Knowledge (XXG)

Respiratory complex I

Source 📝

585:). The architecture of the hydrophobic region of complex I shows multiple proton transporters that are mechanically interlinked. The three central components believed to contribute to this long-range conformational change event are the pH-coupled N2 iron-sulfur cluster, the quinone reduction, and the transmembrane helix subunits of the membrane arm. Transduction of conformational changes to drive the transmembrane transporters linked by a 'connecting rod' during the reduction of ubiquinone can account for two or three of the four protons pumped per NADH oxidized. The remaining proton must be pumped by direct coupling at the ubiquinone-binding site. It is proposed that direct and indirect coupling mechanisms account for the pumping of the four protons. 684:(EPR) spectra and double electron-electron resonance (DEER) to determine the path of electron transfer through the iron-sulfur complexes, which are located in the hydrophilic domain. Seven of these clusters form a chain from the flavin to the quinone binding sites; the eighth cluster is located on the other side of the flavin, and its function is unknown. The EPR and DEER results suggest an alternating or “roller-coaster” potential energy profile for the electron transfer between the active sites and along the iron-sulfur clusters, which can optimize the rate of electron travel and allow efficient energy conversion in complex I. 2407:
disorder showed increased protein oxidation and nitration in their prefrontal cortex. These results suggest that future studies should target complex I for potential therapeutic studies for bipolar disorder. Similarly, Moran et al. (2010) found that patients with severe complex I deficiency showed decreased oxygen consumption rates and slower growth rates. However, they found that mutations in different genes in complex I lead to different phenotypes, thereby explaining the variations of pathophysiological manifestations of complex I deficiency.
31: 2240:
of idle enzyme to elevated, but physiological temperatures (>30 Â°C) in the absence of substrate, the enzyme converts to the D-form. This form is catalytically incompetent but can be activated by the slow reaction (k~4 min) of NADH oxidation with subsequent ubiquinone reduction. After one or several turnovers the enzyme becomes active and can catalyse physiological NADH:ubiquinone reaction at a much higher rate (k~10 min). In the presence of divalent cations (Mg, Ca), or at alkaline pH the activation takes much longer.
7538: 362: 354: 374: 2239:
The catalytic properties of eukaryotic complex I are not simple. Two catalytically and structurally distinct forms exist in any given preparation of the enzyme: one is the fully competent, so-called “active” A-form and the other is the catalytically silent, dormant, “inactive”, D-form. After exposure
676:
Complex I contains a ubiquinone binding pocket at the interface of the 49-kDa and PSST subunits. Close to iron-sulfur cluster N2, the proposed immediate electron donor for ubiquinone, a highly conserved tyrosine constitutes a critical element of the quinone reduction site. A possible quinone exchange
672:
Three of the conserved, membrane-bound subunits in NADH dehydrogenase are related to each other, and to Mrp sodium-proton antiporters. Structural analysis of two prokaryotic complexes I revealed that the three subunits each contain fourteen transmembrane helices that overlay in structural alignments:
563:
The equilibrium dynamics of Complex I are primarily driven by the quinone redox cycle. In conditions of high proton motive force (and accordingly, a ubiquinol-concentrated pool), the enzyme runs in the reverse direction. Ubiquinol is oxidized to ubiquinone, and the resulting released protons reduce
559:
The proposed pathway for electron transport prior to ubiquinone reduction is as follows: NADH – FMN – N3 – N1b – N4 – N5 – N6a – N6b – N2 – Q, where Nx is a labelling convention for iron sulfur clusters. The high reduction potential of the N2 cluster and the relative proximity of the other clusters
472:
The reaction can be reversed – referred to as aerobic succinate-supported NAD reduction by ubiquinol – in the presence of a high membrane potential, but the exact catalytic mechanism remains unknown. Driving force of this reaction is a potential across the membrane which can be maintained either by
2406:
Recent studies have examined other roles of complex I activity in the brain. Andreazza et al. (2010) found that the level of complex I activity was significantly decreased in patients with bipolar disorder, but not in patients with depression or schizophrenia. They found that patients with bipolar
2410:
Exposure to pesticides can also inhibit complex I and cause disease symptoms. For example, chronic exposure to low levels of dichlorvos, an organophosphate used as a pesticide, has been shown to cause liver dysfunction. This occurs because dichlorvos alters complex I and II activity levels, which
2316:
in mammalian mitochondria) pass through complex I to reduce NAD to NADH, driven by the inner mitochondrial membrane potential electric potential. Although it is not precisely known under what pathological conditions reverse-electron transfer would occur in vivo, in vitro experiments indicate that
2380:
Although the exact etiology of Parkinson's disease is unclear, it is likely that mitochondrial dysfunction, along with proteasome inhibition and environmental toxins, may play a large role. In fact, the inhibition of complex I has been shown to cause the production of peroxides and a decrease in
2299:
During reverse electron transfer, complex I might be the most important site of superoxide production within mitochondria, with around 3-4% of electrons being diverted to superoxide formation. Reverse electron transfer, the process by which electrons from the reduced ubiquinol pool (supplied by
2192:
Despite more than 50 years of study of complex I, no inhibitors blocking the electron flow inside the enzyme have been found. Hydrophobic inhibitors like rotenone or piericidin most likely disrupt the electron transfer between the terminal FeS cluster N2 and ubiquinone. It has been shown that
664:
operon, and are homologous to mitochondrial complex I subunits. The antiporter-like subunits NuoL/M/N each contains 14 conserved transmembrane (TM) helices. Two of them are discontinuous, but subunit NuoL contains a 110 Å long amphipathic α-helix, spanning the entire length of the domain. The
2389:
Brain ischemia/reperfusion injury is mediated via complex I impairment. Recently it was found that oxygen deprivation leads to conditions in which mitochondrial complex I lose its natural cofactor, flavin mononucleotide (FMN) and become inactive. When oxygen is present the enzyme catalyzes a
677:
path leads from cluster N2 to the N-terminal beta-sheet of the 49-kDa subunit. All 45 subunits of the bovine NDHI have been sequenced. Each complex contains noncovalently bound FMN, coenzyme Q and several iron-sulfur centers. The bacterial NDHs have 8-9 iron-sulfur centers.
2188:
are even more potent inhibitors of complex I. They cross-link to the ND2 subunit, which suggests that ND2 is essential for quinone-binding. Rolliniastatin-2, an acetogenin, is the first complex I inhibitor found that does not share the same binding site as rotenone.
332:
This enzyme is essential for the normal functioning of cells, and mutations in its subunits lead to a wide range of inherited neuromuscular and metabolic disorders. Defects in this enzyme are responsible for the development of several pathological processes such as
445:, showing that in the tested conditions, the coupling ion is H. Na transport in the opposite direction was observed, and although Na was not necessary for the catalytic or proton transport activities, its presence increased the latter. H was translocated by the 620:
mechanism (Na/H swap) has been proposed using evidence of conserved Asp residues in the membrane arm. The presence of Lys, Glu, and His residues enable for proton gating (a protonation followed by deprotonation event across the membrane) driven by the
34:
NADH Dehydrogenase Mechanism: 1. The seven primary iron sulfur centers serve to carry electrons from the site of NADH dehydration to ubiquinone. Note that N7 is not found in eukaryotes. 2. There is a reduction of ubiquinone (CoQ) to ubiquinol
7561: 2247:(270 kJ/mol) of the deactivation process indicates the occurrence of major conformational changes in the organisation of the complex I. However, until now, the only conformational difference observed between these two forms is the number of 5152:
Muller FL, Liu Y, Abdul-Ghani MA, Lustgarten MS, Bhattacharya A, Jang YC, Van Remmen H (January 2008). "High rates of superoxide production in skeletal-muscle mitochondria respiring on both complex I- and complex II-linked substrates".
655:
The structure is an "L" shape with a long membrane domain (with around 60 trans-membrane helices) and a hydrophilic (or peripheral) domain, which includes all the known redox centres and the NADH binding site. All thirteen of the
2385:
activity, which may lead to Parkinson's disease. Additionally, Esteves et al. (2010) found that cell lines with Parkinson's disease show increased proton leakage in complex I, which causes decreased maximum respiratory capacity.
2398:
so that fraction of electrons from succinate is directed upstream to FMN of complex I. Reverse electron transfer results in a reduction of complex I FMN, increased generation of ROS, followed by a loss of the reduced cofactor
2204:
of NADH oxidation – by binding to the enzyme at the nucleotide binding site. Both hydrophilic NADH and hydrophobic ubiquinone analogs act at the beginning and the end of the internal electron-transport pathway, respectively.
601:, providing evidence for the "single stroke" H translocation mechanism (i.e. all four protons move across the membrane at the same time). Alternative theories suggest a "two stroke mechanism" where each reduction step ( 572:
The coupling of proton translocation and electron transport in Complex I is currently proposed as being indirect (long range conformational changes) as opposed to direct (redox intermediates in the hydrogen pumps as in
3099:
Petrussa E, Bertolini A, Casolo V, KrajnĂĄkovĂĄ J, MacrĂŹ F, Vianello A (December 2009). "Mitochondrial bioenergetics linked to the manifestation of programmed cell death during somatic embryogenesis of Abies alba".
2268:. It is likely that transition from the active to the inactive form of complex I takes place during pathological conditions when the turnover of the enzyme is limited at physiological temperatures, such as during 588:
The N2 cluster's proximity to a nearby cysteine residue results in a conformational change upon reduction in the nearby helices, leading to small but important changes in the overall protein conformation. Further
2332:
Superoxide is a reactive oxygen species that contributes to cellular oxidative stress and is linked to neuromuscular diseases and aging. NADH dehydrogenase produces superoxide by transferring one electron from
2259:
irreversibly blocks critical cysteine residues, abolishing the ability of the enzyme to respond to activation, thus inactivating it irreversibly. The A-form of complex I is insensitive to sulfhydryl reagents.
2263:
It was found that these conformational changes may have a very important physiological significance. The inactive, but not the active form of complex I was susceptible to inhibition by nitrosothiols and
2170:). There have been reports of the indigenous people of French Guiana using rotenone-containing plants to fish - due to its ichthyotoxic effect - as early as the 17th century. Rotenone binds to the 6351: 5975: 4461:
Watabe M, Nakaki T (October 2008). "Mitochondrial complex I inhibitor rotenone inhibits and redistributes vesicular monoamine transporter 2 via nitration in human dopaminergic SH-SY5Y cells".
4190:
Saada A, Vogel RO, Hoefs SJ, van den Brand MA, Wessels HJ, Willems PH, Venselaar H, Shaag A, Barghuti F, Reish O, Shohat M, Huynen MA, Smeitink JA, van den Heuvel LP, Nijtmans LG (June 2009).
2341:). The radical flavin leftover is unstable, and transfers the remaining electron to the iron-sulfur centers. It is the ratio of NADH to NAD that determines the rate of superoxide formation. 465:
enzyme is completely Na independent. It is also possible that another transporter catalyzes the uptake of Na. Complex I energy transduction by proton pumping may not be exclusive to the
2296:), through at least two different pathways. During forward electron transfer, only very small amounts of superoxide are produced (probably less than 0.1% of the overall electron flow). 7565: 2212:
has been shown to induce a mild and transient inhibition of the mitochondrial respiratory chain complex I, and this inhibition appears to play a key role in its mechanism of action.
637:, the enzyme contains 44 separate water-soluble peripheral membrane proteins, which are anchored to the integral membrane constituents. Of particular functional importance are the 5694:
Binukumar BK, Bal A, Kandimalla R, Sunkaria A, Gill KD (April 2010). "Mitochondrial energy metabolism impairment and liver dysfunction following chronic exposure to dichlorvos".
2447:
serves to maintain photosynthesis in stressful situations. This makes it at least partially dispensable in favorable conditions. It is evident that angiosperm lineages without
2390:
physiological reaction of NADH oxidation by ubiquinone, supplying electrons downstream of the respiratory chain (complexes III and IV). Ischemia leads to dramatic increase of
469:
enzyme. The Na/H antiport activity seems not to be a general property of complex I. However, the existence of Na-translocating activity of the complex I is still in question.
3594:
Hunte C, Screpanti E, Venturi M, Rimon A, Padan E, Michel H (June 2005). "Structure of a Na+/H+ antiporter and insights into mechanism of action and regulation by pH".
6452: 6344: 6314: 296: 5968: 2403:) and impairment of mitochondria energy production. The FMN loss by complex I and I/R injury can be alleviated by the administration of FMN precursor, riboflavin. 125: 113: 4631:"Mitochondrial complex I inhibition triggers NAD+-independent glucose oxidation via successive NADPH formation, "futile" fatty acid cycling, and FADH2 oxidation" 6248: 315: 3957:
GabaldĂłn T, Rainey D, Huynen MA (May 2005). "Tracing the evolution of a large protein complex in the eukaryotes, NADH:ubiquinone oxidoreductase (Complex I)".
560:
in the chain enable efficient electron transfer over long distance in the protein (with transfer rates from NADH to N2 iron-sulfur cluster of about 100 ÎŒs).
6337: 4053:"Mitochondrial NADH:ubiquinone oxidoreductase (complex I) in eukaryotes: a highly conserved subunit composition highlighted by mining of protein databases" 5239:"Production of reactive oxygen species by complex I (NADH:ubiquinone oxidoreductase) from Escherichia coli and comparison to the enzyme from mitochondria" 6933: 5961: 5008:
Hansford RG, Hogue BA, Mildaziene V (February 1997). "Dependence of H2O2 formation by rat heart mitochondria on substrate availability and donor age".
4242:
Balsa, Eduardo; Marco, Ricardo; Perales-Clemente, Ester; Szklarczyk, Radek; Calvo, Enrique; Landåzuri, Manuel O.; Enríquez, José Antonio (2012-09-05).
39:). 3. The energy from the redox reaction results in conformational change allowing hydrogen ions to pass through four transmembrane helix channels. 6928: 7019: 6601: 6388: 6219: 578: 390: 5843: 4192:"Mutations in NDUFAF3 (C3ORF60), encoding an NDUFAF4 (C6ORF66)-interacting complex I assembly protein, cause fatal neonatal mitochondrial disease" 593:
studies of the electron transfer have demonstrated that most of the energy that is released during the subsequent CoQ reduction is on the final
6687: 5105:"Reverse electron transfer results in a loss of flavin from mitochondrial complex I: Potential mechanism for brain ischemia reperfusion injury" 2362: 3204: 519:
All redox reactions take place in the hydrophilic domain of complex I. NADH initially binds to complex I, and transfers two electrons to the
6496: 5614:"Mitochondrial complex I activity and oxidative damage to mitochondrial proteins in the prefrontal cortex of patients with bipolar disorder" 6445: 3918:"Higher plant-like subunit composition of mitochondrial complex I from Chlamydomonas reinhardtii: 31 conserved components among eukaryotes" 535:(ubiquinone). This electron flow changes the redox state of the protein, inducing conformational changes of the protein which alters the p 5053:"The dependence of brain mitochondria reactive oxygen species production on oxygen level is linear, except when inhibited by antimycin A" 7596: 6368: 5917: 5429:"Mitochondrial respiration and respiration-associated proteins in cell lines created through Parkinson's subject mitochondrial transfer" 616:
localized to the membrane domain interacts with negatively charged residues in the membrane arm, stabilizing conformational changes. An
6787: 6722: 6101: 6020: 2309: 2305: 4629:
Abrosimov, Roman; Baeken, Marius W.; Hauf, Samuel; Wittig, Ilka; Hajieva, Parvana; Perrone, Carmen E.; Moosmann, Bernd (2024-01-25).
4418:"Natural substances (acetogenins) from the family Annonaceae are powerful inhibitors of mitochondrial NADH dehydrogenase (Complex I)" 7257: 6732: 6557: 3662: 3263:"Mössbauer spectroscopy on respiratory complex I: the iron-sulfur cluster ensemble in the NADH-reduced enzyme is partially oxidized" 2419:
A proton-pumping, ubiquinone-using NADH dehydrogenase complex, homologous to complex I, is found in the chloroplast genomes of most
3545: 3994:"Direct assignment of EPR spectra to structurally defined iron-sulfur clusters in complex I by double electron-electron resonance" 7058: 6856: 6491: 2443:. The purpose of this complex is originally cryptic as chloroplasts do not participate in respiration, but now it is known that 308: 7225: 7053: 6717: 6438: 681: 590: 7048: 6834: 6792: 6258: 6088: 6076: 6025: 5902: 2427:. This complex is inherited from the original symbiosis from cyanobacteria, but has been lost in most eukaryotic algae, some 235: 7413: 5791: 5427:
Esteves AR, Lu J, Rodova M, Onyango I, Lezi E, Dubinsky R, Lyons KE, Pahwa R, Burns JM, Cardoso SM, Swerdlow RH (May 2010).
4141:
Dunning CJ, McKenzie M, Sugiana C, Lazarou M, Silke J, Connelly A, Fletcher JM, Kirby DM, Thorburn DR, Ryan MT (July 2007).
3468:(August 2007). "Single particle analysis confirms distal location of subunits NuoL and NuoM in Escherichia coli complex I". 259: 389:. There are three energy-transducing enzymes in the electron transport chain - NADH:ubiquinone oxidoreductase (complex I), 7581: 6097: 5795: 7528: 5513:"Critical Role of Flavin and Glutathione in Complex I-Mediated Bioenergetic Failure in Brain Ischemia/Reperfusion Injury" 6638: 6580: 6470: 6084: 2313: 2197: 5190:"Krebs cycle metabolites and preferential succinate oxidation following neonatal hypoxic-ischemic brain injury in mice" 6692: 5836: 528: 6329: 5280:"The mechanism of superoxide production by NADH:ubiquinone oxidoreductase (complex I) from bovine heart mitochondria" 4913:
Moncada S, Erusalimsky JD (March 2002). "Does nitric oxide modulate mitochondrial energy generation and apoptosis?".
2918:"-->H+/2e- stoichiometry in NADH-quinone reductase reactions catalyzed by bovine heart submitochondrial particles" 451:
complex I, but in this case, H transport was not influenced by Na, and Na transport was not observed. Possibly, the
6866: 6861: 6665: 6531: 7398: 4143:"Human CIA30 is involved in the early assembly of mitochondrial complex I and mutations in its gene cause disease" 2193:
long-term systemic inhibition of complex I by rotenone can induce selective degeneration of dopaminergic neurons.
7514: 7501: 7488: 7475: 7462: 7449: 7436: 6591: 6414: 6185: 5882: 5877: 5653:
MorĂĄn M, Rivera H, SĂĄnchez-AragĂł M, BlĂĄzquez A, Merinero B, Ugalde C, Arenas J, Cuezva JM, MartĂ­n MA (May 2010).
2251:
residues exposed at the surface of the enzyme. Treatment of the D-form of complex I with the sulfhydryl reagents
2093: 531:. The electrons are then transferred through the FMN via a series of iron-sulfur (Fe-S) clusters, and finally to 428: 7408: 4817:"Attenuation of oxidative damage by targeting mitochondrial complex I in neonatal hypoxic-ischemic brain injury" 502:
As a result of a two NADH molecule being oxidized to NAD+, three molecules of ATP can be produced by Complex V (
7362: 7305: 6782: 6660: 6180: 6140: 6015: 5815: 1201: 1157: 1127: 1090: 1060: 1023: 993: 963: 957: 927: 921: 891: 885: 855: 849: 819: 813: 783: 777: 747: 741: 447: 386: 253: 158: 70: 47: 3360:"Evidence for two sites of superoxide production by mitochondrial NADH-ubiquinone oxidoreductase (complex I)" 7310: 6829: 6616: 6205: 6121: 6032: 5912: 5897: 5892: 2301: 2285: 539:
values of ionizable side chain, and causes four hydrogen ions to be pumped out of the mitochondrial matrix.
455:
complex I has two energy coupling sites (one Na independent and the other Nadependent), as observed for the
240: 3152:
Sazanov LA (June 2015). "A giant molecular proton pump: structure and mechanism of respiratory complex I".
2970:"Sodium influence on energy transduction by complexes I from Escherichia coli and Paracoccus denitrificans" 2836:"Two protons are pumped from the mitochondrial matrix per electron transferred between NADH and ubiquinone" 2488:– NADH dehydrogenase (ubiquinone) 1 alpha subcomplex, 4, 9kDa - recently described to be part of complex IV 441:
complex I (NADH dehydrogenase) is capable of proton translocation in the same direction to the established
6824: 6481: 6409: 6164: 6113: 6080: 5872: 5829: 5339:"Superoxide radical formation by pure complex I (NADH:ubiquinone oxidoreductase) from Yarrowia lipolytica" 2366: 2350: 432: 30: 4864:
Stepanova A, Konrad C, Guerrero-Castillo S, Manfredi G, Vannucci S, Arnold S, Galkin A (September 2019).
4293:"Essential structural factors of annonaceous acetogenins as potent inhibitors of mitochondrial complex I" 3719:
Balsa E, Marco R, Perales-Clemente E, Szklarczyk R, Calvo E, LandĂĄzuri MO, EnrĂ­quez JA (September 2012).
2877:"The proton pumping stoichiometry of purified mitochondrial complex I reconstituted into proteoliposomes" 7331: 7250: 7198: 6938: 6814: 6650: 6628: 6058: 5942: 5867: 5811: 5563:
Stepanova A, Sosunov S, Niatsetskaya Z, Konrad C, Starkov AA, Manfredi G, et al. (September 2019).
4506:"A competitive inhibition of the mitochondrial NADH-ubiquinone oxidoreductase (complex I) by ADP-ribose" 2395: 2201: 520: 481: 342: 320: 7403: 4094:"A molecular chaperone for mitochondrial complex I assembly is mutated in a progressive encephalopathy" 228: 2329:
concentrations are low. This can take place during tissue ischaemia, when oxygen delivery is blocked.
7039: 6945: 6802: 6751: 6697: 6393: 6229: 6159: 6047: 5291: 4005: 3833: 3776: 3603: 2104: 649: 582: 457: 394: 397:(complex IV). Complex I is the largest and most complicated enzyme of the electron transport chain. 7586: 7367: 6309: 645: 137: 5468:
Galkin A (November 2019). "Brain Ischemia/Reperfusion Injury and Mitochondrial Complex I Damage".
4369:"The ND2 subunit is labeled by a photoaffinity analogue of asimicin, a potent complex I inhibitor" 256: 7300: 6969: 6737: 6611: 6383: 6200: 5922: 5493: 5033: 4938: 4486: 3857: 3802: 3627: 3576: 3177: 3125: 2947: 334: 180: 5565:"Redox-Dependent Loss of Flavin by Mitochondrial Complex I in Brain Ischemia/Reperfusion Injury" 5188:
Sahni PV, Zhang J, Sosunov S, Galkin A, Niatsetskaya Z, Starkov A, et al. (February 2018).
3546:"Structural biology. Mechanistic insight from the crystal structure of mitochondrial complex I" 7591: 6959: 6762: 6543: 5988: 5937: 5932: 5766: 5711: 5676: 5635: 5594: 5542: 5485: 5450: 5409: 5360: 5319: 5260: 5219: 5170: 5134: 5082: 5025: 4990: 4930: 4895: 4846: 4815:
Kim M, Stepanova A, Niatsetskaya Z, Sosunov S, Arndt S, Murphy MP, et al. (August 2018).
4797: 4756: 4707: 4648: 4611: 4576: 4527: 4478: 4443: 4398: 4349: 4314: 4273: 4265: 4221: 4172: 4123: 4074: 4033: 3974: 3939: 3898: 3849: 3794: 3742: 3701: 3658: 3619: 3568: 3526: 3485: 3446: 3391: 3340: 3292: 3243: 3200: 3169: 3117: 3081: 3040: 2991: 2939: 2898: 2857: 2816: 2293: 2269: 2244: 247: 4367:
Nakamaru-Ogiso E, Han H, Matsuno-Yagi A, Keinan E, Sinha SC, Yagi T, Ohnishi T (March 2010).
3319:"The coupling mechanism of respiratory complex I - a structural and evolutionary perspective" 3011:"Redox-dependent change of nucleotide affinity to the active site of the mammalian complex I" 2812: 7346: 7341: 7315: 7243: 6772: 6565: 6283: 6278: 6151: 6005: 5786: 5756: 5746: 5703: 5666: 5625: 5584: 5576: 5532: 5524: 5477: 5440: 5399: 5391: 5350: 5309: 5299: 5250: 5209: 5201: 5162: 5124: 5116: 5072: 5064: 5017: 4980: 4972: 4922: 4885: 4877: 4836: 4828: 4787: 4746: 4738: 4697: 4689: 4656: 4638: 4603: 4566: 4558: 4517: 4470: 4433: 4425: 4388: 4380: 4341: 4304: 4255: 4211: 4203: 4162: 4154: 4113: 4105: 4064: 4023: 4013: 3966: 3929: 3888: 3841: 3784: 3732: 3691: 3654: 3611: 3560: 3516: 3477: 3436: 3426: 3381: 3371: 3330: 3282: 3274: 3233: 3161: 3109: 3071: 3030: 3022: 2981: 2929: 2888: 2847: 2808: 2252: 641: 437: 3544:
Zickermann V, Wirth C, Nasiri H, Siegmund K, Schwalbe H, Hunte C, Brandt U (January 2015).
2411:
leads to decreased mitochondrial electron transfer activities and decreased ATP synthesis.
7393: 7377: 7290: 6677: 6570: 6360: 2125: 673:
the translocation of three protons may be coordinated by a lateral helix connecting them.
496: 442: 216: 66: 3916:
Cardol P, Vanrobaeys F, Devreese B, Van Beeumen J, Matagne RF, Remacle C (October 2004).
480:. In fact, there has been shown to be a correlation between mitochondrial activities and 5953: 5295: 4832: 4661: 4009: 3837: 3780: 3765:"Structure of the hydrophilic domain of respiratory complex I from Thermus thermophilus" 3607: 192: 7542: 7431: 7372: 5787:
Institute of Science and Technology Austria (ISTA): Sazanov Group MRC MBU Sazanov group
5761: 5730: 5655:"Mitochondrial bioenergetics and dynamics interplay in complex I-deficient fibroblasts" 5589: 5564: 5537: 5512: 5511:
Kahl A, Stepanova A, Konrad C, Anderson C, Manfredi G, Zhou P, et al. (May 2018).
5404: 5379: 5314: 5279: 5214: 5189: 5129: 5104: 5077: 5052: 4985: 4960: 4890: 4865: 4841: 4816: 4751: 4726: 4702: 4677: 4571: 4438: 4417: 4393: 4368: 4216: 4191: 4167: 4142: 4118: 4093: 4028: 3993: 3821: 3760: 3465: 3441: 3414: 3410: 3386: 3359: 3314: 3287: 3262: 3035: 3010: 2354: 2216: 291: 163: 118: 5630: 5613: 4866:"Deactivation of mitochondrial complex I after hypoxia-ischemia in the immature brain" 4522: 4505: 4309: 4292: 3238: 3221: 3009:
Grivennikova VG, Kotlyar AB, Karliner JS, Cecchini G, Vinogradov AD (September 2007).
2934: 2917: 271: 7575: 7336: 7295: 6461: 5927: 5497: 5445: 5428: 4345: 2852: 2835: 2391: 2265: 2141: 266: 4942: 4594:
Nadanaciva S, Will Y (2011). "New insights in drug-induced mitochondrial toxicity".
4546: 3992:
Roessler MM, King MS, Robinson AJ, Armstrong FA, Harmer J, Hirst J (February 2010).
3580: 3181: 3129: 2451:
do not last long from their young ages, but how gymnosperms survive on land without
2073: 2051: 2029: 2007: 1980: 1937: 1913: 1889: 1865: 1841: 1817: 1793: 1769: 1745: 1721: 1697: 1673: 1649: 1625: 1601: 1577: 1553: 1529: 1505: 1481: 1457: 1433: 1409: 1385: 1361: 1337: 1313: 1289: 1265: 1241: 1212: 1182: 1175: 1168: 1138: 1108: 1101: 1071: 1041: 1034: 1004: 974: 938: 902: 866: 830: 794: 758: 7285: 7094: 7069: 6727: 6606: 6519: 6224: 6210: 6132: 5887: 5856: 5037: 4727:"Ischemic A/D transition of mitochondrial complex I and its role in ROS generation" 4545:
Viollet B, Guigas B, Sanz Garcia N, Leclerc J, Foretz M, Andreelli F (March 2012).
4490: 3861: 3806: 3647: 3631: 2951: 2692:– NADH dehydrogenase (ubiquinone) Fe-S protein 8, 23kDa (NADH-coenzyme Q reductase) 2686:– NADH dehydrogenase (ubiquinone) Fe-S protein 7, 20kDa (NADH-coenzyme Q reductase) 2680:– NADH dehydrogenase (ubiquinone) Fe-S protein 6, 13kDa (NADH-coenzyme Q reductase) 2674:– NADH dehydrogenase (ubiquinone) Fe-S protein 5, 15kDa (NADH-coenzyme Q reductase) 2668:– NADH dehydrogenase (ubiquinone) Fe-S protein 4, 18kDa (NADH-coenzyme Q reductase) 2662:– NADH dehydrogenase (ubiquinone) Fe-S protein 3, 30kDa (NADH-coenzyme Q reductase) 2656:– NADH dehydrogenase (ubiquinone) Fe-S protein 2, 49kDa (NADH-coenzyme Q reductase) 2650:– NADH dehydrogenase (ubiquinone) Fe-S protein 1, 75kDa (NADH-coenzyme Q reductase) 2322: 2273: 2175: 2155: 638: 532: 503: 86: 82: 4384: 3678:
Carroll J, Fearnley IM, Skehel JM, Shannon RJ, Hirst J, Walker JE (October 2006).
2365:.There is some evidence that complex I defects may play a role in the etiology of 666: 527:. The electron acceptor – the isoalloxazine ring – of FMN is identical to that of 142: 130: 7556: 5806: 5671: 5654: 5528: 4776:"S-nitrosation of mitochondrial complex I depends on its structural conformation" 4742: 4693: 4069: 4052: 3934: 3917: 3893: 3876: 3521: 3504: 3335: 3318: 2986: 2969: 2893: 2876: 7509: 7444: 7280: 6364: 5395: 4678:"Characterisation of the active/de-active transition of mitochondrial complex I" 4291:
Miyoshi H, Ohshima M, Shimada H, Akagi T, Iwamura H, McLaughlin JL (July 1998).
2436: 2370: 2357:. Point mutations in various complex I subunits derived from mitochondrial DNA ( 2146: 602: 598: 420: 275: 7537: 5284:
Proceedings of the National Academy of Sciences of the United States of America
4643: 4607: 4260: 4243: 4207: 3998:
Proceedings of the National Academy of Sciences of the United States of America
3737: 3720: 2560:
NDUFAF4 – NADH dehydrogenase (ubiquinone) 1 alpha subcomplex, assembly factor 4
2557:
NDUFAF3 – NADH dehydrogenase (ubiquinone) 1 alpha subcomplex, assembly factor 3
2554:
NDUFAF2 – NADH dehydrogenase (ubiquinone) 1 alpha subcomplex, assembly factor 2
633:
NADH:ubiquinone oxidoreductase is the largest of the respiratory complexes. In
6846: 6508: 6068: 5984: 5907: 5707: 5481: 5051:
Stepanova A, Konrad C, Manfredi G, Springett R, Ten V, Galkin A (March 2019).
5021: 3970: 3481: 3195:
Voet DJ, Voet GJ, Pratt CW (2008). "Chapter 18, Mitochondrial ATP synthesis".
3113: 2799:
Brandt U (2006). "Energy converting NADH:quinone oxidoreductase (complex I)".
2440: 2428: 2420: 2382: 2374: 2289: 2224: 2185: 2181: 2171: 2129:
fruit) is the most potent known inhibitor of NADH dehydrogenase (ubiquinone) (
2120: 2116: 617: 540: 5120: 4881: 4652: 4630: 4269: 4244:"NDUFA4 is a subunit of complex IV of the mammalian electron transport chain" 4158: 3721:"NDUFA4 is a subunit of complex IV of the mammalian electron transport chain" 2463:
The following is a list of humans genes that encode components of complex I:
492: 7483: 7457: 6777: 6010: 5304: 5103:
Stepanova A, Kahl A, Konrad C, Ten V, Starkov AS, Galkin A (December 2017).
4018: 3789: 3764: 3564: 3431: 3376: 2318: 2220: 2209: 2178:, another potent inhibitor with a close structural homologue to ubiquinone. 2160: 613: 606: 594: 544: 477: 5770: 5715: 5680: 5639: 5598: 5546: 5489: 5454: 5413: 5364: 5355: 5338: 5323: 5264: 5223: 5174: 5138: 5086: 4994: 4934: 4899: 4850: 4801: 4792: 4775: 4760: 4711: 4615: 4580: 4482: 4474: 4402: 4277: 4225: 4176: 4127: 4078: 4037: 3978: 3943: 3902: 3853: 3798: 3746: 3705: 3696: 3679: 3623: 3572: 3530: 3489: 3450: 3395: 3344: 3296: 3173: 3121: 3085: 3044: 2995: 2943: 2902: 2820: 2545:
NDUFAB1 – NADH dehydrogenase (ubiquinone) 1, alpha/beta subcomplex, 1, 8kDa
2394:
level. In the presence of succinate mitochondria catalyze reverse electron
2136:=1.2 nM, stronger than rotenone). The best-known inhibitor of complex I is 5751: 5580: 5029: 4531: 4447: 4353: 4318: 3247: 3076: 3059: 2861: 361: 353: 6923: 6797: 6430: 6419: 6042: 5821: 3505:"A two-state stabilization-change mechanism for proton-pumping complex I" 2530:
NDUFA11 – NADH dehydrogenase (ubiquinone) 1 alpha subcomplex, 11, 14.7kDa
2248: 2166: 2137: 1926: 74: 17: 5205: 3845: 3615: 966: 930: 894: 858: 822: 786: 750: 73:
of many organisms from bacteria to humans. It catalyzes the transfer of
7083: 7078: 6998: 5852: 5166: 4976: 4562: 4416:
Degli Esposti M, Ghelli A, Ratta M, Cortes D, Estornell E (July 1994).
2747: 2619: 2613: 2551:– NADH dehydrogenase (ubiquinone) 1 alpha subcomplex, assembly factor 1 2548: 2539: 2533: 2524: 2509:
NDUFA7 – NADH dehydrogenase (ubiquinone) 1 alpha subcomplex, 7, 14.5kDa
2494:
NDUFA4L2 – NADH dehydrogenase (ubiquinone) 1 alpha subcomplex, 4-like 2
2228: 1902: 1662: 1566: 1494: 1470: 1326: 1254: 1204: 1160: 1130: 1121: 1093: 1063: 1026: 996: 960: 924: 888: 852: 816: 780: 744: 710: 609:) results in a stroke of two protons entering the intermembrane space. 223: 204: 50: 5255: 5238: 5098: 5096: 5068: 4429: 3278: 3026: 660:
proteins, which comprise NADH dehydrogenase I, are encoded within the
473:
ATP-hydrolysis or by complexes III and IV during succinate oxidation.
7496: 7266: 7188: 7183: 7153: 7148: 7028: 7008: 7003: 6993: 6988: 6983: 6978: 5991: 4109: 2788:(6th ed.). New York: WH Freeman & Company. pp. 509–513. 2759: 2753: 2741: 2735: 2729: 2723: 2712: 2706: 2700: 2689: 2683: 2677: 2671: 2665: 2659: 2653: 2647: 2636: 2630: 2607: 2601: 2595: 2589: 2574: 2568: 2518: 2512: 2503: 2497: 2485: 2476: 2470: 2326: 2227:. Further, complex I inhibition was shown to trigger NAD-independent 2151: 2100: 1969: 1950: 1878: 1854: 1830: 1806: 1782: 1758: 1734: 1710: 1686: 1638: 1614: 1590: 1542: 1518: 1446: 1422: 1398: 1374: 1350: 1302: 1278: 1230: 1195: 1151: 1084: 1054: 1017: 987: 951: 915: 879: 843: 807: 771: 735: 700: 634: 338: 303: 199: 187: 175: 3165: 2586:
NDUFB5 – NADH dehydrogenase (ubiquinone) 1 beta subcomplex, 5, 16kDa
2583:
NDUFB4 – NADH dehydrogenase (ubiquinone) 1 beta subcomplex, 4, 15kDa
2580:
NDUFB3 – NADH dehydrogenase (ubiquinone) 1 beta subcomplex, 3, 12kDa
2491:
NDUFA4L – NADH dehydrogenase (ubiquinone) 1 alpha subcomplex, 4-like
2482:
NDUFA3 – NADH dehydrogenase (ubiquinone) 1 alpha subcomplex, 3, 9kDa
2140:(commonly used as an organic pesticide). Rotenone and rotenoids are 7557:"3.D.1 The H+ or Na+-translocating NADH Dehydrogenase (NDH) Family" 4926: 3060:"Mitochondrial complex I in the network of known and unknown facts" 2639:– NADH dehydrogenase (ubiquinone) 1, subcomplex unknown, 2, 14.5kDa 2284:
Recent investigations suggest that complex I is a potent source of
7470: 7208: 7203: 7193: 7178: 7173: 7168: 7163: 7158: 7143: 7138: 7133: 7128: 7123: 7118: 7113: 7108: 7103: 6899: 6886: 6293: 6288: 2369:, perhaps because of reactive oxygen species (complex I can, like 2358: 696: 373: 3875:
Tocilescu MA, Zickermann V, Zwicker K, Brandt U (December 2010).
6273: 6268: 6263: 6253: 6243: 6036: 5659:
Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease
2633:– NADH dehydrogenase (ubiquinone) 1, subcomplex unknown, 1, 6kDa 2622:– NADH dehydrogenase (ubiquinone) 1 beta subcomplex, 11, 17.3kDa 2256: 2144:
occurring in several genera of tropical plants such as Antonia (
2130: 2070: 2048: 2026: 2004: 1977: 1934: 1910: 1907:
NADH dehydrogenase 1 alpha subcomplex subunit 10, mitochondrial
1886: 1862: 1838: 1814: 1790: 1766: 1742: 1718: 1694: 1670: 1646: 1622: 1598: 1574: 1550: 1526: 1502: 1478: 1454: 1430: 1406: 1382: 1358: 1334: 1310: 1286: 1262: 1238: 1209: 1179: 1172: 1165: 1135: 1105: 1098: 1068: 1038: 1031: 1001: 971: 935: 899: 863: 827: 791: 755: 716: 574: 424: 211: 78: 7239: 6434: 6333: 5957: 5825: 2527:– NADH dehydrogenase (ubiquinone) 1 alpha subcomplex, 10, 42kDa 2473:– NADH dehydrogenase (ubiquinone) 1 alpha subcomplex, 1, 7.5kDa 1499:
NADH dehydrogenase 1 beta subcomplex subunit 11, mitochondrial
1307:
NADH dehydrogenase 1 alpha subcomplex subunit 9, mitochondrial
2616:– NADH dehydrogenase (ubiquinone) 1 beta subcomplex, 10, 22kDa 2521:– NADH dehydrogenase (ubiquinone) 1 alpha subcomplex, 9, 39kDa 2515:– NADH dehydrogenase (ubiquinone) 1 alpha subcomplex, 8, 19kDa 2506:– NADH dehydrogenase (ubiquinone) 1 alpha subcomplex, 6, 14kDa 2500:– NADH dehydrogenase (ubiquinone) 1 alpha subcomplex, 5, 13kDa 1835:
NADH dehydrogenase 1 beta subcomplex subunit 5, mitochondrial
1739:
NADH dehydrogenase 1 beta subcomplex subunit 2, mitochondrial
1691:
NADH dehydrogenase 1 beta subcomplex subunit 8, mitochondrial
4547:"Cellular and molecular mechanisms of metformin: an overview" 3415:"Structural basis for the mechanism of respiratory complex I" 2610:– NADH dehydrogenase (ubiquinone) 1 beta subcomplex, 9, 22kDa 2604:– NADH dehydrogenase (ubiquinone) 1 beta subcomplex, 8, 19kDa 2598:– NADH dehydrogenase (ubiquinone) 1 beta subcomplex, 7, 18kDa 2592:– NADH dehydrogenase (ubiquinone) 1 beta subcomplex, 6, 17kDa 2479:– NADH dehydrogenase (ubiquinone) 1 alpha subcomplex, 2, 8kDa 956:
NADH-ubiquinone oxidoreductase 75 kDa subunit, mitochondrial
7562:
Creative Commons Attribution-ShareAlike 3.0 Unported License
2577:– NADH dehydrogenase (ubiquinone) 1 beta subcomplex, 2, 8kDa 2571:– NADH dehydrogenase (ubiquinone) 1 beta subcomplex, 1, 7kDa 2317:
this process can be a very potent source of superoxide when
5378:
Chou AP, Li S, Fitzmaurice AG, Bronstein JM (August 2010).
89:
membrane in eukaryotes or the plasma membrane of bacteria.
7560:, which is licensed in a way that permits reuse under the 7235: 5801: 4237: 4235: 3824:(May 2010). "The architecture of respiratory complex I". 2067:
NADH dehydrogenase 1 alpha subcomplex, assembly factor 4
2023:
NADH dehydrogenase 1 alpha subcomplex, assembly factor 2
2001:
NADH dehydrogenase 1 alpha subcomplex, assembly factor 1
884:
NADH dehydrogenase iron-sulfur protein 2, mitochondrial
848:
NADH dehydrogenase iron-sulfur protein 3, mitochondrial
776:
NADH dehydrogenase iron-sulfur protein 8, mitochondrial
740:
NADH dehydrogenase iron-sulfur protein 7, mitochondrial
5237:
EsterhĂĄzy D, King MS, Yakovlev G, Hirst J (March 2008).
3877:"Quinone binding and reduction by respiratory complex I" 3680:"Bovine complex I is a complex of 45 different subunits" 3653:(3rd ed.). New York: J. Wiley & Sons. pp.  2542:– NADH dehydrogenase (ubiquinone) 1 alpha subcomplex, 13 2536:– NADH dehydrogenase (ubiquinone) 1 alpha subcomplex, 12 2045:
NADH dehydrogenase 1 alpha subcomplex assembly factor 3
1283:
NADH dehydrogenase iron-sulfur protein 4, mitochondrial
1235:
NADH dehydrogenase iron-sulfur protein 6, mitochondrial
7551: 2750:- mitochondrially encoded NADH dehydrogenase subunit 4L 2715:– NADH dehydrogenase (ubiquinone) flavoprotein 3, 10kDa 2709:– NADH dehydrogenase (ubiquinone) flavoprotein 2, 24kDa 2703:– NADH dehydrogenase (ubiquinone) flavoprotein 1, 51kDa 1931:
NADH dehydrogenase 1 alpha subcomplex subunit 4-like 2
5612:
Andreazza AC, Shao L, Wang JF, Young LT (April 2010).
5380:"Mechanisms of rotenone-induced proteasome inhibition" 4092:
Ogilvie I, Kennaway NG, Shoubridge EA (October 2005).
2916:
Galkin AS, Grivennikova VG, Vinogradov AD (May 1999).
2762:- mitochondrially encoded NADH dehydrogenase subunit 6 2756:- mitochondrially encoded NADH dehydrogenase subunit 5 2744:- mitochondrially encoded NADH dehydrogenase subunit 4 2738:- mitochondrially encoded NADH dehydrogenase subunit 3 2732:- mitochondrially encoded NADH dehydrogenase subunit 2 2726:- mitochondrially encoded NADH dehydrogenase subunit 1 2627:
NADH dehydrogenase (ubiquinone) 1, subcomplex unknown
7526: 4676:
Babot M, Birch A, Labarbuta P, Galkin A (July 2014).
3308: 3306: 648:(FeS). Of the 44 subunits, seven are encoded by the 7422: 7386: 7355: 7324: 7273: 7092: 7067: 7037: 7017: 6967: 6958: 6912: 6875: 6843: 6811: 6759: 6750: 6706: 6674: 6647: 6625: 6588: 6579: 6556: 6528: 6505: 6478: 6469: 6402: 6376: 6302: 6193: 6177: 6149: 6130: 6111: 6066: 6057: 5998: 4731:
Biochimica et Biophysica Acta (BBA) - Bioenergetics
4682:
Biochimica et Biophysica Acta (BBA) - Bioenergetics
4510:
Biochimica et Biophysica Acta (BBA) - Bioenergetics
4297:
Biochimica et Biophysica Acta (BBA) - Bioenergetics
4057:
Biochimica et Biophysica Acta (BBA) - Bioenergetics
3922:
Biochimica et Biophysica Acta (BBA) - Bioenergetics
3881:
Biochimica et Biophysica Acta (BBA) - Bioenergetics
3509:
Biochimica et Biophysica Acta (BBA) - Bioenergetics
3323:
Biochimica et Biophysica Acta (BBA) - Bioenergetics
3226:
Biochimica et Biophysica Acta (BBA) - Bioenergetics
2974:
Biochimica et Biophysica Acta (BBA) - Bioenergetics
2881:
Biochimica et Biophysica Acta (BBA) - Bioenergetics
2720:mitochondrially encoded NADH dehydrogenase subunit 2467:NADH dehydrogenase (ubiquinone) 1 alpha subcomplex 523:(FMN) prosthetic group of the enzyme, creating FMNH 423:across the inner membrane per molecule of oxidized 314: 302: 290: 285: 265: 246: 234: 222: 210: 198: 186: 174: 169: 157: 152: 136: 124: 112: 104: 99: 94: 4961:"How mitochondria produce reactive oxygen species" 3646: 2565:NADH dehydrogenase (ubiquinone) 1 beta subcomplex 2276::oxygen ratio increases (i.e. metabolic hypoxia). 920:NADH dehydrogenase flavoprotein 1, mitochondrial 812:NADH dehydrogenase flavoprotein 2, mitochondrial 665:subunit, NuoL, is related to Na/ H antiporters of 85:(CoQ10) and translocates protons across the inner 5792:Interactive Molecular model of NADH dehydrogenase 2963: 2961: 2373:, leak electrons to oxygen, forming highly toxic 2349:Mutations in the subunits of complex I can cause 2219:associated with a variety of drugs, for instance 1571:NADH dehydrogenase 1 alpha subcomplex subunit 13 1475:NADH dehydrogenase 1 alpha subcomplex subunit 11 1259:NADH dehydrogenase 1 alpha subcomplex subunit 12 461:complex I, whereas the coupling mechanism of the 6315:Electron-transferring-flavoprotein dehydrogenase 5731:"On the Edge of Dispensability, the Chloroplast 3358:Treberg JR, Quinlan CL, Brand MD (August 2011). 3222:"Iron-sulfur clusters/semiquinones in complex I" 1811:NADH dehydrogenase 1 alpha subcomplex subunit 4 1787:NADH dehydrogenase 1 alpha subcomplex subunit 3 1763:NADH dehydrogenase 1 alpha subcomplex subunit 7 1667:NADH dehydrogenase 1 beta subcomplex subunit 10 1619:NADH dehydrogenase 1 alpha subcomplex subunit 8 1451:NADH dehydrogenase 1 alpha subcomplex subunit 6 1427:NADH dehydrogenase 1 alpha subcomplex subunit 5 1379:NADH dehydrogenase 1 alpha subcomplex subunit 1 1355:NADH dehydrogenase 1 alpha subcomplex subunit 2 489:Na-translocating NADH Dehydrogenase (NDH) Family 27:Protein complex involved in cellular respiration 6220:Complex III/Coenzyme Q - cytochrome c reductase 4954: 4952: 2697:NADH dehydrogenase (ubiquinone) flavoprotein 1 2215:Inhibition of complex I has been implicated in 1974:NADH dehydrogenase 1 beta subcomplex subunit 6 1883:NADH dehydrogenase 1 subunit C1, mitochondrial 1859:NADH dehydrogenase 1 beta subcomplex subunit 1 1643:NADH dehydrogenase 1 beta subcomplex subunit 9 1595:NADH dehydrogenase 1 beta subcomplex subunit 7 1547:NADH dehydrogenase 1 beta subcomplex subunit 4 1403:NADH dehydrogenase 1 beta subcomplex subunit 3 419:In this process, the complex translocates four 7251: 6446: 6345: 5969: 5837: 5109:Journal of Cerebral Blood Flow and Metabolism 4870:Journal of Cerebral Blood Flow and Metabolism 2875:Galkin A, Dröse S, Brandt U (December 2006). 2644:NADH dehydrogenase (ubiquinone) Fe-S protein 543:(CoQ) accepts two electrons to be reduced to 8: 4725:Dröse S, Stepanova A, Galkin A (July 2016). 3261:Bridges HR, Bill E, Hirst J (January 2012). 5739:International Journal of Molecular Sciences 4332:Moretti C, Grenand P (September 1982). "". 7258: 7244: 7236: 6964: 6934:Mitochondrial permeability transition pore 6916: 6756: 6585: 6475: 6453: 6439: 6431: 6352: 6338: 6330: 6190: 6063: 5976: 5962: 5954: 5844: 5830: 5822: 282: 5814:at the U.S. National Library of Medicine 5760: 5750: 5670: 5629: 5588: 5536: 5444: 5403: 5354: 5313: 5303: 5254: 5213: 5128: 5076: 5010:Journal of Bioenergetics and Biomembranes 4984: 4889: 4840: 4791: 4750: 4701: 4660: 4642: 4570: 4521: 4437: 4392: 4308: 4259: 4215: 4166: 4117: 4068: 4027: 4017: 3933: 3892: 3788: 3736: 3695: 3520: 3440: 3430: 3385: 3375: 3334: 3286: 3237: 3075: 3034: 2985: 2933: 2892: 2851: 1955:NADH dehydrogenase flavoprotein 3, 10kDa 1523:NADH dehydrogenase iron-sulfur protein 5 484:(PCD) during somatic embryo development. 6929:Mitochondrial membrane transport protein 2813:10.1146/annurev.biochem.75.103004.142539 2088:May or may not be present in any species 1126:NADH-ubiquinone oxidoreductase chain 4L 686: 476:Complex I may have a role in triggering 400:The reaction catalyzed by complex I is: 372: 360: 352: 29: 7533: 4504:Zharova TV, Vinogradov AD (July 1997). 3197:Principles of Biochemistry, 3rd Edition 2773: 1990: 1200:NADH-ubiquinone oxidoreductase chain 6 1156:NADH-ubiquinone oxidoreductase chain 5 1089:NADH-ubiquinone oxidoreductase chain 4 1059:NADH-ubiquinone oxidoreductase chain 3 1022:NADH-ubiquinone oxidoreductase chain 2 992:NADH-ubiquinone oxidoreductase chain 1 506:) downstream in the respiratory chain. 7568:. All relevant terms must be followed. 6688:Cholesterol side-chain cleavage enzyme 6367:: Oxidoreduction-driven transporters ( 4915:Nature Reviews. Molecular Cell Biology 3154:Nature Reviews. Molecular Cell Biology 2779: 2777: 387:mitochondrial electron transport chain 149: 91: 5558: 5556: 4774:Galkin A, Moncada S (December 2007). 4098:The Journal of Clinical Investigation 3147: 3145: 3143: 3141: 3139: 2968:Batista AP, Pereira MM (March 2011). 2784:Berg J, Tymoczko J, Stryer L (2006). 2174:binding site of complex I as well as 385:Complex I is the first enzyme of the 7: 2337:(or semireduced flavin) to oxygen (O 6602:Coenzyme Q – cytochrome c reductase 5918:Methylenetetrahydrofolate reductase 5343:The Journal of Biological Chemistry 4833:10.1016/j.freeradbiomed.2018.06.040 4821:Free Radical Biology & Medicine 4780:The Journal of Biological Chemistry 3684:The Journal of Biological Chemistry 3419:The Journal of Biological Chemistry 3364:The Journal of Biological Chemistry 2439:), and some very young lineages of 2363:Leber's Hereditary Optic Neuropathy 1331:Acyl carrier protein, mitochondrial 391:Coenzyme Q – cytochrome c reductase 345:), Parkinson's disease and others. 6788:Oxoglutarate dehydrogenase complex 6723:Glycerol-3-phosphate dehydrogenase 6206:Complex II/Succinate dehydrogenase 6102:Pyruvate dehydrogenase phosphatase 5569:Antioxidants & Redox Signaling 5337:Galkin A, Brandt U (August 2005). 4196:American Journal of Human Genetics 2310:electron-transferring flavoprotein 2306:glycerol-3-phosphate dehydrogenase 25: 7554:, this article uses content from 6733:Carnitine palmitoyltransferase II 5631:10.1001/archgenpsychiatry.2010.22 3064:General Physiology and Biophysics 3058:Chomova M, Racay P (March 2010). 2085:Found in all species except fungi 7536: 6857:Carbamoyl phosphate synthetase I 6497:Long-chain-fatty-acid—CoA ligase 6492:Carnitine palmitoyltransferase I 5446:10.1111/j.1471-4159.2010.06631.x 5278:Kussmaul L, Hirst J (May 2006). 2091:Found in fungal species such as 1715:NADH dehydrogenase 1 subunit C2 688:Conserved subunits of Complex I 6718:Glutamate aspartate transporter 6230:Complex IV/Cytochrome c oxidase 5729:Sabater, B (19 November 2021). 2272:, ischemia or when the tissue 682:electron paramagnetic resonance 591:electron paramagnetic resonance 497:Na transporting Mrp superfamily 487:Complex I is not homologous to 6835:Pyruvate dehydrogenase complex 6793:Succinyl coenzyme A synthetase 6077:Pyruvate dehydrogenase complex 5903:Dihydrolipoamide dehydrogenase 5618:Archives of General Psychiatry 2099:Recent research has described 568:Proton translocation mechanism 55:NADH:ubiquinone oxidoreductase 1: 6098:Pyruvate dehydrogenase kinase 4596:Current Pharmaceutical Design 4523:10.1016/S0005-2728(97)00029-7 4424:. 301 ( Pt 1) (Pt 1): 161–7. 4385:10.1016/j.febslet.2010.01.004 4310:10.1016/s0005-2728(98)00097-8 3763:, Hinchliffe P (March 2006). 3470:Journal of Structural Biology 3239:10.1016/s0005-2728(98)00027-9 2935:10.1016/s0014-5793(99)00575-x 2801:Annual Review of Biochemistry 2196:Complex I is also blocked by 6639:Dihydroorotate dehydrogenase 6201:Complex I/NADH dehydrogenase 5812:Electron+Transport+Complex+I 5807:Complex I news facebook page 5672:10.1016/j.bbadis.2010.02.001 5529:10.1161/STROKEAHA.117.019687 4743:10.1016/j.bbabio.2015.12.013 4694:10.1016/j.bbabio.2014.02.018 4346:10.1016/0378-8741(82)90002-2 4334:Journal of Ethnopharmacology 4070:10.1016/j.bbabio.2011.06.015 3959:Journal of Molecular Biology 3935:10.1016/j.bbabio.2004.06.001 3894:10.1016/j.bbabio.2010.05.009 3522:10.1016/j.bbabio.2011.04.006 3336:10.1016/j.bbabio.2012.02.015 2987:10.1016/j.bbabio.2010.12.008 2894:10.1016/j.bbabio.2006.10.001 2853:10.1016/0014-5793(84)80338-5 2321:concentrations are high and 2314:dihydroorotate dehydrogenase 2198:adenosine diphosphate ribose 6693:Steroid 11-beta-hydroxylase 5396:10.1016/j.neuro.2010.04.006 555:Electron transfer mechanism 431:difference used to produce 7613: 7597:Integral membrane proteins 6867:N-Acetylglutamate synthase 6862:Ornithine transcarbamylase 6666:Glycerol phosphate shuttle 6532:monoamine neurotransmitter 6021:Oxoglutarate dehydrogenase 4959:Murphy MP (January 2009). 4644:10.1007/s11357-023-01059-y 4608:10.2174/138161211796904795 4261:10.1016/j.cmet.2012.07.015 4208:10.1016/j.ajhg.2009.04.020 4051:Cardol P (November 2011). 3738:10.1016/j.cmet.2012.07.015 2235:Active/inactive transition 719:family with Human protein 7414:Michaelis–Menten kinetics 7221: 6919: 6895: 6592:oxidative phosphorylation 6415:Inorganic pyrophosphatase 6186:oxidative phosphorylation 5883:Butyryl CoA dehydrogenase 5878:Apoptosis-inducing factor 5863: 5708:10.1016/j.tox.2010.01.017 5482:10.1134/S0006297919110154 5433:Journal of Neurochemistry 5057:Journal of Neurochemistry 3971:10.1016/j.jmb.2005.02.067 3820:Efremov RG, Baradaran R, 3503:Brandt U (October 2011). 3482:10.1016/j.jsb.2007.01.009 3114:10.1007/s00425-009-1028-x 2834:Wikström M (April 1984). 2094:Schizosaccharomyces pombe 1987:Assembly factor proteins 1986: 1218: 723: 629:Composition and structure 564:the proton motive force. 429:electrochemical potential 281: 59:Type I NADH dehydrogenase 7306:Diffusion-limited enzyme 6783:Isocitrate dehydrogenase 6661:Malate-aspartate shuttle 6181:electron transport chain 6141:Methylmalonyl-CoA mutase 6016:Isocitrate dehydrogenase 5816:Medical Subject Headings 5470:Biochemistry. Biokhimiia 5121:10.1177/0271678X17730242 4882:10.1177/0271678X18770331 4159:10.1038/sj.emboj.7601748 3645:Voet JG, Voet D (2004). 3464:Baranova EA, Morgan DJ, 2455:for so long is unknown. 2288:. Complex I can produce 2280:Production of superoxide 1219:Core accessory subunits 448:Paracoccus denitrificans 6830:Glutamate dehydrogenase 6617:Succinate dehydrogenase 6122:Glutamate dehydrogenase 6033:Succinate dehydrogenase 6026:Succinyl CoA synthetase 5913:Methemoglobin reductase 5898:Cytokinin dehydrogenase 5893:Cytochrome b5 reductase 5305:10.1073/pnas.0510977103 5155:The Biochemical Journal 5022:10.1023/A:1022420007908 4965:The Biochemical Journal 4422:The Biochemical Journal 4019:10.1073/pnas.0908050107 3790:10.1126/science.1123809 3565:10.1126/science.1259859 3432:10.1074/jbc.m109.032144 3377:10.1074/jbc.M111.252502 2302:succinate dehydrogenase 2286:reactive oxygen species 427:, helping to build the 63:mitochondrial complex I 7226:mitochondrial diseases 6825:Aspartate transaminase 6482:fatty acid degradation 6410:Cytochrome b6f complex 6165:Aspartate transaminase 5873:Acyl CoA dehydrogenase 5356:10.1074/jbc.M504709200 4793:10.1074/jbc.M707543200 4475:10.1124/mol.108.048546 4463:Molecular Pharmacology 3697:10.1074/jbc.M607135200 3220:Ohnishi T (May 1998). 3199:. Wiley. p. 608. 2351:mitochondrial diseases 2208:The antidiabetic drug 2107:, and not of complex I 382: 370: 358: 40: 7399:Eadie–Hofstee diagram 7332:Allosteric regulation 6939:Mitochondrial carrier 6815:anaplerotic reactions 6651:mitochondrial shuttle 6629:pyrimidine metabolism 5943:Thioredoxin reductase 5868:Acetolactate synthase 5752:10.3390/ijms222212505 5581:10.1089/ars.2018.7693 3077:10.4149/gpb_2010_01_3 2361:) can also result in 2202:competitive inhibitor 709:Protein description ( 521:flavin mononucleotide 482:programmed cell death 376: 364: 356: 108:Respiratory complex I 95:Respiratory complex I 65:) is the first large 44:Respiratory complex I 33: 7582:Cellular respiration 7564:, but not under the 7409:Lineweaver–Burk plot 6946:Translocator protein 6803:Malate dehydrogenase 6698:Aldosterone synthase 6160:Pyruvate carboxylase 6048:Malate dehydrogenase 948:NDUFS1 / 75kD / NUAM 912:NDUFV1 / 51kD / NUBM 876:NDUFS2 / 49kD / NUCM 840:NDUFS3 / 30kD / NUGM 804:NDUFV2 / 24kD / NUHM 768:NDUFS8 / TYKY / NUIM 732:NDUFS7 / PSST / NUKM 680:A recent study used 650:mitochondrial genome 646:iron-sulfur clusters 597:formation step from 577:groups of Complexes 458:Rhodothermus marinus 395:cytochrome c oxidase 335:ischemia/reperfusion 6558:Intermembrane space 6310:Alternative oxidase 6114:α-ketoglutaric acid 5296:2006PNAS..103.7607K 5206:10.1038/pr.2017.277 4010:2010PNAS..107.1930R 3846:10.1038/nature09066 3838:2010Natur.465..441E 3781:2006Sci...311.1430S 3616:10.1038/nature03692 3608:2005Natur.435.1197H 2367:Parkinson's disease 2103:to be a subunit of 689: 495:), a member of the 404:NADH + H + CoQ + 4H 393:(complex III), and 7368:Enzyme superfamily 7301:Enzyme promiscuity 6913:Other/to be sorted 6878:alcohol metabolism 6738:Uncoupling protein 6612:NADH dehydrogenase 5923:NADH dehydrogenase 5802:Complex I homepage 5194:Pediatric Research 5167:10.1042/BJ20071162 4977:10.1042/BJ20081386 4563:10.1042/CS20110386 3602:(7046): 1197–202. 687: 383: 371: 359: 343:cardiac infarction 71:respiratory chains 41: 7524: 7523: 7233: 7232: 7217: 7216: 6960:Mitochondrial DNA 6954: 6953: 6908: 6907: 6763:citric acid cycle 6746: 6745: 6552: 6551: 6544:Monoamine oxidase 6428: 6427: 6327: 6326: 6323: 6322: 6173: 6172: 5989:Citric acid cycle 5951: 5950: 5938:Sarcosine oxidase 5933:Nitrate reductase 5476:(11): 1411–1423. 5256:10.1021/bi702243b 5115:(12): 3649–3658. 5069:10.1111/jnc.14654 4430:10.1042/bj3010161 3279:10.1021/bi201644x 3206:978-0-470-23396-2 3027:10.1021/bi7009822 2294:hydrogen peroxide 2245:activation energy 2079: 2078: 669:(PhaA and PhaD). 625:of the residues. 515:Overall mechanism 330: 329: 326: 325: 229:metabolic pathway 148: 147: 16:(Redirected from 7604: 7541: 7540: 7532: 7404:Hanes–Woolf plot 7347:Enzyme activator 7342:Enzyme inhibitor 7316:Enzyme catalysis 7260: 7253: 7246: 7237: 7097: 7072: 7042: 7022: 6972: 6965: 6917: 6880: 6850: 6818: 6773:Citrate synthase 6766: 6757: 6711: 6681: 6654: 6632: 6595: 6586: 6566:Adenylate kinase 6537: 6513: 6485: 6476: 6455: 6448: 6441: 6432: 6354: 6347: 6340: 6331: 6191: 6152:oxaloacetic acid 6064: 6006:Citrate synthase 5978: 5971: 5964: 5955: 5846: 5839: 5832: 5823: 5775: 5774: 5764: 5754: 5726: 5720: 5719: 5691: 5685: 5684: 5674: 5650: 5644: 5643: 5633: 5609: 5603: 5602: 5592: 5560: 5551: 5550: 5540: 5523:(5): 1223–1231. 5508: 5502: 5501: 5465: 5459: 5458: 5448: 5424: 5418: 5417: 5407: 5375: 5369: 5368: 5358: 5349:(34): 30129–35. 5334: 5328: 5327: 5317: 5307: 5275: 5269: 5268: 5258: 5234: 5228: 5227: 5217: 5185: 5179: 5178: 5149: 5143: 5142: 5132: 5100: 5091: 5090: 5080: 5048: 5042: 5041: 5005: 4999: 4998: 4988: 4956: 4947: 4946: 4910: 4904: 4903: 4893: 4876:(9): 1790–1802. 4861: 4855: 4854: 4844: 4812: 4806: 4805: 4795: 4786:(52): 37448–53. 4771: 4765: 4764: 4754: 4722: 4716: 4715: 4705: 4673: 4667: 4666: 4664: 4646: 4626: 4620: 4619: 4591: 4585: 4584: 4574: 4551:Clinical Science 4542: 4536: 4535: 4525: 4501: 4495: 4494: 4458: 4452: 4451: 4441: 4413: 4407: 4406: 4396: 4364: 4358: 4357: 4329: 4323: 4322: 4312: 4288: 4282: 4281: 4263: 4239: 4230: 4229: 4219: 4187: 4181: 4180: 4170: 4147:The EMBO Journal 4138: 4132: 4131: 4121: 4110:10.1172/JCI26020 4089: 4083: 4082: 4072: 4048: 4042: 4041: 4031: 4021: 3989: 3983: 3982: 3954: 3948: 3947: 3937: 3913: 3907: 3906: 3896: 3872: 3866: 3865: 3817: 3811: 3810: 3792: 3775:(5766): 1430–6. 3757: 3751: 3750: 3740: 3716: 3710: 3709: 3699: 3675: 3669: 3668: 3652: 3642: 3636: 3635: 3591: 3585: 3584: 3550: 3541: 3535: 3534: 3524: 3500: 3494: 3493: 3461: 3455: 3454: 3444: 3434: 3425:(43): 29773–83. 3413:(October 2009). 3406: 3400: 3399: 3389: 3379: 3370:(31): 27103–10. 3355: 3349: 3348: 3338: 3317:(October 2012). 3310: 3301: 3300: 3290: 3258: 3252: 3251: 3241: 3217: 3211: 3210: 3192: 3186: 3185: 3149: 3134: 3133: 3096: 3090: 3089: 3079: 3055: 3049: 3048: 3038: 3006: 3000: 2999: 2989: 2965: 2956: 2955: 2937: 2913: 2907: 2906: 2896: 2872: 2866: 2865: 2855: 2831: 2825: 2824: 2796: 2790: 2789: 2781: 2253:N-Ethylmaleimide 690: 644:(FMN) and eight 642:prosthetic group 463:P. denitrificans 438:Escherichia coli 283: 150: 92: 21: 7612: 7611: 7607: 7606: 7605: 7603: 7602: 7601: 7572: 7571: 7547: 7535: 7527: 7525: 7520: 7432:Oxidoreductases 7418: 7394:Enzyme kinetics 7382: 7378:List of enzymes 7351: 7320: 7291:Catalytic triad 7269: 7264: 7234: 7229: 7213: 7093: 7088: 7068: 7063: 7038: 7033: 7018: 7013: 6968: 6950: 6904: 6891: 6876: 6871: 6844: 6839: 6812: 6807: 6760: 6742: 6707: 6702: 6678:steroidogenesis 6675: 6670: 6648: 6643: 6626: 6621: 6589: 6575: 6571:Creatine kinase 6548: 6534: 6529: 6524: 6506: 6501: 6479: 6465: 6459: 6429: 6424: 6398: 6389:ETC Complex III 6372: 6358: 6328: 6319: 6298: 6240: 6214: 6184: 6179: 6169: 6145: 6126: 6107: 6053: 5994: 5982: 5952: 5947: 5859: 5850: 5783: 5778: 5728: 5727: 5723: 5693: 5692: 5688: 5652: 5651: 5647: 5611: 5610: 5606: 5562: 5561: 5554: 5510: 5509: 5505: 5467: 5466: 5462: 5426: 5425: 5421: 5384:Neurotoxicology 5377: 5376: 5372: 5336: 5335: 5331: 5290:(20): 7607–12. 5277: 5276: 5272: 5249:(12): 3964–71. 5236: 5235: 5231: 5187: 5186: 5182: 5151: 5150: 5146: 5102: 5101: 5094: 5050: 5049: 5045: 5007: 5006: 5002: 4958: 4957: 4950: 4912: 4911: 4907: 4863: 4862: 4858: 4814: 4813: 4809: 4773: 4772: 4768: 4724: 4723: 4719: 4675: 4674: 4670: 4628: 4627: 4623: 4602:(20): 2100–12. 4593: 4592: 4588: 4544: 4543: 4539: 4503: 4502: 4498: 4460: 4459: 4455: 4415: 4414: 4410: 4366: 4365: 4361: 4331: 4330: 4326: 4290: 4289: 4285: 4248:Cell Metabolism 4241: 4240: 4233: 4189: 4188: 4184: 4153:(13): 3227–37. 4140: 4139: 4135: 4104:(10): 2784–92. 4091: 4090: 4086: 4050: 4049: 4045: 3991: 3990: 3986: 3956: 3955: 3951: 3915: 3914: 3910: 3887:(12): 1883–90. 3874: 3873: 3869: 3832:(7297): 441–5. 3819: 3818: 3814: 3759: 3758: 3754: 3725:Cell Metabolism 3718: 3717: 3713: 3690:(43): 32724–7. 3677: 3676: 3672: 3665: 3644: 3643: 3639: 3593: 3592: 3588: 3548: 3543: 3542: 3538: 3502: 3501: 3497: 3463: 3462: 3458: 3409:Berrisford JM, 3408: 3407: 3403: 3357: 3356: 3352: 3329:(10): 1785–95. 3312: 3311: 3304: 3260: 3259: 3255: 3219: 3218: 3214: 3207: 3194: 3193: 3189: 3166:10.1038/nrm3997 3151: 3150: 3137: 3098: 3097: 3093: 3057: 3056: 3052: 3021:(38): 10971–8. 3008: 3007: 3003: 2967: 2966: 2959: 2915: 2914: 2910: 2887:(12): 1575–81. 2874: 2873: 2869: 2833: 2832: 2828: 2798: 2797: 2793: 2783: 2782: 2775: 2771: 2461: 2423:under the name 2417: 2415:In chloroplasts 2402: 2347: 2340: 2336: 2282: 2237: 2200:– a reversible 2134: 2126:Asimina triloba 2114: 1755:NDUFA7 / B14.5A 1707:NDUFC2 / B14.5B 1467:NDUFA11 / B14.7 1251:NDUFA12 / B17.2 631: 624: 570: 557: 550: 526: 517: 512: 415: 411: 407: 380: 368: 351: 114:OPM superfamily 67:protein complex 53:(also known as 38: 28: 23: 22: 15: 12: 11: 5: 7610: 7608: 7600: 7599: 7594: 7589: 7584: 7574: 7573: 7546: 7545: 7522: 7521: 7519: 7518: 7505: 7492: 7479: 7466: 7453: 7440: 7426: 7424: 7420: 7419: 7417: 7416: 7411: 7406: 7401: 7396: 7390: 7388: 7384: 7383: 7381: 7380: 7375: 7370: 7365: 7359: 7357: 7356:Classification 7353: 7352: 7350: 7349: 7344: 7339: 7334: 7328: 7326: 7322: 7321: 7319: 7318: 7313: 7308: 7303: 7298: 7293: 7288: 7283: 7277: 7275: 7271: 7270: 7265: 7263: 7262: 7255: 7248: 7240: 7231: 7230: 7222: 7219: 7218: 7215: 7214: 7212: 7211: 7206: 7201: 7196: 7191: 7186: 7181: 7176: 7171: 7166: 7161: 7156: 7151: 7146: 7141: 7136: 7131: 7126: 7121: 7116: 7111: 7106: 7100: 7098: 7090: 7089: 7087: 7086: 7081: 7075: 7073: 7065: 7064: 7062: 7061: 7056: 7051: 7045: 7043: 7035: 7034: 7032: 7031: 7025: 7023: 7015: 7014: 7012: 7011: 7006: 7001: 6996: 6991: 6986: 6981: 6975: 6973: 6962: 6956: 6955: 6952: 6951: 6949: 6948: 6943: 6942: 6941: 6936: 6926: 6920: 6914: 6910: 6909: 6906: 6905: 6903: 6902: 6896: 6893: 6892: 6890: 6889: 6883: 6881: 6873: 6872: 6870: 6869: 6864: 6859: 6853: 6851: 6841: 6840: 6838: 6837: 6832: 6827: 6821: 6819: 6809: 6808: 6806: 6805: 6800: 6795: 6790: 6785: 6780: 6775: 6769: 6767: 6754: 6748: 6747: 6744: 6743: 6741: 6740: 6735: 6730: 6725: 6720: 6714: 6712: 6704: 6703: 6701: 6700: 6695: 6690: 6684: 6682: 6672: 6671: 6669: 6668: 6663: 6657: 6655: 6645: 6644: 6642: 6641: 6635: 6633: 6623: 6622: 6620: 6619: 6614: 6609: 6604: 6598: 6596: 6583: 6581:Inner membrane 6577: 6576: 6574: 6573: 6568: 6562: 6560: 6554: 6553: 6550: 6549: 6547: 6546: 6540: 6538: 6526: 6525: 6523: 6522: 6516: 6514: 6503: 6502: 6500: 6499: 6494: 6488: 6486: 6473: 6471:Outer membrane 6467: 6466: 6460: 6458: 6457: 6450: 6443: 6435: 6426: 6425: 6423: 6422: 6417: 6412: 6406: 6404: 6400: 6399: 6397: 6396: 6394:ETC Complex IV 6391: 6386: 6380: 6378: 6374: 6373: 6359: 6357: 6356: 6349: 6342: 6334: 6325: 6324: 6321: 6320: 6318: 6317: 6312: 6306: 6304: 6300: 6299: 6297: 6296: 6291: 6286: 6281: 6276: 6271: 6266: 6261: 6256: 6251: 6246: 6238: 6233: 6232: 6227: 6222: 6217: 6212: 6208: 6203: 6197: 6195: 6188: 6175: 6174: 6171: 6170: 6168: 6167: 6162: 6156: 6154: 6147: 6146: 6144: 6143: 6137: 6135: 6128: 6127: 6125: 6124: 6118: 6116: 6109: 6108: 6106: 6105: 6096:(regulated by 6093: 6092: 6073: 6071: 6061: 6055: 6054: 6052: 6051: 6045: 6040: 6029: 6028: 6023: 6018: 6013: 6008: 6002: 6000: 5996: 5995: 5983: 5981: 5980: 5973: 5966: 5958: 5949: 5948: 5946: 5945: 5940: 5935: 5930: 5925: 5920: 5915: 5910: 5905: 5900: 5895: 5890: 5885: 5880: 5875: 5870: 5864: 5861: 5860: 5851: 5849: 5848: 5841: 5834: 5826: 5820: 5819: 5809: 5804: 5799: 5789: 5782: 5781:External links 5779: 5777: 5776: 5721: 5702:(2–3): 77–84. 5686: 5645: 5604: 5575:(9): 608–622. 5552: 5503: 5460: 5419: 5370: 5329: 5270: 5229: 5200:(2): 491–497. 5180: 5144: 5092: 5063:(6): 731–745. 5043: 5000: 4948: 4927:10.1038/nrm762 4905: 4856: 4807: 4766: 4717: 4688:(7): 1083–92. 4668: 4621: 4586: 4537: 4496: 4453: 4408: 4359: 4324: 4283: 4254:(3): 378–386. 4231: 4182: 4133: 4084: 4063:(11): 1390–7. 4043: 3984: 3949: 3908: 3867: 3812: 3752: 3711: 3670: 3663: 3637: 3586: 3559:(6217): 44–9. 3536: 3515:(10): 1364–9. 3495: 3456: 3401: 3350: 3302: 3253: 3232:(2): 186–206. 3212: 3205: 3187: 3135: 3091: 3050: 3001: 2957: 2908: 2867: 2826: 2791: 2772: 2770: 2767: 2766: 2765: 2764: 2763: 2757: 2751: 2745: 2739: 2733: 2727: 2718: 2717: 2716: 2710: 2704: 2695: 2694: 2693: 2687: 2681: 2675: 2669: 2663: 2657: 2651: 2642: 2641: 2640: 2634: 2625: 2624: 2623: 2617: 2611: 2605: 2599: 2593: 2587: 2584: 2581: 2578: 2572: 2563: 2562: 2561: 2558: 2555: 2552: 2546: 2543: 2537: 2531: 2528: 2522: 2516: 2510: 2507: 2501: 2495: 2492: 2489: 2483: 2480: 2474: 2460: 2457: 2416: 2413: 2400: 2355:Leigh syndrome 2346: 2343: 2338: 2334: 2281: 2278: 2236: 2233: 2217:hepatotoxicity 2132: 2113: 2110: 2109: 2108: 2097: 2089: 2086: 2077: 2076: 2068: 2065: 2062: 2059: 2055: 2054: 2046: 2043: 2040: 2037: 2033: 2032: 2024: 2021: 2018: 2015: 2011: 2010: 2002: 1999: 1996: 1993: 1989: 1988: 1984: 1983: 1975: 1972: 1967: 1964: 1960: 1959: 1956: 1953: 1948: 1945: 1941: 1940: 1932: 1929: 1924: 1921: 1917: 1916: 1908: 1905: 1900: 1899:NDUFA10 / 42kD 1897: 1893: 1892: 1884: 1881: 1876: 1873: 1869: 1868: 1860: 1857: 1852: 1849: 1845: 1844: 1836: 1833: 1828: 1825: 1821: 1820: 1812: 1809: 1804: 1801: 1797: 1796: 1788: 1785: 1780: 1777: 1773: 1772: 1764: 1761: 1756: 1753: 1749: 1748: 1740: 1737: 1732: 1729: 1725: 1724: 1716: 1713: 1708: 1705: 1701: 1700: 1692: 1689: 1684: 1681: 1677: 1676: 1668: 1665: 1660: 1659:NDUFB10 / PDSW 1657: 1653: 1652: 1644: 1641: 1636: 1633: 1629: 1628: 1620: 1617: 1612: 1609: 1605: 1604: 1596: 1593: 1588: 1585: 1581: 1580: 1572: 1569: 1564: 1561: 1557: 1556: 1548: 1545: 1540: 1537: 1533: 1532: 1524: 1521: 1516: 1513: 1509: 1508: 1500: 1497: 1492: 1491:NDUFB11 / ESSS 1489: 1485: 1484: 1476: 1473: 1468: 1465: 1461: 1460: 1452: 1449: 1444: 1441: 1437: 1436: 1428: 1425: 1420: 1417: 1413: 1412: 1404: 1401: 1396: 1393: 1389: 1388: 1380: 1377: 1372: 1369: 1365: 1364: 1356: 1353: 1348: 1345: 1341: 1340: 1332: 1329: 1324: 1323:NDUFAB1 / ACPM 1321: 1317: 1316: 1308: 1305: 1300: 1299:NDUFA9 / 39kDa 1297: 1293: 1292: 1284: 1281: 1276: 1273: 1269: 1268: 1260: 1257: 1252: 1249: 1245: 1244: 1236: 1233: 1228: 1225: 1221: 1220: 1216: 1215: 1207: 1198: 1193: 1190: 1186: 1185: 1163: 1154: 1149: 1146: 1142: 1141: 1133: 1124: 1119: 1116: 1112: 1111: 1096: 1087: 1082: 1079: 1075: 1074: 1066: 1057: 1052: 1049: 1045: 1044: 1029: 1020: 1015: 1012: 1008: 1007: 999: 990: 985: 982: 978: 977: 969: 954: 949: 946: 942: 941: 933: 918: 913: 910: 906: 905: 897: 882: 877: 874: 870: 869: 861: 846: 841: 838: 834: 833: 825: 810: 805: 802: 798: 797: 789: 774: 769: 766: 762: 761: 753: 738: 733: 730: 726: 725: 724:Core Subunits 721: 720: 714: 707: 706:Human protein 704: 694: 667:TC# 2.A.63.1.1 630: 627: 622: 612:The resulting 569: 566: 556: 553: 548: 524: 516: 513: 511: 508: 417: 416: 413: 409: 405: 378: 366: 350: 347: 328: 327: 324: 323: 318: 312: 311: 306: 300: 299: 294: 288: 287: 279: 278: 269: 263: 262: 251: 244: 243: 238: 232: 231: 226: 220: 219: 214: 208: 207: 202: 196: 195: 190: 184: 183: 178: 172: 171: 167: 166: 161: 155: 154: 146: 145: 140: 134: 133: 128: 122: 121: 116: 110: 109: 106: 102: 101: 97: 96: 36: 26: 24: 14: 13: 10: 9: 6: 4: 3: 2: 7609: 7598: 7595: 7593: 7590: 7588: 7585: 7583: 7580: 7579: 7577: 7570: 7569: 7567: 7563: 7558: 7555: 7553: 7544: 7539: 7534: 7530: 7516: 7512: 7511: 7506: 7503: 7499: 7498: 7493: 7490: 7486: 7485: 7480: 7477: 7473: 7472: 7467: 7464: 7460: 7459: 7454: 7451: 7447: 7446: 7441: 7438: 7434: 7433: 7428: 7427: 7425: 7421: 7415: 7412: 7410: 7407: 7405: 7402: 7400: 7397: 7395: 7392: 7391: 7389: 7385: 7379: 7376: 7374: 7373:Enzyme family 7371: 7369: 7366: 7364: 7361: 7360: 7358: 7354: 7348: 7345: 7343: 7340: 7338: 7337:Cooperativity 7335: 7333: 7330: 7329: 7327: 7323: 7317: 7314: 7312: 7309: 7307: 7304: 7302: 7299: 7297: 7296:Oxyanion hole 7294: 7292: 7289: 7287: 7284: 7282: 7279: 7278: 7276: 7272: 7268: 7261: 7256: 7254: 7249: 7247: 7242: 7241: 7238: 7228: 7227: 7220: 7210: 7207: 7205: 7202: 7200: 7197: 7195: 7192: 7190: 7187: 7185: 7182: 7180: 7177: 7175: 7172: 7170: 7167: 7165: 7162: 7160: 7157: 7155: 7152: 7150: 7147: 7145: 7142: 7140: 7137: 7135: 7132: 7130: 7127: 7125: 7122: 7120: 7117: 7115: 7112: 7110: 7107: 7105: 7102: 7101: 7099: 7096: 7091: 7085: 7082: 7080: 7077: 7076: 7074: 7071: 7066: 7060: 7057: 7055: 7052: 7050: 7047: 7046: 7044: 7041: 7036: 7030: 7027: 7026: 7024: 7021: 7016: 7010: 7007: 7005: 7002: 7000: 6997: 6995: 6992: 6990: 6987: 6985: 6982: 6980: 6977: 6976: 6974: 6971: 6966: 6963: 6961: 6957: 6947: 6944: 6940: 6937: 6935: 6932: 6931: 6930: 6927: 6925: 6922: 6921: 6918: 6915: 6911: 6901: 6898: 6897: 6894: 6888: 6885: 6884: 6882: 6879: 6874: 6868: 6865: 6863: 6860: 6858: 6855: 6854: 6852: 6849: 6848: 6842: 6836: 6833: 6831: 6828: 6826: 6823: 6822: 6820: 6817: 6816: 6810: 6804: 6801: 6799: 6796: 6794: 6791: 6789: 6786: 6784: 6781: 6779: 6776: 6774: 6771: 6770: 6768: 6765: 6764: 6758: 6755: 6753: 6749: 6739: 6736: 6734: 6731: 6729: 6726: 6724: 6721: 6719: 6716: 6715: 6713: 6710: 6705: 6699: 6696: 6694: 6691: 6689: 6686: 6685: 6683: 6680: 6679: 6673: 6667: 6664: 6662: 6659: 6658: 6656: 6653: 6652: 6646: 6640: 6637: 6636: 6634: 6631: 6630: 6624: 6618: 6615: 6613: 6610: 6608: 6605: 6603: 6600: 6599: 6597: 6594: 6593: 6587: 6584: 6582: 6578: 6572: 6569: 6567: 6564: 6563: 6561: 6559: 6555: 6545: 6542: 6541: 6539: 6536: 6533: 6527: 6521: 6518: 6517: 6515: 6512: 6510: 6504: 6498: 6495: 6493: 6490: 6489: 6487: 6484: 6483: 6477: 6474: 6472: 6468: 6463: 6462:Mitochondrial 6456: 6451: 6449: 6444: 6442: 6437: 6436: 6433: 6421: 6418: 6416: 6413: 6411: 6408: 6407: 6405: 6401: 6395: 6392: 6390: 6387: 6385: 6384:ETC Complex I 6382: 6381: 6379: 6375: 6370: 6366: 6362: 6355: 6350: 6348: 6343: 6341: 6336: 6335: 6332: 6316: 6313: 6311: 6308: 6307: 6305: 6301: 6295: 6292: 6290: 6287: 6285: 6282: 6280: 6277: 6275: 6272: 6270: 6267: 6265: 6262: 6260: 6257: 6255: 6252: 6250: 6247: 6245: 6241: 6235: 6234: 6231: 6228: 6226: 6223: 6221: 6218: 6216: 6209: 6207: 6204: 6202: 6199: 6198: 6196: 6192: 6189: 6187: 6182: 6178:Mitochondrial 6176: 6166: 6163: 6161: 6158: 6157: 6155: 6153: 6148: 6142: 6139: 6138: 6136: 6134: 6129: 6123: 6120: 6119: 6117: 6115: 6110: 6103: 6099: 6095: 6094: 6090: 6086: 6082: 6078: 6075: 6074: 6072: 6070: 6065: 6062: 6060: 6056: 6049: 6046: 6044: 6041: 6038: 6034: 6031: 6030: 6027: 6024: 6022: 6019: 6017: 6014: 6012: 6009: 6007: 6004: 6003: 6001: 5997: 5993: 5990: 5986: 5979: 5974: 5972: 5967: 5965: 5960: 5959: 5956: 5944: 5941: 5939: 5936: 5934: 5931: 5929: 5928:NADPH oxidase 5926: 5924: 5921: 5919: 5916: 5914: 5911: 5909: 5906: 5904: 5901: 5899: 5896: 5894: 5891: 5889: 5886: 5884: 5881: 5879: 5876: 5874: 5871: 5869: 5866: 5865: 5862: 5858: 5857:flavoproteins 5854: 5847: 5842: 5840: 5835: 5833: 5828: 5827: 5824: 5817: 5813: 5810: 5808: 5805: 5803: 5800: 5797: 5793: 5790: 5788: 5785: 5784: 5780: 5772: 5768: 5763: 5758: 5753: 5748: 5745:(22): 12505. 5744: 5740: 5736: 5734: 5725: 5722: 5717: 5713: 5709: 5705: 5701: 5697: 5690: 5687: 5682: 5678: 5673: 5668: 5665:(5): 443–53. 5664: 5660: 5656: 5649: 5646: 5641: 5637: 5632: 5627: 5623: 5619: 5615: 5608: 5605: 5600: 5596: 5591: 5586: 5582: 5578: 5574: 5570: 5566: 5559: 5557: 5553: 5548: 5544: 5539: 5534: 5530: 5526: 5522: 5518: 5514: 5507: 5504: 5499: 5495: 5491: 5487: 5483: 5479: 5475: 5471: 5464: 5461: 5456: 5452: 5447: 5442: 5439:(3): 674–82. 5438: 5434: 5430: 5423: 5420: 5415: 5411: 5406: 5401: 5397: 5393: 5390:(4): 367–72. 5389: 5385: 5381: 5374: 5371: 5366: 5362: 5357: 5352: 5348: 5344: 5340: 5333: 5330: 5325: 5321: 5316: 5311: 5306: 5301: 5297: 5293: 5289: 5285: 5281: 5274: 5271: 5266: 5262: 5257: 5252: 5248: 5244: 5240: 5233: 5230: 5225: 5221: 5216: 5211: 5207: 5203: 5199: 5195: 5191: 5184: 5181: 5176: 5172: 5168: 5164: 5160: 5156: 5148: 5145: 5140: 5136: 5131: 5126: 5122: 5118: 5114: 5110: 5106: 5099: 5097: 5093: 5088: 5084: 5079: 5074: 5070: 5066: 5062: 5058: 5054: 5047: 5044: 5039: 5035: 5031: 5027: 5023: 5019: 5015: 5011: 5004: 5001: 4996: 4992: 4987: 4982: 4978: 4974: 4970: 4966: 4962: 4955: 4953: 4949: 4944: 4940: 4936: 4932: 4928: 4924: 4921:(3): 214–20. 4920: 4916: 4909: 4906: 4901: 4897: 4892: 4887: 4883: 4879: 4875: 4871: 4867: 4860: 4857: 4852: 4848: 4843: 4838: 4834: 4830: 4826: 4822: 4818: 4811: 4808: 4803: 4799: 4794: 4789: 4785: 4781: 4777: 4770: 4767: 4762: 4758: 4753: 4748: 4744: 4740: 4737:(7): 946–57. 4736: 4732: 4728: 4721: 4718: 4713: 4709: 4704: 4699: 4695: 4691: 4687: 4683: 4679: 4672: 4669: 4663: 4658: 4654: 4650: 4645: 4640: 4636: 4632: 4625: 4622: 4617: 4613: 4609: 4605: 4601: 4597: 4590: 4587: 4582: 4578: 4573: 4568: 4564: 4560: 4557:(6): 253–70. 4556: 4552: 4548: 4541: 4538: 4533: 4529: 4524: 4519: 4516:(3): 256–64. 4515: 4511: 4507: 4500: 4497: 4492: 4488: 4484: 4480: 4476: 4472: 4469:(4): 933–40. 4468: 4464: 4457: 4454: 4449: 4445: 4440: 4435: 4431: 4427: 4423: 4419: 4412: 4409: 4404: 4400: 4395: 4390: 4386: 4382: 4378: 4374: 4370: 4363: 4360: 4355: 4351: 4347: 4343: 4340:(2): 139–60. 4339: 4336:(in French). 4335: 4328: 4325: 4320: 4316: 4311: 4306: 4303:(3): 443–52. 4302: 4298: 4294: 4287: 4284: 4279: 4275: 4271: 4267: 4262: 4257: 4253: 4249: 4245: 4238: 4236: 4232: 4227: 4223: 4218: 4213: 4209: 4205: 4202:(6): 718–27. 4201: 4197: 4193: 4186: 4183: 4178: 4174: 4169: 4164: 4160: 4156: 4152: 4148: 4144: 4137: 4134: 4129: 4125: 4120: 4115: 4111: 4107: 4103: 4099: 4095: 4088: 4085: 4080: 4076: 4071: 4066: 4062: 4058: 4054: 4047: 4044: 4039: 4035: 4030: 4025: 4020: 4015: 4011: 4007: 4004:(5): 1930–5. 4003: 3999: 3995: 3988: 3985: 3980: 3976: 3972: 3968: 3965:(4): 857–70. 3964: 3960: 3953: 3950: 3945: 3941: 3936: 3931: 3928:(3): 212–24. 3927: 3923: 3919: 3912: 3909: 3904: 3900: 3895: 3890: 3886: 3882: 3878: 3871: 3868: 3863: 3859: 3855: 3851: 3847: 3843: 3839: 3835: 3831: 3827: 3823: 3816: 3813: 3808: 3804: 3800: 3796: 3791: 3786: 3782: 3778: 3774: 3770: 3766: 3762: 3756: 3753: 3748: 3744: 3739: 3734: 3731:(3): 378–86. 3730: 3726: 3722: 3715: 3712: 3707: 3703: 3698: 3693: 3689: 3685: 3681: 3674: 3671: 3666: 3664:0-471-19350-X 3660: 3656: 3651: 3650: 3641: 3638: 3633: 3629: 3625: 3621: 3617: 3613: 3609: 3605: 3601: 3597: 3590: 3587: 3582: 3578: 3574: 3570: 3566: 3562: 3558: 3554: 3547: 3540: 3537: 3532: 3528: 3523: 3518: 3514: 3510: 3506: 3499: 3496: 3491: 3487: 3483: 3479: 3476:(2): 238–42. 3475: 3471: 3467: 3460: 3457: 3452: 3448: 3443: 3438: 3433: 3428: 3424: 3420: 3416: 3412: 3405: 3402: 3397: 3393: 3388: 3383: 3378: 3373: 3369: 3365: 3361: 3354: 3351: 3346: 3342: 3337: 3332: 3328: 3324: 3320: 3316: 3309: 3307: 3303: 3298: 3294: 3289: 3284: 3280: 3276: 3273:(1): 149–58. 3272: 3268: 3264: 3257: 3254: 3249: 3245: 3240: 3235: 3231: 3227: 3223: 3216: 3213: 3208: 3202: 3198: 3191: 3188: 3183: 3179: 3175: 3171: 3167: 3163: 3160:(6): 375–88. 3159: 3155: 3148: 3146: 3144: 3142: 3140: 3136: 3131: 3127: 3123: 3119: 3115: 3111: 3108:(1): 93–107. 3107: 3103: 3095: 3092: 3087: 3083: 3078: 3073: 3069: 3065: 3061: 3054: 3051: 3046: 3042: 3037: 3032: 3028: 3024: 3020: 3016: 3012: 3005: 3002: 2997: 2993: 2988: 2983: 2980:(3): 286–92. 2979: 2975: 2971: 2964: 2962: 2958: 2953: 2949: 2945: 2941: 2936: 2931: 2928:(2): 157–61. 2927: 2923: 2919: 2912: 2909: 2904: 2900: 2895: 2890: 2886: 2882: 2878: 2871: 2868: 2863: 2859: 2854: 2849: 2845: 2841: 2837: 2830: 2827: 2822: 2818: 2814: 2810: 2806: 2802: 2795: 2792: 2787: 2780: 2778: 2774: 2768: 2761: 2758: 2755: 2752: 2749: 2746: 2743: 2740: 2737: 2734: 2731: 2728: 2725: 2722: 2721: 2719: 2714: 2711: 2708: 2705: 2702: 2699: 2698: 2696: 2691: 2688: 2685: 2682: 2679: 2676: 2673: 2670: 2667: 2664: 2661: 2658: 2655: 2652: 2649: 2646: 2645: 2643: 2638: 2635: 2632: 2629: 2628: 2626: 2621: 2618: 2615: 2612: 2609: 2606: 2603: 2600: 2597: 2594: 2591: 2588: 2585: 2582: 2579: 2576: 2573: 2570: 2567: 2566: 2564: 2559: 2556: 2553: 2550: 2547: 2544: 2541: 2538: 2535: 2532: 2529: 2526: 2523: 2520: 2517: 2514: 2511: 2508: 2505: 2502: 2499: 2496: 2493: 2490: 2487: 2484: 2481: 2478: 2475: 2472: 2469: 2468: 2466: 2465: 2464: 2458: 2456: 2454: 2450: 2446: 2442: 2438: 2434: 2430: 2426: 2422: 2414: 2412: 2408: 2404: 2397: 2393: 2387: 2384: 2378: 2376: 2372: 2368: 2364: 2360: 2356: 2352: 2344: 2342: 2330: 2328: 2324: 2320: 2315: 2311: 2307: 2303: 2297: 2295: 2291: 2287: 2279: 2277: 2275: 2271: 2267: 2266:peroxynitrite 2261: 2258: 2254: 2250: 2246: 2241: 2234: 2232: 2230: 2226: 2222: 2218: 2213: 2211: 2206: 2203: 2199: 2194: 2190: 2187: 2183: 2179: 2177: 2173: 2169: 2168: 2163: 2162: 2157: 2153: 2149: 2148: 2143: 2142:isoflavonoids 2139: 2135: 2128: 2127: 2122: 2118: 2111: 2106: 2102: 2098: 2096: 2095: 2090: 2087: 2084: 2083: 2082: 2075: 2072: 2069: 2066: 2063: 2060: 2057: 2056: 2053: 2050: 2047: 2044: 2041: 2038: 2035: 2034: 2031: 2028: 2025: 2022: 2019: 2016: 2013: 2012: 2009: 2006: 2003: 2000: 1997: 1994: 1991: 1985: 1982: 1979: 1976: 1973: 1971: 1968: 1965: 1962: 1961: 1957: 1954: 1952: 1949: 1946: 1943: 1942: 1939: 1936: 1933: 1930: 1928: 1925: 1922: 1919: 1918: 1915: 1912: 1909: 1906: 1904: 1901: 1898: 1895: 1894: 1891: 1888: 1885: 1882: 1880: 1877: 1875:NDUFC1 / KFYI 1874: 1871: 1870: 1867: 1864: 1861: 1858: 1856: 1853: 1851:NDUFB1 / MNLL 1850: 1847: 1846: 1843: 1840: 1837: 1834: 1832: 1829: 1827:NDUFB5 / SGDH 1826: 1823: 1822: 1819: 1816: 1813: 1810: 1808: 1805: 1803:NDUFA4 / MLRQ 1802: 1799: 1798: 1795: 1792: 1789: 1786: 1784: 1781: 1778: 1775: 1774: 1771: 1768: 1765: 1762: 1760: 1757: 1754: 1751: 1750: 1747: 1744: 1741: 1738: 1736: 1733: 1731:NDUFB2 / AGGG 1730: 1727: 1726: 1723: 1720: 1717: 1714: 1712: 1709: 1706: 1703: 1702: 1699: 1696: 1693: 1690: 1688: 1685: 1683:NDUFB8 / ASHI 1682: 1679: 1678: 1675: 1672: 1669: 1666: 1664: 1661: 1658: 1655: 1654: 1651: 1648: 1645: 1642: 1640: 1637: 1634: 1631: 1630: 1627: 1624: 1621: 1618: 1616: 1613: 1611:NDUFA8 / PGIV 1610: 1607: 1606: 1603: 1600: 1597: 1594: 1592: 1589: 1586: 1583: 1582: 1579: 1576: 1573: 1570: 1568: 1565: 1562: 1559: 1558: 1555: 1552: 1549: 1546: 1544: 1541: 1538: 1535: 1534: 1531: 1528: 1525: 1522: 1520: 1517: 1515:NDUFS5 / PFFD 1514: 1511: 1510: 1507: 1504: 1501: 1498: 1496: 1493: 1490: 1487: 1486: 1483: 1480: 1477: 1474: 1472: 1469: 1466: 1463: 1462: 1459: 1456: 1453: 1450: 1448: 1445: 1442: 1439: 1438: 1435: 1432: 1429: 1426: 1424: 1421: 1419:NDUFA5 / AB13 1418: 1415: 1414: 1411: 1408: 1405: 1402: 1400: 1397: 1394: 1391: 1390: 1387: 1384: 1381: 1378: 1376: 1373: 1371:NDUFA1 / MFWE 1370: 1367: 1366: 1363: 1360: 1357: 1354: 1352: 1349: 1346: 1343: 1342: 1339: 1336: 1333: 1330: 1328: 1325: 1322: 1319: 1318: 1315: 1312: 1309: 1306: 1304: 1301: 1298: 1295: 1294: 1291: 1288: 1285: 1282: 1280: 1277: 1275:NDUFS4 / AQDQ 1274: 1271: 1270: 1267: 1264: 1261: 1258: 1256: 1253: 1250: 1247: 1246: 1243: 1240: 1237: 1234: 1232: 1229: 1226: 1223: 1222: 1217: 1214: 1211: 1208: 1206: 1203: 1199: 1197: 1194: 1191: 1188: 1187: 1184: 1181: 1177: 1174: 1170: 1167: 1164: 1162: 1159: 1155: 1153: 1150: 1147: 1144: 1143: 1140: 1137: 1134: 1132: 1129: 1125: 1123: 1120: 1117: 1114: 1113: 1110: 1107: 1103: 1100: 1097: 1095: 1092: 1088: 1086: 1083: 1080: 1077: 1076: 1073: 1070: 1067: 1065: 1062: 1058: 1056: 1053: 1050: 1047: 1046: 1043: 1040: 1036: 1033: 1030: 1028: 1025: 1021: 1019: 1016: 1013: 1010: 1009: 1006: 1003: 1000: 998: 995: 991: 989: 986: 983: 980: 979: 976: 973: 970: 968: 965: 962: 959: 955: 953: 950: 947: 944: 943: 940: 937: 934: 932: 929: 926: 923: 919: 917: 914: 911: 908: 907: 904: 901: 898: 896: 893: 890: 887: 883: 881: 878: 875: 872: 871: 868: 865: 862: 860: 857: 854: 851: 847: 845: 842: 839: 836: 835: 832: 829: 826: 824: 821: 818: 815: 811: 809: 806: 803: 800: 799: 796: 793: 790: 788: 785: 782: 779: 775: 773: 770: 767: 764: 763: 760: 757: 754: 752: 749: 746: 743: 739: 737: 734: 731: 728: 727: 722: 718: 715: 712: 708: 705: 702: 698: 695: 692: 691: 685: 683: 678: 674: 670: 668: 663: 659: 653: 651: 647: 643: 640: 636: 628: 626: 619: 615: 610: 608: 604: 600: 596: 592: 586: 584: 580: 576: 567: 565: 561: 554: 552: 546: 542: 538: 534: 530: 522: 514: 509: 507: 505: 500: 498: 494: 490: 485: 483: 479: 474: 470: 468: 464: 460: 459: 454: 450: 449: 444: 440: 439: 434: 430: 426: 422: 403: 402: 401: 398: 396: 392: 388: 375: 363: 355: 348: 346: 344: 340: 336: 322: 319: 317: 313: 310: 307: 305: 301: 298: 295: 293: 289: 284: 280: 277: 273: 270: 268: 267:Gene Ontology 264: 261: 258: 255: 252: 249: 245: 242: 239: 237: 233: 230: 227: 225: 221: 218: 215: 213: 209: 206: 205:NiceZyme view 203: 201: 197: 194: 191: 189: 185: 182: 179: 177: 173: 168: 165: 162: 160: 156: 151: 144: 141: 139: 135: 132: 129: 127: 123: 120: 117: 115: 111: 107: 103: 98: 93: 90: 88: 87:mitochondrial 84: 80: 76: 72: 68: 64: 60: 56: 52: 49: 45: 32: 19: 7559: 7549: 7548: 7510:Translocases 7507: 7494: 7481: 7468: 7455: 7445:Transferases 7442: 7429: 7286:Binding site 7223: 7070:ATP synthase 6877: 6845: 6813: 6761: 6728:ATP synthase 6708: 6676: 6649: 6627: 6607:Cytochrome c 6590: 6530: 6520:Kynureninase 6507: 6480: 6365:proton pumps 6236: 6225:Cytochrome c 6133:succinyl-CoA 5888:Cryptochrome 5742: 5738: 5732: 5724: 5699: 5695: 5689: 5662: 5658: 5648: 5624:(4): 360–8. 5621: 5617: 5607: 5572: 5568: 5520: 5516: 5506: 5473: 5469: 5463: 5436: 5432: 5422: 5387: 5383: 5373: 5346: 5342: 5332: 5287: 5283: 5273: 5246: 5243:Biochemistry 5242: 5232: 5197: 5193: 5183: 5161:(2): 491–9. 5158: 5154: 5147: 5112: 5108: 5060: 5056: 5046: 5016:(1): 89–95. 5013: 5009: 5003: 4968: 4964: 4918: 4914: 4908: 4873: 4869: 4859: 4824: 4820: 4810: 4783: 4779: 4769: 4734: 4730: 4720: 4685: 4681: 4671: 4634: 4624: 4599: 4595: 4589: 4554: 4550: 4540: 4513: 4509: 4499: 4466: 4462: 4456: 4421: 4411: 4379:(5): 883–8. 4376: 4373:FEBS Letters 4372: 4362: 4337: 4333: 4327: 4300: 4296: 4286: 4251: 4247: 4199: 4195: 4185: 4150: 4146: 4136: 4101: 4097: 4087: 4060: 4056: 4046: 4001: 3997: 3987: 3962: 3958: 3952: 3925: 3921: 3911: 3884: 3880: 3870: 3829: 3825: 3815: 3772: 3768: 3755: 3728: 3724: 3714: 3687: 3683: 3673: 3649:Biochemistry 3648: 3640: 3599: 3595: 3589: 3556: 3552: 3539: 3512: 3508: 3498: 3473: 3469: 3459: 3422: 3418: 3404: 3367: 3363: 3353: 3326: 3322: 3313:Efremov RG, 3270: 3267:Biochemistry 3266: 3256: 3229: 3225: 3215: 3196: 3190: 3157: 3153: 3105: 3101: 3094: 3067: 3063: 3053: 3018: 3015:Biochemistry 3014: 3004: 2977: 2973: 2925: 2922:FEBS Letters 2921: 2911: 2884: 2880: 2870: 2846:(2): 300–4. 2843: 2840:FEBS Letters 2839: 2829: 2804: 2800: 2794: 2786:Biochemistry 2785: 2462: 2452: 2448: 2444: 2432: 2424: 2418: 2409: 2405: 2388: 2379: 2353:, including 2348: 2331: 2323:oxaloacetate 2298: 2292:(as well as 2283: 2274:nitric oxide 2262: 2242: 2238: 2231:catabolism. 2214: 2207: 2195: 2191: 2180: 2176:piericidin A 2165: 2159: 2156:Lonchocarpus 2145: 2124: 2115: 2092: 2080: 1635:NDUFB9 / B22 1587:NDUFB7 / B18 1563:NDUFA13 /A13 1539:NDUFB4 / B15 1443:NDUFA6 / B14 1395:NDUFB3 / B12 1227:NDUFS6 / 13A 679: 675: 671: 661: 657: 654: 632: 611: 587: 571: 562: 558: 536: 533:coenzyme Q10 518: 504:ATP synthase 501: 488: 486: 475: 471: 466: 462: 456: 452: 446: 436: 418: 408:→ NAD + CoQH 399: 384: 357:NAD to NADH. 331: 193:BRENDA entry 83:coenzyme Q10 62: 58: 54: 43: 42: 7281:Active site 7020:Complex III 6242:synthesis: 6059:Anaplerotic 4971:(1): 1–13. 4827:: 517–524. 4635:GeroScience 3070:(1): 3–11. 2441:angiosperms 2437:gnetophytes 2429:gymnosperms 2421:land plants 2371:complex III 2182:Acetogenins 2147:Loganiaceae 2064:NDUF4_HUMAN 2042:NDUF3_HUMAN 2020:MIMIT_HUMAN 1998:CIA30_HUMAN 1970:NDUB6_HUMAN 1951:NDUV3_HUMAN 1927:NUA4L_HUMAN 1903:NDUAA_HUMAN 1879:NDUC1_HUMAN 1855:NDUB1_HUMAN 1831:NDUB5_HUMAN 1807:NDUA4_HUMAN 1783:NDUA3_HUMAN 1779:NDUFA3 / B9 1759:NDUA7_HUMAN 1735:NDUB2_HUMAN 1711:NDUC2_HUMAN 1687:NDUB8_HUMAN 1663:NDUBA_HUMAN 1639:NDUB9_HUMAN 1615:NDUA8_HUMAN 1591:NDUB7_HUMAN 1567:NDUAD_HUMAN 1543:NDUB4_HUMAN 1519:NDUS5_HUMAN 1495:NDUBB_HUMAN 1471:NDUAB_HUMAN 1447:NDUA6_HUMAN 1423:NDUA5_HUMAN 1399:NDUB3_HUMAN 1375:NDUA1_HUMAN 1351:NDUA2_HUMAN 1347:NDUFA2 / B8 1303:NDUA9_HUMAN 1279:NDUS4_HUMAN 1255:NDUAC_HUMAN 1231:NDUS6_HUMAN 1122:NU4LM_HUMAN 1118:ND4L / NULM 952:NDUS1_HUMAN 916:NDUV1_HUMAN 880:NDUS2_HUMAN 844:NDUS3_HUMAN 808:NDUV2_HUMAN 772:NDUS8_HUMAN 736:NDUS7_HUMAN 603:semiquinone 599:semiquinone 377:CoQ to CoQH 365:FMN to FMNH 181:IntEnz view 153:Identifiers 126:OPM protein 100:Identifiers 7587:Glycolysis 7576:Categories 7484:Isomerases 7458:Hydrolases 7325:Regulation 7040:Complex IV 6847:urea cycle 6535:metabolism 6511:metabolism 6509:tryptophan 6237:Coenzyme Q 6211:Coenzyme Q 6069:acetyl-CoA 5985:Metabolism 5908:Flavodoxin 5794:(Requires 5696:Toxicology 3822:Sazanov LA 3761:Sazanov LA 3466:Sazanov LA 3411:Sazanov LA 3315:Sazanov LA 2769:References 2383:proteasome 2375:superoxide 2290:superoxide 2225:nefazodone 2186:Annonaceae 2172:ubiquinone 2121:acetogenin 2117:Bullatacin 2112:Inhibitors 2105:complex IV 1327:ACPM_HUMAN 1196:NU6M_HUMAN 1192:ND6 / NU6M 1152:NU5M_HUMAN 1148:ND5 / NU5M 1085:NU4M_HUMAN 1081:ND4 / NU4M 1055:NU3M_HUMAN 1051:ND3 / NU3M 1018:NU2M_HUMAN 1014:ND2 / NU2M 988:NU1M_HUMAN 984:ND1 / NU1M 618:antiporter 541:Ubiquinone 467:R. marinus 250:structures 217:KEGG entry 138:Membranome 7552:this edit 7363:EC number 7224:see also 6970:Complex I 6778:Aconitase 6011:Aconitase 5796:MDL Chime 5498:207990089 4653:2509-2723 4270:1932-7420 2807:: 69–92. 2392:succinate 2345:Pathology 2319:succinate 2243:The high 2221:flutamide 2210:Metformin 2161:Faboideae 2123:found in 1698:PF05821 614:ubiquinol 607:ubiquinol 595:ubiquinol 545:ubiquinol 510:Mechanism 493:TC# 3.D.1 478:apoptosis 170:Databases 75:electrons 18:Complex I 7592:EC 7.1.1 7387:Kinetics 7311:Cofactor 7274:Activity 6924:Frataxin 6798:Fumarase 6464:proteins 6420:V-ATPase 6361:Ion pump 6043:Fumarase 5771:34830386 5716:20132858 5681:20153825 5640:20368511 5599:31037949 5547:29643256 5490:31760927 5455:20132468 5414:20417232 5365:15985426 5324:16682634 5265:18307315 5224:29211056 5175:17916065 5139:28914132 5087:30582748 4995:19061483 4943:29513174 4935:11994742 4900:29629602 4851:30037775 4802:17956863 4761:26777588 4712:24569053 4662:11226580 4616:21718246 4581:22117616 4483:18599602 4403:20074573 4278:22902835 4226:19463981 4177:17557076 4128:16200211 4079:21749854 4038:20133838 3979:15843018 3944:15450959 3903:20493164 3854:20505720 3799:16469879 3747:22902835 3706:16950771 3624:15988517 3581:23582849 3573:25554780 3531:21565159 3490:17360196 3451:19635800 3396:21659507 3345:22386882 3297:22122402 3182:31633494 3174:25991374 3130:25828432 3122:19834734 3086:20371875 3045:17760425 2996:21172303 2944:10371157 2903:17094937 2821:16756485 2396:transfer 2249:cysteine 2167:Fabaceae 2138:rotenone 2074:PF06784 2052:PF05071 2030:PF05071 2008:PF08547 1981:PF09782 1938:PF15880 1923:NDUFA4L2 1914:PF01712 1890:PF15088 1866:PF08040 1818:PF06522 1770:PF07347 1746:PF14813 1650:PF05347 1626:PF06747 1602:PF05676 1530:PF10200 1458:PF05347 1410:PF08122 1386:PF15879 1314:PF01370 1242:PF10276 1213:PF00499 1183:PF00662 967:1.6.99.3 931:1.6.99.3 895:1.6.99.3 859:1.6.99.3 823:1.6.99.3 787:1.6.99.3 751:1.6.99.3 703:subunit 349:Function 337:damage ( 321:proteins 309:articles 297:articles 254:RCSB PDB 7543:Biology 7497:Ligases 7267:Enzymes 7084:MT-ATP8 7079:MT-ATP6 6999:MT-ND4L 6215:(CoQ10) 6194:Primary 6050:and ETC 5992:enzymes 5853:Protein 5762:8621559 5590:6657304 5538:5916474 5405:2885979 5315:1472492 5292:Bibcode 5215:5866163 5130:5718331 5078:7086484 5038:7501110 5030:9067806 4986:2605959 4891:6727140 4842:6389362 4752:4893024 4703:4331042 4572:3398862 4532:9230920 4491:1844073 4448:8037664 4439:1137156 4394:2836797 4354:7132401 4319:9711297 4217:2694978 4168:1914096 4119:1236688 4029:2808219 4006:Bibcode 3862:4372778 3834:Bibcode 3807:1892332 3777:Bibcode 3769:Science 3632:4372674 3604:Bibcode 3553:Science 3442:2785608 3387:3149303 3288:3254188 3248:9593887 3036:2258335 2952:2337382 2862:6325245 2748:MT-ND4L 2620:NDUFB11 2614:NDUFB10 2549:NDUFAF1 2540:NDUFA13 2534:NDUFA12 2525:NDUFA10 2270:hypoxia 2229:glucose 2081:Notes: 2061:NDUFAF4 2039:NDUFAF3 2017:NDUFAF2 1995:NDUFAF1 1842:PF09781 1794:PF14987 1722:PF06374 1674:PF10249 1578:PF06212 1554:PF07225 1506:PF10183 1482:PF02466 1434:PF04716 1362:PF05047 1338:PF00550 1290:PF04800 1266:PF05071 1205:1.6.5.3 1176:PF06455 1169:PF00361 1161:1.6.5.3 1139:PF00420 1131:1.6.5.3 1109:PF00361 1102:PF01059 1094:1.6.5.3 1072:PF00507 1064:1.6.5.3 1042:PF06444 1035:PF00361 1027:1.6.5.3 1005:PF00146 997:1.6.5.3 975:PF00384 961:1.6.5.3 939:PF01512 925:1.6.5.3 903:PF00346 889:1.6.5.3 867:PF00329 853:1.6.5.3 831:PF01257 817:1.6.5.3 795:PF12838 781:1.6.5.3 759:PF01058 745:1.6.5.3 711:UniProt 658:E. coli 635:mammals 453:E. coli 421:protons 276:QuickGO 241:profile 224:MetaCyc 164:7.1.1.2 69:of the 51:7.1.1.2 7550:As of 7529:Portal 7471:Lyases 7189:MT-TS2 7184:MT-TS1 7154:MT-TL2 7149:MT-TL1 7059:MT-CO3 7054:MT-CO2 7049:MT-CO1 7029:MT-CYB 7009:MT-ND6 7004:MT-ND5 6994:MT-ND4 6989:MT-ND3 6984:MT-ND2 6979:MT-ND1 6752:Matrix 6284:COQ10B 6279:COQ10A 5818:(MeSH) 5769:  5759:  5735:Genes" 5714:  5679:  5638:  5597:  5587:  5545:  5535:  5517:Stroke 5496:  5488:  5453:  5412:  5402:  5363:  5322:  5312:  5263:  5222:  5212:  5173:  5137:  5127:  5085:  5075:  5036:  5028:  4993:  4983:  4941:  4933:  4898:  4888:  4849:  4839:  4800:  4759:  4749:  4710:  4700:  4659:  4651:  4614:  4579:  4569:  4530:  4489:  4481:  4446:  4436:  4401:  4391:  4352:  4317:  4276:  4268:  4224:  4214:  4175:  4165:  4126:  4116:  4077:  4036:  4026:  3977:  3942:  3901:  3860:  3852:  3826:Nature 3805:  3797:  3745:  3704:  3661:  3657:–826. 3630:  3622:  3596:Nature 3579:  3571:  3529:  3488:  3449:  3439:  3394:  3384:  3343:  3295:  3285:  3246:  3203:  3180:  3172:  3128:  3120:  3102:Planta 3084:  3043:  3033:  2994:  2950:  2942:  2901:  2860:  2819:  2760:MT-ND6 2754:MT-ND5 2742:MT-ND4 2736:MT-ND3 2730:MT-ND2 2724:MT-ND1 2713:NDUFV3 2707:NDUFV2 2701:NDUFV1 2690:NDUFS8 2684:NDUFS7 2678:NDUFS6 2672:NDUFS5 2666:NDUFS4 2660:NDUFS3 2654:NDUFS2 2648:NDUFS1 2637:NDUFC2 2631:NDUFC1 2608:NDUFB9 2602:NDUFB8 2596:NDUFB7 2590:NDUFB6 2575:NDUFB2 2569:NDUFB1 2519:NDUFA9 2513:NDUFA8 2504:NDUFA6 2498:NDUFA5 2486:NDUFA4 2477:NDUFA2 2471:NDUFA1 2327:malate 2152:Derris 2101:NDUFA4 1966:NDUFB6 1947:NDUFV3 701:Bovine 639:flavin 339:stroke 304:PubMed 286:Search 272:AmiGO 260:PDBsum 200:ExPASy 188:BRENDA 176:IntEnz 159:EC no. 105:Symbol 7423:Types 7209:MT-TY 7204:MT-TW 7199:MT-TV 7194:MT-TT 7179:MT-TR 7174:MT-TQ 7169:MT-TP 7164:MT-TN 7159:MT-TM 7144:MT-TK 7139:MT-TI 7134:MT-TH 7129:MT-TG 7124:MT-TF 7119:MT-TE 7114:MT-TD 7109:MT-TC 7104:MT-TA 6900:PMPCB 6887:ALDH2 6709:other 6403:Other 6369:TC 3D 6303:Other 6294:PDSS2 6289:PDSS1 5999:Cycle 5494:S2CID 5034:S2CID 4939:S2CID 4487:S2CID 3858:S2CID 3803:S2CID 3628:S2CID 3577:S2CID 3549:(PDF) 3178:S2CID 3126:S2CID 2948:S2CID 2459:Genes 2433:Pinus 2399:(FMNH 2359:mtDNA 2184:from 697:Human 547:(CoQH 236:PRIAM 77:from 35:(CoQH 7566:GFDL 7515:list 7508:EC7 7502:list 7495:EC6 7489:list 7482:EC5 7476:list 7469:EC4 7463:list 7456:EC3 7450:list 7443:EC2 7437:list 7430:EC1 7095:tRNA 6274:COQ9 6269:COQ7 6264:COQ6 6259:COQ5 6254:COQ4 6249:COQ3 6244:COQ2 6100:and 6037:SDHA 5767:PMID 5712:PMID 5677:PMID 5663:1802 5636:PMID 5595:PMID 5543:PMID 5486:PMID 5451:PMID 5410:PMID 5361:PMID 5320:PMID 5261:PMID 5220:PMID 5171:PMID 5135:PMID 5083:PMID 5026:PMID 4991:PMID 4931:PMID 4896:PMID 4847:PMID 4798:PMID 4757:PMID 4735:1857 4708:PMID 4686:1837 4649:ISSN 4612:PMID 4577:PMID 4528:PMID 4514:1320 4479:PMID 4444:PMID 4399:PMID 4350:PMID 4315:PMID 4301:1365 4274:PMID 4266:ISSN 4222:PMID 4173:PMID 4124:PMID 4075:PMID 4061:1807 4034:PMID 3975:PMID 3940:PMID 3926:1658 3899:PMID 3885:1797 3850:PMID 3795:PMID 3743:PMID 3702:PMID 3659:ISBN 3620:PMID 3569:PMID 3527:PMID 3513:1807 3486:PMID 3447:PMID 3392:PMID 3341:PMID 3327:1817 3293:PMID 3244:PMID 3230:1364 3201:ISBN 3170:PMID 3118:PMID 3082:PMID 3041:PMID 2992:PMID 2978:1807 2940:PMID 2899:PMID 2885:1757 2858:PMID 2817:PMID 2435:and 2333:FMNH 2257:DTNB 2223:and 2154:and 2119:(an 2071:Pfam 2049:Pfam 2027:Pfam 2005:Pfam 1978:Pfam 1935:Pfam 1911:Pfam 1887:Pfam 1863:Pfam 1839:Pfam 1815:Pfam 1791:Pfam 1767:Pfam 1743:Pfam 1719:Pfam 1695:Pfam 1671:Pfam 1647:Pfam 1623:Pfam 1599:Pfam 1575:Pfam 1551:Pfam 1527:Pfam 1503:Pfam 1479:Pfam 1455:Pfam 1431:Pfam 1407:Pfam 1383:Pfam 1359:Pfam 1335:Pfam 1311:Pfam 1287:Pfam 1263:Pfam 1239:Pfam 1210:Pfam 1180:Pfam 1173:Pfam 1166:Pfam 1136:Pfam 1106:Pfam 1099:Pfam 1069:Pfam 1039:Pfam 1032:Pfam 1002:Pfam 972:Pfam 936:Pfam 900:Pfam 864:Pfam 828:Pfam 792:Pfam 756:Pfam 717:Pfam 605:and 581:and 575:heme 425:NADH 412:+ 4H 341:and 316:NCBI 257:PDBe 212:KEGG 131:6g72 79:NADH 61:and 6377:ETC 6150:to 6131:to 6112:to 6067:to 5757:PMC 5747:doi 5733:ndh 5704:doi 5700:270 5667:doi 5626:doi 5585:PMC 5577:doi 5533:PMC 5525:doi 5478:doi 5441:doi 5437:113 5400:PMC 5392:doi 5351:doi 5347:280 5310:PMC 5300:doi 5288:103 5251:doi 5210:PMC 5202:doi 5163:doi 5159:409 5125:PMC 5117:doi 5073:PMC 5065:doi 5061:148 5018:doi 4981:PMC 4973:doi 4969:417 4923:doi 4886:PMC 4878:doi 4837:PMC 4829:doi 4825:124 4788:doi 4784:282 4747:PMC 4739:doi 4698:PMC 4690:doi 4657:PMC 4639:doi 4604:doi 4567:PMC 4559:doi 4555:122 4518:doi 4471:doi 4434:PMC 4426:doi 4389:PMC 4381:doi 4377:584 4342:doi 4305:doi 4256:doi 4212:PMC 4204:doi 4163:PMC 4155:doi 4114:PMC 4106:doi 4102:115 4065:doi 4024:PMC 4014:doi 4002:107 3967:doi 3963:348 3930:doi 3889:doi 3842:doi 3830:465 3785:doi 3773:311 3733:doi 3692:doi 3688:281 3655:813 3612:doi 3600:435 3561:doi 3557:347 3517:doi 3478:doi 3474:159 3437:PMC 3427:doi 3423:284 3382:PMC 3372:doi 3368:286 3331:doi 3283:PMC 3275:doi 3234:doi 3162:doi 3110:doi 3106:231 3072:doi 3031:PMC 3023:doi 2982:doi 2930:doi 2926:451 2889:doi 2848:doi 2844:169 2809:doi 2453:ndh 2449:ndh 2445:ndh 2425:ndh 2377:). 2325:or 2312:or 2255:or 2150:), 662:nuo 579:III 551:). 529:FAD 433:ATP 414:out 292:PMC 248:PDB 143:255 119:246 81:to 7578:: 6363:: 6239:10 6213:10 6089:E3 6087:, 6085:E2 6083:, 6081:E1 5987:: 5855:: 5765:. 5755:. 5743:22 5741:. 5737:. 5710:. 5698:. 5675:. 5661:. 5657:. 5634:. 5622:67 5620:. 5616:. 5593:. 5583:. 5573:31 5571:. 5567:. 5555:^ 5541:. 5531:. 5521:49 5519:. 5515:. 5492:. 5484:. 5474:84 5472:. 5449:. 5435:. 5431:. 5408:. 5398:. 5388:31 5386:. 5382:. 5359:. 5345:. 5341:. 5318:. 5308:. 5298:. 5286:. 5282:. 5259:. 5247:47 5245:. 5241:. 5218:. 5208:. 5198:83 5196:. 5192:. 5169:. 5157:. 5133:. 5123:. 5113:37 5111:. 5107:. 5095:^ 5081:. 5071:. 5059:. 5055:. 5032:. 5024:. 5014:29 5012:. 4989:. 4979:. 4967:. 4963:. 4951:^ 4937:. 4929:. 4917:. 4894:. 4884:. 4874:39 4872:. 4868:. 4845:. 4835:. 4823:. 4819:. 4796:. 4782:. 4778:. 4755:. 4745:. 4733:. 4729:. 4706:. 4696:. 4684:. 4680:. 4655:. 4647:. 4637:. 4633:. 4610:. 4600:17 4598:. 4575:. 4565:. 4553:. 4549:. 4526:. 4512:. 4508:. 4485:. 4477:. 4467:74 4465:. 4442:. 4432:. 4420:. 4397:. 4387:. 4375:. 4371:. 4348:. 4313:. 4299:. 4295:. 4272:. 4264:. 4252:16 4250:. 4246:. 4234:^ 4220:. 4210:. 4200:84 4198:. 4194:. 4171:. 4161:. 4151:26 4149:. 4145:. 4122:. 4112:. 4100:. 4096:. 4073:. 4059:. 4055:. 4032:. 4022:. 4012:. 4000:. 3996:. 3973:. 3961:. 3938:. 3924:. 3920:. 3897:. 3883:. 3879:. 3856:. 3848:. 3840:. 3828:. 3801:. 3793:. 3783:. 3771:. 3767:. 3741:. 3729:16 3727:. 3723:. 3700:. 3686:. 3682:. 3626:. 3618:. 3610:. 3598:. 3575:. 3567:. 3555:. 3551:. 3525:. 3511:. 3507:. 3484:. 3472:. 3445:. 3435:. 3421:. 3417:. 3390:. 3380:. 3366:. 3362:. 3339:. 3325:. 3321:. 3305:^ 3291:. 3281:. 3271:51 3269:. 3265:. 3242:. 3228:. 3224:. 3176:. 3168:. 3158:16 3156:. 3138:^ 3124:. 3116:. 3104:. 3080:. 3068:29 3066:. 3062:. 3039:. 3029:. 3019:46 3017:. 3013:. 2990:. 2976:. 2972:. 2960:^ 2946:. 2938:. 2924:. 2920:. 2897:. 2883:. 2879:. 2856:. 2842:. 2838:. 2815:. 2805:75 2803:. 2776:^ 2308:, 2304:, 2164:, 2133:50 2131:IC 2058:50 2036:49 2014:48 1992:47 1963:46 1958:- 1944:45 1920:44 1896:43 1872:42 1848:41 1824:40 1800:39 1776:38 1752:37 1728:36 1704:35 1680:34 1656:33 1632:32 1608:31 1584:30 1560:29 1536:28 1512:27 1488:26 1464:25 1440:24 1416:23 1392:22 1368:21 1344:20 1320:19 1296:18 1272:17 1248:16 1224:15 1202:EC 1189:14 1178:, 1171:, 1158:EC 1145:13 1128:EC 1115:12 1104:, 1091:EC 1078:11 1061:EC 1048:10 1037:, 1024:EC 994:EC 964:EC 958:EC 928:EC 922:EC 892:EC 886:EC 856:EC 850:EC 820:EC 814:EC 784:EC 778:EC 748:EC 742:EC 713:) 693:# 652:. 621:pK 583:IV 499:. 443:Δψ 435:. 406:in 274:/ 57:, 48:EC 46:, 7531:: 7517:) 7513:( 7504:) 7500:( 7491:) 7487:( 7478:) 7474:( 7465:) 7461:( 7452:) 7448:( 7439:) 7435:( 7259:e 7252:t 7245:v 6454:e 6447:t 6440:v 6371:) 6353:e 6346:t 6339:v 6183:/ 6104:) 6091:) 6079:( 6039:) 6035:( 5977:e 5970:t 5963:v 5845:e 5838:t 5831:v 5798:) 5773:. 5749:: 5718:. 5706:: 5683:. 5669:: 5642:. 5628:: 5601:. 5579:: 5549:. 5527:: 5500:. 5480:: 5457:. 5443:: 5416:. 5394:: 5367:. 5353:: 5326:. 5302:: 5294:: 5267:. 5253:: 5226:. 5204:: 5177:. 5165:: 5141:. 5119:: 5089:. 5067:: 5040:. 5020:: 4997:. 4975:: 4945:. 4925:: 4919:3 4902:. 4880:: 4853:. 4831:: 4804:. 4790:: 4763:. 4741:: 4714:. 4692:: 4665:. 4641:: 4618:. 4606:: 4583:. 4561:: 4534:. 4520:: 4493:. 4473:: 4450:. 4428:: 4405:. 4383:: 4356:. 4344:: 4338:6 4321:. 4307:: 4280:. 4258:: 4228:. 4206:: 4179:. 4157:: 4130:. 4108:: 4081:. 4067:: 4040:. 4016:: 4008:: 3981:. 3969:: 3946:. 3932:: 3905:. 3891:: 3864:. 3844:: 3836:: 3809:. 3787:: 3779:: 3749:. 3735:: 3708:. 3694:: 3667:. 3634:. 3614:: 3606:: 3583:. 3563:: 3533:. 3519:: 3492:. 3480:: 3453:. 3429:: 3398:. 3374:: 3347:. 3333:: 3299:. 3277:: 3250:. 3236:: 3209:. 3184:. 3164:: 3132:. 3112:: 3088:. 3074:: 3047:. 3025:: 2998:. 2984:: 2954:. 2932:: 2905:. 2891:: 2864:. 2850:: 2823:. 2811:: 2431:( 2401:2 2339:2 2335:2 2158:( 1011:9 981:8 945:7 909:6 873:5 837:4 801:3 765:2 729:1 699:/ 623:a 549:2 537:K 525:2 491:( 410:2 381:. 379:2 369:. 367:2 37:2 20:)

Index

Complex I

EC
7.1.1.2
protein complex
respiratory chains
electrons
NADH
coenzyme Q10
mitochondrial
OPM superfamily
246
OPM protein
6g72
Membranome
255
EC no.
7.1.1.2
IntEnz
IntEnz view
BRENDA
BRENDA entry
ExPASy
NiceZyme view
KEGG
KEGG entry
MetaCyc
metabolic pathway
PRIAM
profile

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑