. 792: 665: 466: 136: 1105:The competitive Lotka–Volterra system plotted in 3619: 3617: 3524:(15). American Physical Society (APS): 158701. 150:is the size of the population at a given time, 3752: 3750: 3748: 3624:Roques, Lionel; Chekroun, Mickaël D. (2011). 1538:of the system at this point are 0.0414±0.1903 948:More specifically, Hirsch showed there is an 8: 3565: 3563: 65:The logistic population model, when used by 1353:. This system is chaotic and has a largest 16:Model of multi-species population dynamics 3130: 3101: 3081: 3052: 3032: 3003: 2983: 2954: 2937: 2925: 2919: 2781: 2762: 2746: 2714: 2695: 2679: 2641: 2628: 2618: 2601: 2588: 2578: 2561: 2533: 2520: 2503: 2475: 2462: 2425: 2408: 2406: 2283: 2273: 2261: 2222: 2212: 2196: 2185: 2172: 2166: 2130:, but it must be either a limit cycle or 2114:whose existence in a system demonstrates 2062: 2040: 2030: 2015: 2005: 1994: 1984: 1975: 1965: 1962: 1904: 1882: 1868: 1848: 1819: 1799: 1770: 1750: 1733: 1711: 1694: 1682: 1676: 1472: 1429: 1420: 1395: 1393: 1338: 1311: 1305: 1188: 1141: 1133: 1044: 1034: 1015: 1002: 978: 972: 779: 766: 756: 745: 724: 714: 690: 680: 678: 650: 639: 626: 616: 605: 598: 581: 571: 547: 537: 535: 440: 429: 419: 406: 399: 378: 368: 340: 330: 309: 298: 288: 275: 268: 247: 237: 209: 199: 195: 193: 116: 76: 74: 154:is inherent per-capita growth rate, and 3185: 58:. For the competition equations, the 3432:SIAM Journal on Mathematical Analysis 3342:SIAM Journal on Mathematical Analysis 526:. Then the equation for any species 7: 2296:{\displaystyle \gamma =e^{i2\pi /N}} 28:competitive Lotka–Volterra equations 2401:. The Lyapunov function exists if 36:generalized Lotka–Volterra equation 1076:To create a stable ecosystem the α 975: 14: 3578:(10). IOP Publishing: 2391–2404. 925:-torus cannot exist in less than 69:often takes the following form: 3287:Journal of Mathematical Biology 1181: 3711:Chaos, Solitons & Fractals 3668:Physica D: Nonlinear Phenomena 2768: 2739: 2701: 2672: 2558: 2546: 2500: 2488: 2431: 2418: 2349:). Consider the system where 2126:, then that orbit is a stable 1118:value represented by the color 1: 3717:(4). Elsevier BV: 1035–1043. 3674:(1–2). Elsevier BV: 237–250. 3538:10.1103/physrevlett.93.158701 2138:(this is because the largest 3771:10.1016/j.ecocom.2005.12.001 3688:10.1016/0167-2789(89)90105-x 3645:10.1016/j.ecocom.2010.08.004 3387:(1). IOP Publishing: 51–71. 2895:Line systems and eigenvalues 1970: 1400: 3765:(2). Elsevier BV: 140–147. 3731:10.1016/j.chaos.2005.02.015 3592:10.1088/0951-7715/19/10/006 1527:Note that there are always 1378:the interaction matrix and 50:The form is similar to the 3853: 3639:(1). Elsevier BV: 98–104. 3375:Hirsch, M W (1988-02-01). 3336:Hirsch, Morris W. (1985). 30:are a simple model of the 18: 3401:10.1088/0951-7715/1/1/003 1651:reaction–diffusion system 1579:interact, as do colonies 1559:induced by local chaos. 1362:structure inherent in a 52:Lotka–Volterra equations 21:Lotka–Volterra equations 3518:Physical Review Letters 3479:10.1126/science.1079154 1326:{\displaystyle K_{i}=1} 170:Given two populations, 3244:Biological Cybernetics 3198:Biological Cybernetics 3156: 2904: 2817: 2297: 2235: 2207: 2078: 2010: 1957:of the sum of the row 1933: 1617:interacts with colony 1600: 1519: 1347: 1327: 1292: 1119: 1065: 883:behavior, including a 794: 761: 667: 621: 468: 138: 3759:Ecological Complexity 3633:Ecological Complexity 3157: 2902: 2818: 2298: 2236: 2181: 2142:of a limit cycle and 2079: 1990: 1934: 1570: 1520: 1348: 1328: 1293: 1104: 1097:4-dimensional example 1066: 879:≥ 5) can exhibit any 795: 741: 668: 601: 469: 139: 2918: 2405: 2260: 2165: 1961: 1675: 1563:Spatial arrangements 1392: 1337: 1304: 1132: 971: 813:are often set to 1. 677: 534: 192: 73: 40:trophic interactions 3822:Population dynamics 3723:2005CSF....26.1035S 3680:1989PhyD...35..237N 3584:2006Nonli..19.2391V 3530:2004PhRvL..93o8701A 3393:1988Nonli...1...51H 2134:-torus - but not a 1645:Matrix organization 501:replicator equation 32:population dynamics 3827:Population ecology 3299:10.1007/bf00307854 3256:10.1007/bf00201420 3240:Bomze, Immanuel M. 3210:10.1007/bf00318088 3194:Bomze, Immanuel M. 3152: 3146: 2905: 2813: 2811: 2293: 2231: 2122:not including the 2087:Lyapunov functions 2074: 1929: 1920: 1601: 1557:species abundances 1515: 1506: 1463: 1386:, and is equal to 1374:, can be found by 1366:. The coexisting 1343: 1323: 1288: 1282: 1175: 1120: 1061: 1039: 790: 663: 464: 462: 134: 3837:Population models 3832:Community ecology 2797: 2730: 2140:Lyapunov exponent 2136:strange attractor 2124:equilibrium point 2093:Lyapunov function 2069: 2025: 1973: 1951:equilibrium point 1403: 1368:equilibrium point 1364:strange attractor 1355:Lyapunov exponent 1346:{\displaystyle i} 1030: 817:Possible dynamics 705: 656: 562: 446: 355: 315: 224: 160:carrying capacity 124: 94: 60:logistic equation 3844: 3796: 3789: 3783: 3782: 3754: 3743: 3742: 3706: 3700: 3699: 3663: 3657: 3656: 3630: 3621: 3612: 3611: 3567: 3558: 3557: 3513: 3507: 3506: 3462: 3456: 3455: 3427: 3421: 3420: 3372: 3366: 3365: 3333: 3327: 3326: 3282: 3276: 3275: 3236: 3230: 3229: 3190: 3161: 3159: 3158: 3153: 3151: 3150: 3138: 3137: 3106: 3105: 3089: 3088: 3057: 3056: 3040: 3039: 3008: 3007: 2991: 2990: 2959: 2958: 2933: 2932: 2889:Hopf bifurcation 2886: 2876: 2866: 2856: 2846: 2833: 2822: 2820: 2819: 2814: 2812: 2802: 2798: 2793: 2782: 2767: 2766: 2754: 2753: 2735: 2731: 2726: 2715: 2700: 2699: 2687: 2686: 2659: 2655: 2651: 2650: 2649: 2645: 2623: 2622: 2610: 2609: 2605: 2583: 2582: 2570: 2569: 2565: 2528: 2527: 2512: 2511: 2507: 2470: 2469: 2430: 2429: 2400: 2387: 2374: 2361: 2348: 2337: 2319: 2302: 2300: 2299: 2294: 2292: 2291: 2287: 2255: 2240: 2238: 2237: 2232: 2230: 2229: 2217: 2216: 2206: 2195: 2177: 2176: 2148:dynamical system 2113: 2083: 2081: 2080: 2075: 2070: 2068: 2067: 2066: 2048: 2047: 2031: 2026: 2024: 2023: 2022: 2009: 2004: 1985: 1980: 1979: 1974: 1966: 1938: 1936: 1935: 1930: 1925: 1924: 1912: 1911: 1887: 1886: 1873: 1872: 1856: 1855: 1824: 1823: 1807: 1806: 1775: 1774: 1758: 1757: 1741: 1740: 1716: 1715: 1690: 1689: 1670: 1661: 1549:Hopf bifurcation 1530: 1524: 1522: 1521: 1516: 1511: 1510: 1468: 1467: 1428: 1427: 1419: 1404: 1396: 1352: 1350: 1349: 1344: 1332: 1330: 1329: 1324: 1316: 1315: 1297: 1295: 1294: 1289: 1287: 1286: 1180: 1179: 1117: 1091: 1070: 1068: 1067: 1062: 1060: 1056: 1049: 1048: 1038: 1020: 1019: 1007: 1006: 989: 988: 964:−1)-dimensional 871: 867: 852: 848: 838: 834: 830: 812: 803: 799: 797: 796: 791: 789: 785: 784: 783: 774: 773: 760: 755: 729: 728: 719: 718: 706: 704: 696: 695: 694: 681: 672: 670: 669: 664: 662: 658: 657: 655: 654: 645: 644: 643: 634: 633: 620: 615: 599: 586: 585: 576: 575: 563: 561: 553: 552: 551: 538: 529: 521: 493: 484: 473: 471: 470: 465: 463: 456: 452: 451: 447: 445: 444: 435: 434: 433: 424: 423: 411: 410: 400: 383: 382: 373: 372: 356: 354: 346: 345: 344: 331: 325: 321: 320: 316: 314: 313: 304: 303: 302: 293: 292: 280: 279: 269: 252: 251: 242: 241: 225: 223: 215: 214: 213: 200: 187: 178: 157: 153: 149: 143: 141: 140: 135: 130: 126: 125: 117: 95: 93: 85: 77: 3852: 3851: 3847: 3846: 3845: 3843: 3842: 3841: 3802: 3801: 3800: 3799: 3790: 3786: 3756: 3755: 3746: 3708: 3707: 3703: 3665: 3664: 3660: 3628: 3623: 3622: 3615: 3569: 3568: 3561: 3515: 3514: 3510: 3464: 3463: 3459: 3444:10.1137/0521067 3429: 3428: 3424: 3374: 3373: 3369: 3354:10.1137/0516030 3335: 3334: 3330: 3284: 3283: 3279: 3238: 3237: 3233: 3192: 3191: 3187: 3182: 3145: 3144: 3139: 3126: 3124: 3119: 3114: 3108: 3107: 3097: 3095: 3090: 3077: 3075: 3070: 3064: 3063: 3058: 3048: 3046: 3041: 3028: 3026: 3020: 3019: 3014: 3009: 2999: 2997: 2992: 2979: 2976: 2975: 2970: 2965: 2960: 2950: 2948: 2938: 2921: 2916: 2915: 2897: 2884: 2878: 2874: 2868: 2864: 2858: 2854: 2848: 2844: 2838: 2824: 2810: 2809: 2783: 2777: 2758: 2742: 2716: 2710: 2691: 2675: 2657: 2656: 2624: 2614: 2584: 2574: 2529: 2516: 2471: 2458: 2451: 2447: 2434: 2421: 2403: 2402: 2395: 2389: 2382: 2376: 2369: 2363: 2356: 2350: 2339: 2334: 2328: 2317: 2312: 2269: 2258: 2257: 2254: 2244: 2218: 2208: 2168: 2163: 2162: 2100: 2089: 2058: 2036: 2035: 2011: 1989: 1964: 1959: 1958: 1949:The coexisting 1919: 1918: 1913: 1900: 1898: 1893: 1888: 1878: 1875: 1874: 1864: 1862: 1857: 1844: 1842: 1837: 1831: 1830: 1825: 1815: 1813: 1808: 1795: 1793: 1787: 1786: 1781: 1776: 1766: 1764: 1759: 1746: 1743: 1742: 1729: 1727: 1722: 1717: 1707: 1705: 1695: 1678: 1673: 1672: 1669: 1663: 1660: 1654: 1647: 1606: 1565: 1528: 1505: 1504: 1498: 1497: 1491: 1490: 1484: 1483: 1473: 1462: 1461: 1455: 1454: 1448: 1447: 1441: 1440: 1430: 1409: 1408: 1390: 1389: 1335: 1334: 1307: 1302: 1301: 1281: 1280: 1275: 1270: 1265: 1259: 1258: 1253: 1248: 1243: 1237: 1236: 1231: 1226: 1221: 1215: 1214: 1209: 1204: 1199: 1189: 1174: 1173: 1167: 1166: 1160: 1159: 1153: 1152: 1142: 1130: 1129: 1116: 1110: 1099: 1090: 1086: 1079: 1040: 1011: 998: 997: 993: 974: 969: 968: 933:< 3, or any 869: 864: 858: 850: 845: 840: 836: 832: 827: 822: 819: 811: 805: 801: 775: 762: 734: 730: 720: 710: 697: 686: 682: 675: 674: 646: 635: 622: 600: 591: 587: 577: 567: 554: 543: 539: 532: 531: 527: 519: 512: 492: 486: 483: 477: 461: 460: 436: 425: 415: 402: 401: 395: 388: 384: 374: 364: 357: 347: 336: 332: 327: 326: 305: 294: 284: 271: 270: 264: 257: 253: 243: 233: 226: 216: 205: 201: 190: 189: 186: 180: 177: 171: 168: 155: 151: 147: 109: 105: 86: 78: 71: 70: 48: 24: 17: 12: 11: 5: 3850: 3848: 3840: 3839: 3834: 3829: 3824: 3819: 3814: 3804: 3803: 3798: 3797: 3791:Hofbauer, J., 3784: 3744: 3701: 3658: 3613: 3559: 3508: 3457: 3422: 3367: 3328: 3277: 3231: 3184: 3183: 3181: 3178: 3149: 3143: 3140: 3136: 3133: 3129: 3125: 3123: 3120: 3118: 3115: 3113: 3110: 3109: 3104: 3100: 3096: 3094: 3091: 3087: 3084: 3080: 3076: 3074: 3071: 3069: 3066: 3065: 3062: 3059: 3055: 3051: 3047: 3045: 3042: 3038: 3035: 3031: 3027: 3025: 3022: 3021: 3018: 3015: 3013: 3010: 3006: 3002: 2998: 2996: 2993: 2989: 2986: 2982: 2978: 2977: 2974: 2971: 2969: 2966: 2964: 2961: 2957: 2953: 2949: 2947: 2944: 2943: 2941: 2936: 2931: 2928: 2924: 2896: 2893: 2882: 2872: 2862: 2852: 2842: 2808: 2805: 2801: 2796: 2792: 2789: 2786: 2780: 2776: 2773: 2770: 2765: 2761: 2757: 2752: 2749: 2745: 2741: 2738: 2734: 2729: 2725: 2722: 2719: 2713: 2709: 2706: 2703: 2698: 2694: 2690: 2685: 2682: 2678: 2674: 2671: 2668: 2665: 2662: 2660: 2658: 2654: 2648: 2644: 2640: 2637: 2634: 2631: 2627: 2621: 2617: 2613: 2608: 2604: 2600: 2597: 2594: 2591: 2587: 2581: 2577: 2573: 2568: 2564: 2560: 2557: 2554: 2551: 2548: 2545: 2542: 2539: 2536: 2532: 2526: 2523: 2519: 2515: 2510: 2506: 2502: 2499: 2496: 2493: 2490: 2487: 2484: 2481: 2478: 2474: 2468: 2465: 2461: 2457: 2454: 2450: 2446: 2443: 2440: 2437: 2435: 2433: 2428: 2424: 2420: 2417: 2414: 2411: 2410: 2393: 2380: 2367: 2354: 2332: 2315: 2290: 2286: 2282: 2279: 2276: 2272: 2268: 2265: 2249: 2228: 2225: 2221: 2215: 2211: 2205: 2202: 2199: 2194: 2191: 2188: 2184: 2180: 2175: 2171: 2099:of the system 2088: 2085: 2073: 2065: 2061: 2057: 2054: 2051: 2046: 2043: 2039: 2034: 2029: 2021: 2018: 2014: 2008: 2003: 2000: 1997: 1993: 1988: 1983: 1978: 1972: 1969: 1928: 1923: 1917: 1914: 1910: 1907: 1903: 1899: 1897: 1894: 1892: 1889: 1885: 1881: 1877: 1876: 1871: 1867: 1863: 1861: 1858: 1854: 1851: 1847: 1843: 1841: 1838: 1836: 1833: 1832: 1829: 1826: 1822: 1818: 1814: 1812: 1809: 1805: 1802: 1798: 1794: 1792: 1789: 1788: 1785: 1782: 1780: 1777: 1773: 1769: 1765: 1763: 1760: 1756: 1753: 1749: 1745: 1744: 1739: 1736: 1732: 1728: 1726: 1723: 1721: 1718: 1714: 1710: 1706: 1704: 1701: 1700: 1698: 1693: 1688: 1685: 1681: 1667: 1658: 1646: 1643: 1605: 1602: 1564: 1561: 1514: 1509: 1503: 1500: 1499: 1496: 1493: 1492: 1489: 1486: 1485: 1482: 1479: 1478: 1476: 1471: 1466: 1460: 1457: 1456: 1453: 1450: 1449: 1446: 1443: 1442: 1439: 1436: 1435: 1433: 1426: 1423: 1418: 1415: 1412: 1407: 1402: 1399: 1342: 1322: 1319: 1314: 1310: 1285: 1279: 1276: 1274: 1271: 1269: 1266: 1264: 1261: 1260: 1257: 1254: 1252: 1249: 1247: 1244: 1242: 1239: 1238: 1235: 1232: 1230: 1227: 1225: 1222: 1220: 1217: 1216: 1213: 1210: 1208: 1205: 1203: 1200: 1198: 1195: 1194: 1192: 1187: 1184: 1178: 1172: 1169: 1168: 1165: 1162: 1161: 1158: 1155: 1154: 1151: 1148: 1147: 1145: 1140: 1137: 1114: 1098: 1095: 1094: 1093: 1088: 1077: 1074: 1073: 1072: 1059: 1055: 1052: 1047: 1043: 1037: 1033: 1029: 1026: 1023: 1018: 1014: 1010: 1005: 1001: 996: 992: 987: 984: 981: 977: 903: 873: 862: 843: 825: 818: 815: 809: 788: 782: 778: 772: 769: 765: 759: 754: 751: 748: 744: 740: 737: 733: 727: 723: 717: 713: 709: 703: 700: 693: 689: 685: 661: 653: 649: 642: 638: 632: 629: 625: 619: 614: 611: 608: 604: 597: 594: 590: 584: 580: 574: 570: 566: 560: 557: 550: 546: 542: 511: 505: 490: 481: 459: 455: 450: 443: 439: 432: 428: 422: 418: 414: 409: 405: 398: 394: 391: 387: 381: 377: 371: 367: 363: 360: 358: 353: 350: 343: 339: 335: 329: 328: 324: 319: 312: 308: 301: 297: 291: 287: 283: 278: 274: 267: 263: 260: 256: 250: 246: 240: 236: 232: 229: 227: 222: 219: 212: 208: 204: 198: 197: 184: 175: 167: 164: 133: 129: 123: 120: 115: 112: 108: 104: 101: 98: 92: 89: 84: 81: 62:is the basis. 47: 44: 15: 13: 10: 9: 6: 4: 3: 2: 3849: 3838: 3835: 3833: 3830: 3828: 3825: 3823: 3820: 3818: 3815: 3813: 3810: 3809: 3807: 3794: 3788: 3785: 3780: 3776: 3772: 3768: 3764: 3760: 3753: 3751: 3749: 3745: 3740: 3736: 3732: 3728: 3724: 3720: 3716: 3712: 3705: 3702: 3697: 3693: 3689: 3685: 3681: 3677: 3673: 3669: 3662: 3659: 3654: 3650: 3646: 3642: 3638: 3634: 3627: 3620: 3618: 3614: 3609: 3605: 3601: 3597: 3593: 3589: 3585: 3581: 3577: 3573: 3566: 3564: 3560: 3555: 3551: 3547: 3543: 3539: 3535: 3531: 3527: 3523: 3519: 3512: 3509: 3504: 3500: 3496: 3492: 3488: 3484: 3480: 3476: 3472: 3468: 3461: 3458: 3453: 3449: 3445: 3441: 3437: 3433: 3426: 3423: 3418: 3414: 3410: 3406: 3402: 3398: 3394: 3390: 3386: 3382: 3378: 3371: 3368: 3363: 3359: 3355: 3351: 3347: 3343: 3339: 3332: 3329: 3324: 3320: 3316: 3312: 3308: 3304: 3300: 3296: 3292: 3288: 3281: 3278: 3273: 3269: 3265: 3261: 3257: 3253: 3249: 3245: 3241: 3235: 3232: 3227: 3223: 3219: 3215: 3211: 3207: 3203: 3199: 3195: 3189: 3186: 3179: 3177: 3174: 3170: 3169:complex plane 3165: 3162: 3147: 3141: 3134: 3131: 3127: 3121: 3116: 3111: 3102: 3098: 3092: 3085: 3082: 3078: 3072: 3067: 3060: 3053: 3049: 3043: 3036: 3033: 3029: 3023: 3016: 3011: 3004: 3000: 2994: 2987: 2984: 2980: 2972: 2967: 2962: 2955: 2951: 2945: 2939: 2934: 2929: 2926: 2922: 2913: 2911: 2901: 2894: 2892: 2890: 2881: 2871: 2861: 2851: 2841: 2837:Example: Let 2835: 2831: 2827: 2806: 2803: 2799: 2794: 2790: 2787: 2784: 2778: 2774: 2771: 2763: 2759: 2755: 2750: 2747: 2743: 2736: 2732: 2727: 2723: 2720: 2717: 2711: 2707: 2704: 2696: 2692: 2688: 2683: 2680: 2676: 2669: 2666: 2663: 2661: 2652: 2646: 2642: 2638: 2635: 2632: 2629: 2625: 2619: 2615: 2611: 2606: 2602: 2598: 2595: 2592: 2589: 2585: 2579: 2575: 2571: 2566: 2562: 2555: 2552: 2549: 2543: 2540: 2537: 2534: 2530: 2524: 2521: 2517: 2513: 2508: 2504: 2497: 2494: 2491: 2485: 2482: 2479: 2476: 2472: 2466: 2463: 2459: 2455: 2452: 2448: 2444: 2441: 2438: 2436: 2426: 2422: 2415: 2412: 2399: 2392: 2386: 2379: 2373: 2366: 2360: 2353: 2346: 2342: 2335: 2325: 2323: 2318: 2310: 2309:root of unity 2306: 2288: 2284: 2280: 2277: 2274: 2270: 2266: 2263: 2252: 2247: 2241: 2226: 2223: 2219: 2213: 2209: 2203: 2200: 2197: 2192: 2189: 2186: 2182: 2178: 2173: 2169: 2160: 2156: 2151: 2149: 2145: 2141: 2137: 2133: 2129: 2125: 2121: 2117: 2111: 2107: 2103: 2098: 2094: 2086: 2084: 2071: 2063: 2059: 2055: 2052: 2049: 2044: 2041: 2037: 2032: 2027: 2019: 2016: 2012: 2006: 2001: 1998: 1995: 1991: 1986: 1981: 1976: 1967: 1956: 1952: 1948: 1944: 1939: 1926: 1921: 1915: 1908: 1905: 1901: 1895: 1890: 1883: 1879: 1869: 1865: 1859: 1852: 1849: 1845: 1839: 1834: 1827: 1820: 1816: 1810: 1803: 1800: 1796: 1790: 1783: 1778: 1771: 1767: 1761: 1754: 1751: 1747: 1737: 1734: 1730: 1724: 1719: 1712: 1708: 1702: 1696: 1691: 1686: 1683: 1679: 1666: 1657: 1652: 1644: 1642: 1640: 1636: 1632: 1628: 1624: 1620: 1616: 1612: 1603: 1598: 1594: 1590: 1586: 1582: 1578: 1574: 1569: 1562: 1560: 1558: 1552: 1550: 1545: 1541: 1537: 1532: 1525: 1512: 1507: 1501: 1494: 1487: 1480: 1474: 1469: 1464: 1458: 1451: 1444: 1437: 1431: 1424: 1421: 1416: 1413: 1410: 1405: 1397: 1387: 1385: 1384:column vector 1381: 1377: 1373: 1369: 1365: 1361: 1356: 1340: 1320: 1317: 1312: 1308: 1298: 1283: 1277: 1272: 1267: 1262: 1255: 1250: 1245: 1240: 1233: 1228: 1223: 1218: 1211: 1206: 1201: 1196: 1190: 1185: 1182: 1176: 1170: 1163: 1156: 1149: 1143: 1138: 1135: 1127: 1125: 1113: 1108: 1103: 1096: 1083: 1075: 1057: 1053: 1050: 1045: 1041: 1035: 1031: 1027: 1024: 1021: 1016: 1012: 1008: 1003: 999: 994: 990: 985: 982: 979: 967: 963: 959: 955: 951: 947: 946: 944: 940: 937:or chaos for 936: 932: 928: 924: 920: 917:greater than 916: 912: 909:of dimension 908: 904: 901: 897: 895: 890: 886: 882: 878: 874: 865: 856: 855: 854: 846: 828: 816: 814: 808: 786: 780: 776: 770: 767: 763: 757: 752: 749: 746: 742: 738: 735: 731: 725: 721: 715: 711: 707: 701: 698: 691: 687: 683: 659: 651: 647: 640: 636: 630: 627: 623: 617: 612: 609: 606: 602: 595: 592: 588: 582: 578: 572: 568: 564: 558: 555: 548: 544: 540: 525: 517: 509: 506: 504: 502: 498: 489: 480: 474: 457: 453: 448: 441: 437: 430: 426: 420: 416: 412: 407: 403: 396: 392: 389: 385: 379: 375: 369: 365: 361: 359: 351: 348: 341: 337: 333: 322: 317: 310: 306: 299: 295: 289: 285: 281: 276: 272: 265: 261: 258: 254: 248: 244: 238: 234: 230: 228: 220: 217: 210: 206: 202: 183: 174: 165: 163: 161: 144: 131: 127: 121: 118: 113: 110: 106: 102: 99: 96: 90: 87: 82: 79: 68: 63: 61: 57: 53: 45: 43: 41: 37: 33: 29: 22: 3812:Chaotic maps 3787: 3762: 3758: 3714: 3710: 3704: 3671: 3667: 3661: 3636: 3632: 3575: 3572:Nonlinearity 3571: 3521: 3517: 3511: 3470: 3466: 3460: 3435: 3431: 3425: 3384: 3381:Nonlinearity 3380: 3370: 3345: 3341: 3331: 3290: 3286: 3280: 3247: 3243: 3234: 3201: 3197: 3188: 3166: 3163: 2914: 2909: 2906: 2879: 2869: 2859: 2849: 2839: 2836: 2829: 2825: 2397: 2390: 2384: 2377: 2371: 2364: 2358: 2351: 2344: 2340: 2330: 2326: 2321: 2313: 2304: 2250: 2245: 2242: 2154: 2152: 2143: 2131: 2109: 2105: 2101: 2090: 1946: 1940: 1664: 1655: 1648: 1638: 1634: 1630: 1626: 1622: 1618: 1614: 1607: 1596: 1592: 1588: 1584: 1580: 1576: 1572: 1553: 1539: 1533: 1526: 1388: 1382:by the unit 1299: 1128: 1123: 1121: 1111: 1081: 961: 958:homeomorphic 953: 942: 938: 930: 926: 922: 918: 910: 893: 876: 860: 841: 823: 820: 806: 513: 507: 496: 487: 478: 475: 181: 172: 169: 145: 64: 49: 27: 25: 3793:Sigmund, K. 1943:permutation 1536:eigenvalues 1380:multiplying 1107:phase space 889:limit cycle 885:fixed point 166:Two species 56:exponential 38:to include 3806:Categories 2256:and where 1611:transitive 1604:Background 900:attractors 881:asymptotic 868:, for all 67:ecologists 3817:Equations 3779:1476-945X 3739:0960-0779 3696:0167-2789 3653:1476-945X 3600:0951-7715 3546:0031-9007 3503:129162096 3487:0036-8075 3452:0036-1410 3417:250848783 3409:0951-7715 3362:0036-1410 3307:0303-6812 3264:0340-1200 3226:206774680 3218:0340-1200 3132:− 3128:α 3099:α 3083:− 3079:α 3050:α 3034:− 3030:α 3001:α 2985:− 2981:α 2952:α 2923:α 2912:, etc.). 2788:π 2775:⁡ 2760:α 2748:− 2744:α 2721:π 2708:⁡ 2693:α 2681:− 2677:α 2636:π 2616:α 2596:π 2576:α 2553:− 2541:π 2522:− 2518:α 2495:− 2483:π 2464:− 2460:α 2445:⁡ 2423:λ 2416:⁡ 2281:π 2264:γ 2220:γ 2201:− 2183:∑ 2170:λ 2159:circulant 2128:attractor 2116:stability 2060:α 2042:− 2038:α 2013:α 1992:∑ 1971:¯ 1906:− 1902:α 1880:α 1866:α 1850:− 1846:α 1817:α 1801:− 1797:α 1768:α 1752:− 1748:α 1735:− 1731:α 1709:α 1680:α 1422:− 1414:α 1401:¯ 1376:inverting 1183:α 1109:with the 1032:∑ 1022:≥ 983:− 976:Δ 950:invariant 915:dimension 764:α 743:∑ 739:− 624:α 603:∑ 596:− 417:α 393:− 286:α 262:− 114:− 3554:15524949 3495:12610303 3323:33201460 3272:18754189 2828:= 0, …, 2343:= 0, …, 2336:) > 0 2311:. Here 2097:function 1637:through 1633:affects 1333:for all 960:to the ( 956:that is 907:manifold 849:for all 831:for all 530:becomes 522:'s as a 46:Overview 3719:Bibcode 3676:Bibcode 3608:9417299 3580:Bibcode 3526:Bibcode 3467:Science 3389:Bibcode 3315:1022822 3173:trefoil 3171:form a 2885:= 0.852 2865:= 0.237 2845:= 0.451 2320:is the 1955:inverse 1629:, then 1544:complex 1360:fractal 966:simplex 516:vectors 510:species 158:is the 3777:  3737:  3694:  3651:  3606:  3598:  3552:  3544:  3501:  3493:  3485:  3450:  3415:  3407:  3360:  3321:  3313:  3305:  3270:  3262:  3224:  3216:  2867:. If 2857:, and 2388:, and 2155:et al. 1947:et al. 1621:, and 1502:0.3557 1495:0.1307 1488:0.4586 1481:0.3013 1372:origin 1124:et al. 896:-torus 847:> 0 800:where 524:matrix 476:Here, 3629:(PDF) 3604:S2CID 3499:S2CID 3413:S2CID 3319:S2CID 3268:S2CID 3222:S2CID 3180:Notes 2875:= 0.5 2855:= 0.5 2120:orbit 2095:is a 1625:with 1300:with 945:≥ 5. 935:torus 898:, or 891:, an 146:Here 3775:ISSN 3735:ISSN 3692:ISSN 3649:ISSN 3596:ISSN 3550:PMID 3542:ISSN 3491:PMID 3483:ISSN 3448:ISSN 3405:ISSN 3358:ISSN 3311:PMID 3303:ISSN 3260:ISSN 3214:ISSN 2823:for 2804:> 2338:for 2303:the 2243:for 1662:and 1591:and 1583:and 1575:and 1534:The 1273:0.35 1268:0.51 1263:1.21 1256:0.47 1241:2.33 1234:1.36 1229:0.44 1207:1.52 1202:1.09 1171:1.27 1164:1.53 1157:0.72 952:set 887:, a 859:0 ≤ 179:and 26:The 3767:doi 3727:doi 3684:doi 3641:doi 3588:doi 3534:doi 3475:doi 3471:299 3440:doi 3397:doi 3350:doi 3295:doi 3252:doi 3206:doi 2832:− 1 2772:cos 2705:cos 2329:Re( 2307:th 2253:− 1 2248:= 0 866:≤ 1 829:≥ 0 3808:: 3773:. 3761:. 3747:^ 3733:. 3725:. 3715:26 3713:. 3690:. 3682:. 3672:35 3670:. 3647:. 3635:. 3631:. 3616:^ 3602:. 3594:. 3586:. 3576:19 3574:. 3562:^ 3548:. 3540:. 3532:. 3522:93 3520:. 3497:. 3489:. 3481:. 3469:. 3446:. 3436:21 3434:. 3411:. 3403:. 3395:. 3383:. 3379:. 3356:. 3346:16 3344:. 3340:. 3317:. 3309:. 3301:. 3289:. 3266:. 3258:. 3248:72 3246:. 3220:. 3212:. 3202:48 3200:. 2891:. 2853:−1 2847:, 2843:−2 2442:Re 2413:Re 2396:= 2383:= 2375:, 2370:= 2368:−1 2362:, 2357:= 2355:−2 2347:/2 2104:= 2091:A 1659:−1 1587:. 1551:. 1089:ij 1078:ij 835:, 826:ij 810:ii 518:, 503:. 491:21 482:12 421:21 290:12 162:. 42:. 3781:. 3769:: 3763:3 3741:. 3729:: 3721:: 3698:. 3686:: 3678:: 3655:. 3643:: 3637:8 3610:. 3590:: 3582:: 3556:. 3536:: 3528:: 3505:. 3477:: 3454:. 3442:: 3419:. 3399:: 3391:: 3385:1 3364:. 3352:: 3325:. 3297:: 3291:3 3274:. 3254:: 3228:. 3208:: 3148:] 3142:1 3135:1 3122:0 3117:0 3112:0 3103:1 3093:1 3086:1 3073:0 3068:0 3061:0 3054:1 3044:1 3037:1 3024:0 3017:0 3012:0 3005:1 2995:1 2988:1 2973:0 2968:0 2963:0 2956:1 2946:1 2940:[ 2935:= 2930:j 2927:i 2910:N 2883:1 2880:α 2873:1 2870:α 2863:2 2860:α 2850:α 2840:α 2830:N 2826:k 2807:0 2800:) 2795:N 2791:k 2785:2 2779:( 2769:) 2764:1 2756:+ 2751:1 2740:( 2737:+ 2733:) 2728:N 2724:k 2718:4 2712:( 2702:) 2697:2 2689:+ 2684:2 2673:( 2670:+ 2667:1 2664:= 2653:) 2647:N 2643:/ 2639:k 2633:4 2630:i 2626:e 2620:2 2612:+ 2607:N 2603:/ 2599:k 2593:2 2590:i 2586:e 2580:1 2572:+ 2567:N 2563:/ 2559:) 2556:1 2550:N 2547:( 2544:k 2538:2 2535:i 2531:e 2525:1 2514:+ 2509:N 2505:/ 2501:) 2498:2 2492:N 2489:( 2486:k 2480:2 2477:i 2473:e 2467:2 2456:+ 2453:1 2449:( 2439:= 2432:) 2427:k 2419:( 2398:d 2394:2 2391:α 2385:c 2381:1 2378:α 2372:b 2365:α 2359:a 2352:α 2345:N 2341:k 2333:k 2331:λ 2322:j 2316:j 2314:c 2305:N 2289:N 2285:/ 2278:2 2275:i 2271:e 2267:= 2251:N 2246:k 2227:j 2224:k 2214:j 2210:c 2204:1 2198:N 2193:0 2190:= 2187:j 2179:= 2174:k 2144:n 2132:n 2112:) 2110:x 2108:( 2106:f 2102:f 2072:. 2064:1 2056:+ 2053:1 2050:+ 2045:1 2033:1 2028:= 2020:j 2017:i 2007:N 2002:1 1999:= 1996:j 1987:1 1982:= 1977:i 1968:x 1927:. 1922:] 1916:1 1909:1 1896:0 1891:0 1884:1 1870:1 1860:1 1853:1 1840:0 1835:0 1828:0 1821:1 1811:1 1804:1 1791:0 1784:0 1779:0 1772:1 1762:1 1755:1 1738:1 1725:0 1720:0 1713:1 1703:1 1697:[ 1692:= 1687:j 1684:i 1668:1 1665:α 1656:α 1639:B 1635:A 1631:C 1627:C 1623:B 1619:B 1615:A 1599:. 1597:B 1593:C 1589:A 1585:C 1581:B 1577:B 1573:A 1540:i 1529:2 1513:. 1508:] 1475:[ 1470:= 1465:] 1459:1 1452:1 1445:1 1438:1 1432:[ 1425:1 1417:) 1411:( 1406:= 1398:x 1341:i 1321:1 1318:= 1313:i 1309:K 1284:] 1278:1 1251:1 1246:0 1224:1 1219:0 1212:0 1197:1 1191:[ 1186:= 1177:] 1150:1 1144:[ 1139:= 1136:r 1115:4 1112:x 1087:α 1082:N 1058:} 1054:1 1051:= 1046:i 1042:x 1036:i 1028:, 1025:0 1017:i 1013:x 1009:: 1004:i 1000:x 995:{ 991:= 986:1 980:N 962:N 954:C 943:N 939:N 931:N 927:n 923:n 919:N 911:N 902:. 894:n 877:N 870:i 863:i 861:x 851:i 844:i 842:r 837:j 833:i 824:α 807:α 802:N 787:) 781:j 777:x 771:j 768:i 758:N 753:1 750:= 747:j 736:1 732:( 726:i 722:x 716:i 712:r 708:= 702:t 699:d 692:i 688:x 684:d 660:) 652:i 648:K 641:j 637:x 631:j 628:i 618:N 613:1 610:= 607:j 593:1 589:( 583:i 579:x 573:i 569:r 565:= 559:t 556:d 549:i 545:x 541:d 528:i 520:α 508:N 497:α 488:α 479:α 458:. 454:) 449:) 442:2 438:K 431:1 427:x 413:+ 408:2 404:x 397:( 390:1 386:( 380:2 376:x 370:2 366:r 362:= 352:t 349:d 342:2 338:x 334:d 323:) 318:) 311:1 307:K 300:2 296:x 282:+ 277:1 273:x 266:( 259:1 255:( 249:1 245:x 239:1 235:r 231:= 221:t 218:d 211:1 207:x 203:d 185:2 182:x 176:1 173:x 156:K 152:r 148:x 132:. 128:) 122:K 119:x 111:1 107:( 103:x 100:r 97:= 91:t 88:d 83:x 80:d 23:.

Index

Lotka–Volterra equations
population dynamics
generalized Lotka–Volterra equation
trophic interactions
Lotka–Volterra equations
exponential
logistic equation
ecologists
carrying capacity
replicator equation
vectors
matrix
asymptotic
fixed point
limit cycle
n-torus
attractors
manifold
dimension
torus
invariant
homeomorphic
simplex

phase space
Lyapunov exponent
fractal
strange attractor
equilibrium point
origin

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.