Knowledge

Connection form

Source 📝

5453: 5087: 1994: 3479: 2744: 5448:{\displaystyle {\begin{array}{ll}\Omega _{i}{}^{j}&=d(\Gamma ^{j}{}_{qi}\theta ^{q})+(\Gamma ^{j}{}_{pk}\theta ^{p})\wedge (\Gamma ^{k}{}_{qi}\theta ^{q})\\&\\&=\theta ^{p}\wedge \theta ^{q}\left(\partial _{p}\Gamma ^{j}{}_{qi}+\Gamma ^{j}{}_{pk}\Gamma ^{k}{}_{qi})\right)\\&\\&={\tfrac {1}{2}}\theta ^{p}\wedge \theta ^{q}R_{pqi}{}^{j}\end{array}}} 6770: 1754: 1022: 3244: 7520: 2506: 5057: 7039:
in the 1940s, provides a manner of organizing these many connection forms and the transformation laws connecting them into a single intrinsic form with a single rule for transformation. The disadvantage to this approach is that the forms are no longer defined on the manifold itself, but rather on a
7034:
The connection form, as introduced thus far, depends on a particular choice of frame. In the first definition, the frame is just a local basis of sections. To each frame, a connection form is given with a transformation law for passing from one frame to another. In the second definition, the
4878: 2307: 3875: 6596: 6358: 1989:{\displaystyle D\xi =\sum _{\alpha =1}^{k}D(e_{\alpha }\xi ^{\alpha }(\mathbf {e} ))=\sum _{\alpha =1}^{k}e_{\alpha }\otimes d\xi ^{\alpha }(\mathbf {e} )+\sum _{\alpha =1}^{k}\sum _{\beta =1}^{k}e_{\beta }\otimes \omega _{\alpha }^{\beta }\xi ^{\alpha }(\mathbf {e} ).} 6217: 6987: 7786: 5645: 2876: 2106: 4688: 878: 1451: 6468: 5745:
Given a metric connection with torsion, once can always find a single, unique connection that is torsion-free, this is the Levi-Civita connection. The difference between a Riemannian connection and its associated Levi-Civita connection is the
4520: 3474:{\displaystyle \Gamma (E)\ {\stackrel {D}{\to }}\ \Gamma (E\otimes \Lambda ^{1}T^{*}M)\ {\stackrel {D}{\to }}\ \Gamma (E\otimes \Lambda ^{2}T^{*}M)\ {\stackrel {D}{\to }}\ \dots \ {\stackrel {D}{\to }}\ \Gamma (E\otimes \Lambda ^{n}T^{*}(M))} 8059: 1198: 1718: 2739:{\displaystyle \omega (\mathbf {e} _{q})=(\mathbf {e} _{p}^{-1}\mathbf {e} _{q})^{-1}d(\mathbf {e} _{p}^{-1}\mathbf {e} _{q})+(\mathbf {e} _{p}^{-1}\mathbf {e} _{q})^{-1}\omega (\mathbf {e} _{p})(\mathbf {e} _{p}^{-1}\mathbf {e} _{q}).} 1553: 7312: 3979: 4362: 4900: 783: 3147: 5998: 2410: 6573: 4706: 3044: 5730: 6862: 2968: 527:
can be extended as well; this defines the local frame. (Here the real numbers are used, although much of the development can be extended to modules over rings in general, and to vector spaces over complex numbers
7630: 3749: 7933: 7148: 623: 4052: 3738: 7278: 81:, rather than on an abstract principal bundle over it. Hence, despite their lack of tensoriality, connection forms continue to be used because of the relative ease of performing calculations with them. In 6765:{\displaystyle \omega _{\alpha }^{\beta }(\mathbf {e} \cdot g)=(g^{-1})_{\gamma }^{\beta }dg_{\alpha }^{\gamma }+(g^{-1})_{\gamma }^{\beta }\omega _{\delta }^{\gamma }(\mathbf {e} )g_{\alpha }^{\delta }.} 2205: 7035:
frames themselves carry some additional structure provided by a Lie group, and changes of frame are constrained to those that take their values in it. The language of principal bundles, pioneered by
6243: 3593: 6088: 4102: 6889: 824: 7657: 3221: 447: 5541: 1305: 2793: 2005: 4554: 1017:{\displaystyle \xi ={\mathbf {e} }{\begin{bmatrix}\xi ^{1}(\mathbf {e} )\\\xi ^{2}(\mathbf {e} )\\\vdots \\\xi ^{k}(\mathbf {e} )\end{bmatrix}}={\mathbf {e} }\,\xi (\mathbf {e} )} 77:
is a natural reinterpretation of the connection form as a tensorial object. On the other hand, the connection form has the advantage that it is a differential form defined on the
3646: 61:
in the first half of the 20th century as part of, and one of the principal motivations for, his method of moving frames. The connection form generally depends on a choice of a
525: 496: 4138: 1354: 6391: 870: 705: 548: 372: 7791:
The 1-form ω constructed in this way respects the transitions between overlapping sets, and therefore descends to give a globally defined 1-form on the principal bundle F
4423: 7956: 1106: 9253: 7304: 1638: 7515:{\displaystyle ((x,g_{U})\in U\times G)\sim ((x,g_{V})\in V\times G)\iff {\mathbf {e} }_{V}={\mathbf {e} }_{U}\cdot h_{UV}{\text{ and }}g_{U}=h_{UV}^{-1}(x)g_{V}.} 848: 683: 8444: 1462: 5052:{\displaystyle \Omega _{i}{}^{j}(\mathbf {e} )=d\omega _{i}{}^{j}(\mathbf {e} )+\sum _{k}\omega _{k}{}^{j}(\mathbf {e} )\wedge \omega _{i}{}^{k}(\mathbf {e} ).} 2470:, then it is possible to define a global connection form in terms of the patching data between the local connection forms on the overlap regions. In detail, a 1073: 1053: 663: 643: 467: 412: 392: 346: 326: 298: 270: 246: 223: 199: 3890: 4257: 9248: 8535: 713: 8559: 4873:{\displaystyle \nabla _{e_{i}}v=\langle Dv,e_{i}\rangle =\sum _{k}e_{k}\left(\nabla _{e_{i}}v^{k}+\sum _{j}\Gamma _{ij}^{k}(\mathbf {e} )v^{j}\right)} 3071: 69:
object. Various generalizations and reinterpretations of the connection form were formulated subsequent to Cartan's initial work. In particular, on a
8754: 2322: 9665: 3881: 2991: 5660: 5932: 6510: 8624: 8286: 6781: 8167:
In a non-holonomic frame, the expression of curvature is further complicated by the fact that the derivatives dθ must be taken into account.
3870:{\displaystyle \Theta ^{i}(\mathbf {e} )=d\theta ^{i}(\mathbf {e} )+\sum _{j}\omega _{j}^{i}(\mathbf {e} )\wedge \theta ^{j}(\mathbf {e} ).} 2902: 8850: 8304: 7558: 8903: 8431: 7882: 7089: 556: 9849: 9528: 9187: 3990: 3676: 9952: 9308: 8389: 8368: 8350: 8332: 8314: 8255: 7219: 2302:{\displaystyle {\mathbf {e} }'={\mathbf {e} }\,g,\quad {\text{i.e., }}\,e'_{\alpha }=\sum _{\beta }e_{\beta }g_{\alpha }^{\beta }.} 2881:
Unlike the connection form, the curvature behaves tensorially under a change of frame, which can be checked directly by using the
9730: 8952: 7007: 8544: 6353:{\displaystyle \nabla _{{\dot {\gamma }}(0)}e_{\alpha }=\sum _{\beta }e_{\beta }\omega _{\alpha }^{\beta }({\dot {\gamma }}(0))} 8935: 3608: 1326: 145: 9957: 6212:{\displaystyle \Gamma (\gamma )_{0}^{t}e_{\alpha }(\gamma (0))=\sum _{\beta }e_{\beta }(\gamma (t))g_{\alpha }^{\beta }(t)} 9581: 9513: 9147: 7533: 6078:-frame to another. Formally, along a curve γ, the following must hold locally (that is, for sufficiently small values of 1571: 1084: 74: 3542: 9606: 9132: 8855: 8629: 9844: 9177: 6982:{\displaystyle \omega ({\mathbf {e} }\cdot g)=g^{*}\omega _{\mathfrak {g}}+{\text{Ad}}_{g^{-1}}\omega (\mathbf {e} )} 5858:. The frames are unitary with respect to an invariant inner product on the spin space, and the group reduces to the 7781:{\displaystyle \omega _{(x,g)}=Ad_{g^{-1}}\pi _{1}^{*}\omega (\mathbf {e} _{U})+\pi _{2}^{*}\omega _{\mathbf {g} }.} 4072: 2147:
to a suitable global object, it is necessary to examine how it behaves when a different choice of basic sections of
9967: 9655: 9475: 9182: 9152: 8860: 8816: 8797: 8564: 8508: 8243: 8077: 1090: 165: 90: 791: 9972: 9327: 8719: 8584: 9829: 7798:. It can be shown that ω is a principal connection in the sense that it reproduces the generators of the right 5640:{\displaystyle \Theta ^{i}(\mathbf {e} )=d\theta ^{i}+\sum _{j}\omega _{j}^{i}(\mathbf {e} )\wedge \theta ^{j}.} 9911: 9783: 9490: 9104: 8969: 8661: 8503: 5463: 3162: 2871:{\displaystyle \Omega (\mathbf {e} )=d\omega (\mathbf {e} )+\omega (\mathbf {e} )\wedge \omega (\mathbf {e} ).} 2423:
manner, since the rule for passing from one frame to another involves the derivatives of the transition matrix
2101:{\displaystyle D\xi (\mathbf {e} )=d\xi (\mathbf {e} )+\omega \xi (\mathbf {e} )=(d+\omega )\xi (\mathbf {e} )} 43: 417: 4683:{\displaystyle Dv=\sum _{k}e_{k}\otimes (dv^{k})+\sum _{j,k}e_{k}\otimes \omega _{j}^{k}(\mathbf {e} )v^{j}.} 1245: 9881: 9568: 9485: 9455: 8801: 8771: 8695: 8685: 8641: 8471: 8424: 5821: 273: 226: 97: 78: 8569: 2131:
sufficient to completely determine the connection locally on the open set over which the basis of sections
9962: 9839: 9695: 9650: 9142: 8761: 8656: 8476: 7019: 5782: 4195: 1208: 277: 125: 3618: 9921: 9876: 9356: 9301: 8791: 8786: 4187: 3238:
to a local section to define this expression). Thus the curvature measures the failure of the sequence
1098: 1035:. The tetrad specifically relates the local frame to an explicit coordinate system on the base manifold 148:. In many cases, connection forms are considered on vector bundles with additional structure: that of a 35: 1446:{\displaystyle D:\Gamma (E\otimes \Lambda ^{*}T^{*}M)\rightarrow \Gamma (E\otimes \Lambda ^{*}T^{*}M)} 501: 472: 300:. It is always possible to construct a local frame, as vector bundles are always defined in terms of 9896: 9824: 9710: 9576: 9538: 9470: 9122: 9060: 8908: 8612: 8602: 8574: 8549: 8459: 8398: 8377: 8089: 7284: 6463:{\displaystyle De_{\alpha }=\sum _{\beta }e_{\beta }\otimes \omega _{\alpha }^{\beta }(\mathbf {e} )} 5078: 301: 105: 9773: 9596: 9586: 9435: 9420: 9376: 9260: 9233: 8942: 8820: 8805: 8734: 8493: 5487: 4515:{\displaystyle \omega _{i}^{j}(\mathbf {e} )=\sum _{k}\Gamma ^{j}{}_{ki}(\mathbf {e} )\theta ^{k}.} 4248: 4113: 1224: 1204: 121: 113: 853: 688: 531: 351: 9906: 9763: 9616: 9430: 9366: 9202: 9157: 9054: 8925: 8729: 8554: 8417: 8265: 6999: 6071: 5483: 4063: 3525: 3489: 1028: 8739: 8054:{\displaystyle \langle X,({\mathbf {e} }\cdot g)^{*}\omega \rangle =\langle (X),\omega \rangle } 5478:
in the tangent bundle with zero torsion. To describe the torsion, note that the vector bundle
1193:{\displaystyle D:\Gamma (E)\rightarrow \Gamma (E\otimes T^{*}M)=\Gamma (E)\otimes \Omega ^{1}M} 9901: 9809: 9670: 9645: 9460: 9371: 9351: 9137: 9117: 9112: 9019: 8930: 8744: 8724: 8579: 8518: 8385: 8364: 8346: 8328: 8310: 8282: 8251: 8239: 8099: 8094: 7036: 6059: 5790: 5763: 5747: 5475: 4693:
One can recover the Levi-Civita connection, in the usual sense, from this by contracting with
4172: 4153: 3054: 2882: 1713:{\displaystyle De_{\alpha }=\sum _{\beta =1}^{k}e_{\beta }\otimes \omega _{\alpha }^{\beta }.} 51: 4190:. Given a Riemannian connection, one can always find a unique, equivalent connection that is 9916: 9814: 9591: 9558: 9543: 9425: 9294: 9275: 9069: 9024: 8947: 8918: 8776: 8709: 8704: 8699: 8689: 8481: 8464: 8274: 8226: 5841: 5817: 5794: 4388: 1548:{\displaystyle D(v\wedge \alpha )=(Dv)\wedge \alpha +(-1)^{{\text{deg}}\,v}v\wedge d\alpha } 1337: 1032: 305: 117: 70: 8296: 7289: 4171:. One may then define a connection that is compatible with this bundle metric, this is the 9886: 9834: 9778: 9758: 9548: 9415: 9386: 9218: 8957: 8913: 8679: 8292: 8145:, chapter 4, for a complete account of the Levi-Civita connection from this point of view. 5067: 4414: 833: 668: 109: 3974:{\displaystyle \Theta ^{i}(\mathbf {e} \,g)=\sum _{j}g_{j}^{i}\Theta ^{j}(\mathbf {e} ).} 3662:
A solder form and the associated torsion may both be described in terms of a local frame
4357:{\displaystyle \nabla _{e_{i}}e_{j}=\sum _{k=1}^{n}\Gamma _{ij}^{k}(\mathbf {e} )e_{k}.} 3049:
is independent of the choice of frame. In particular, Ω is a vector-valued two-form on
9926: 9891: 9871: 9788: 9621: 9611: 9601: 9523: 9495: 9480: 9465: 9381: 9084: 9009: 8979: 8877: 8870: 8810: 8781: 8651: 8646: 8607: 8104: 5855: 4191: 4180: 2774: 1058: 1038: 648: 628: 452: 397: 377: 331: 311: 283: 255: 231: 208: 184: 141: 133: 58: 9946: 9863: 9768: 9680: 9553: 9270: 9094: 9089: 9074: 9064: 9014: 8991: 8865: 8825: 8766: 8714: 8513: 5845: 4168: 4157: 3485: 202: 101: 8158:, II.7 for a complete account of the Levi-Civita connection from this point of view. 5797:, since this group preserves the orthonormality of frames. Other examples include: 9931: 9735: 9720: 9685: 9533: 9518: 9197: 9192: 9034: 9001: 8974: 8882: 8523: 7950:) transforms in the required manner by using the Leibniz rule, and the adjunction: 6031: 5482:
is the tangent bundle. This carries a canonical solder form (sometimes called the
176: 149: 86: 62: 47: 5758:
A more specific type of connection form can be constructed when the vector bundle
3516:
is sometimes equipped with an additional piece of data besides its connection: a
778:{\displaystyle \xi =\sum _{\alpha =1}^{k}e_{\alpha }\xi ^{\alpha }(\mathbf {e} )} 17: 9819: 9793: 9715: 9404: 9343: 9040: 9029: 8986: 8887: 8488: 6368: 5866: 5801:
The usual frames, considered in the preceding section, have structural group GL(
5513:
corresponding to the identity endomorphism of the tangent spaces. In the frame
3517: 3142:{\displaystyle \Omega \in \Gamma (\Lambda ^{2}T^{*}M\otimes {\text{Hom}}(E,E)).} 2765:, does not depend on the choice of basis section used to define the connection. 2312:
Applying the exterior connection to both sides gives the transformation law for
137: 31: 3984:
The frame-independent torsion may also be recovered from the frame components:
2405:{\displaystyle \omega (\mathbf {e} \,g)=g^{-1}dg+g^{-1}\omega (\mathbf {e} )g.} 9700: 9265: 9223: 9049: 8962: 8594: 8498: 8278: 5859: 5092: 4384: 2978: 7552:, which respects the equivalence relation on the overlap regions. First let 3039:{\displaystyle \Omega ={\mathbf {e} }\Omega (\mathbf {e} ){\mathbf {e} }^{*}} 9675: 9626: 9079: 9044: 8749: 8636: 8217:
Chern S. S.; Moser, J.K. (1974), "Real hypersurfaces in complex manifolds",
5775: 4066:
relate the torsion to the curvature. The first Bianchi identity states that
153: 108:
of differential forms. The connection form is not tensorial because under a
5725:{\displaystyle \Theta ^{i}=\Gamma ^{i}{}_{kj}\theta ^{k}\wedge \theta ^{j}} 4525:
In terms of the connection form, the exterior connection on a vector field
1723:
In terms of the connection form, the exterior connection of any section of
1344:
satisfying this compatibility property, there exists a unique extension of
498:
can thereby be extended to the entire local trivialization, and a basis on
7213:
can be realized in terms of gluing data among the sets of the open cover:
5993:{\displaystyle e_{\alpha }'=\sum _{\beta }e_{\beta }g_{\alpha }^{\beta }.} 9705: 9690: 9243: 9238: 9228: 8619: 8440: 6568:{\displaystyle e_{\alpha }'=\sum _{\beta }e_{\beta }g_{\alpha }^{\beta }} 1625: 4209:
A local frame on the tangent bundle is an ordered list of vector fields
1332:, thus regarding it as a differential operator on the tensor product of 9399: 9361: 8409: 8231: 6857:{\displaystyle \omega ({\mathbf {e} }\cdot g)=g^{-1}dg+g^{-1}\omega g.} 3670:. If θ is a solder form, then it decomposes into the frame components 2115:
and ω refer to the component-wise derivative with respect to the frame
82: 7083:. These are related on the intersections of overlapping open sets by 6022:
if a preferred class of frames is specified, all of which are locally
4167:, then the metric can be extended to the entire vector bundle, as the 2963:{\displaystyle \Omega (\mathbf {e} \,g)=g^{-1}\Omega (\mathbf {e} )g.} 9725: 9317: 8835: 7625:{\displaystyle \pi _{1}:U\times G\to U,\quad \pi _{2}:U\times G\to G} 5851: 2420: 2119:, and a matrix of 1-forms, respectively, acting on the components of 66: 4888:
The curvature 2-form of the Levi-Civita connection is the matrix (Ω
4247:
that are linearly independent at every point of their domain. The
2753:
ensures in particular that the exterior connection of a section of
2187:
is a different choice of local basis. Then there is an invertible
1594:
arises when applying the exterior connection to a particular frame
7928:{\displaystyle \omega ({\mathbf {e} })={\mathbf {e} }^{*}\omega .} 2973:
One interpretation of this transformation law is as follows. Let
8213:, Institute for Advanced Study, mimeographed lecture notes, 1951. 7143:{\displaystyle {\mathbf {e} }_{V}={\mathbf {e} }_{U}\cdot h_{UV}} 618:{\displaystyle \mathbf {e} =(e_{\alpha })_{\alpha =1,2,\dots ,k}} 8361:
A Comprehensive introduction to differential geometry (Volume 3)
8343:
A Comprehensive introduction to differential geometry (Volume 2)
4047:{\displaystyle \Theta =\sum _{i}e_{i}\Theta ^{i}(\mathbf {e} ).} 3733:{\displaystyle \theta =\sum _{i}\theta ^{i}(\mathbf {e} )e_{i}.} 3606:. If a solder form is given, then it is possible to define the 2896:
is a change of frame, then the curvature two-form transforms by
685:
is a local section, defined over the same open set as the frame
9290: 8413: 112:, the connection form transforms in a manner that involves the 7273:{\displaystyle F_{G}E=\left.\coprod _{U}U\times G\right/\sim } 6492:
The curvature form of a compatible connection is, moreover, a
3880:
Much like the curvature, it can be shown that Θ behaves as a
5535:, or in terms of the frame components of the solder form by 645:. This frame can be used to express locally any section of 7263: 7240: 3612:
of the connection (in terms of the exterior connection) as
85:, connection forms are also used broadly in the context of 9286: 5474:
The Levi-Civita connection is characterized as the unique
6883:-valued (locally defined) function. With this in mind, 1223:
to be a connection, it must be correctly coupled to the
8273:, Universitext (Sixth ed.), Springer, Heidelberg, 7809:, and equivariantly intertwines the right action on T(F 1321:
Sometimes it is convenient to extend the definition of
5889:) a given Lie subgroup of the general linear group of 5382: 900: 7959: 7885: 7824:
Connection forms associated to a principal connection
7660: 7561: 7315: 7292: 7222: 7092: 6892: 6784: 6599: 6513: 6394: 6246: 6091: 5935: 5663: 5544: 5090: 4903: 4709: 4557: 4426: 4260: 4116: 4075: 3993: 3893: 3752: 3679: 3621: 3545: 3247: 3165: 3074: 2994: 2905: 2796: 2509: 2325: 2208: 2008: 1757: 1641: 1465: 1357: 1340:
of differential forms. Given an exterior connection
1248: 1109: 1061: 1041: 881: 856: 836: 794: 716: 691: 671: 651: 631: 559: 534: 504: 475: 455: 420: 400: 380: 354: 334: 314: 286: 258: 234: 211: 187: 9862: 9802: 9751: 9744: 9636: 9567: 9504: 9448: 9395: 9342: 9335: 9211: 9170: 9103: 9000: 8896: 8843: 8834: 8670: 8593: 8532: 8452: 3588:{\displaystyle \theta _{x}:T_{x}M\rightarrow E_{x}} 2500:that satisfy the following compatibility condition 8053: 7927: 7844:gives rise to a collection of connection forms on 7780: 7624: 7514: 7298: 7272: 7142: 6981: 6856: 6764: 6567: 6462: 6352: 6211: 5992: 5844:is given, then the structure group reduces to the 5724: 5639: 5447: 5051: 4872: 4682: 4514: 4356: 4132: 4096: 4046: 3973: 3869: 3732: 3640: 3587: 3473: 3215: 3141: 3038: 2962: 2870: 2738: 2404: 2301: 2100: 1988: 1712: 1547: 1445: 1299: 1192: 1067: 1047: 1016: 864: 842: 818: 777: 699: 677: 657: 637: 617: 542: 519: 490: 461: 441: 406: 386: 366: 340: 320: 292: 264: 240: 217: 193: 57:Historically, connection forms were introduced by 8188:See for instance Kobayashi and Nomizu, Volume II. 5793:at each point. The structure group is then the 1727:can now be expressed. For example, suppose that 1598:. Upon applying the exterior connection to the 8122: 5766:. This amounts to a preferred class of frames 8323:Kobayashi, Shoshichi; Nomizu, Katsumi (1996), 8303:Kobayashi, Shoshichi; Nomizu, Katsumi (1996), 7044:The principal connection for a connection form 6867:To interpret each of these terms, recall that 6586:-valued function defined on an open subset of 4107:while the second Bianchi identity states that 4097:{\displaystyle D\Theta =\Omega \wedge \theta } 2173:) to indicate the dependence on the choice of 9302: 8425: 8: 8325:Foundations of Differential Geometry, Vol. 2 8306:Foundations of Differential Geometry, Vol. 1 8048: 8004: 7998: 7960: 6381:With this observation, the connection form ω 5877:be a given vector bundle of fibre dimension 4755: 4733: 819:{\displaystyle \xi ^{\alpha }(\mathbf {e} )} 7635:be the projection maps. Now, for a point ( 2757:, when regarded abstractly as a section of 9748: 9339: 9309: 9295: 9287: 8840: 8432: 8418: 8410: 8403:Differential analysis on complex manifolds 8382:Differential analysis on complex manifolds 8267:Riemannian geometry and geometric analysis 7403: 7399: 6026:-related to each other. In formal terms, 5528:The torsion of the connection is given by 3508:is equal to the dimension of the manifold 414:is locally trivial, that is isomorphic to 8230: 8016: 7989: 7973: 7972: 7958: 7913: 7907: 7906: 7893: 7892: 7884: 7768: 7767: 7757: 7752: 7736: 7731: 7718: 7713: 7698: 7693: 7665: 7659: 7598: 7566: 7560: 7503: 7481: 7473: 7460: 7451: 7442: 7429: 7423: 7422: 7412: 7406: 7405: 7375: 7332: 7314: 7291: 7247: 7227: 7221: 7131: 7118: 7112: 7111: 7101: 7095: 7094: 7091: 6971: 6954: 6949: 6944: 6933: 6932: 6922: 6900: 6899: 6891: 6836: 6814: 6792: 6791: 6783: 6753: 6748: 6736: 6727: 6722: 6712: 6707: 6694: 6678: 6673: 6660: 6655: 6642: 6618: 6609: 6604: 6598: 6559: 6554: 6544: 6534: 6518: 6512: 6452: 6443: 6438: 6425: 6415: 6402: 6393: 6327: 6326: 6317: 6312: 6302: 6292: 6279: 6253: 6252: 6251: 6245: 6194: 6189: 6161: 6151: 6120: 6110: 6105: 6090: 5981: 5976: 5966: 5956: 5940: 5934: 5716: 5703: 5690: 5688: 5681: 5668: 5662: 5654:is holonomic, this expression reduces to 5628: 5613: 5604: 5599: 5589: 5576: 5558: 5549: 5543: 5435: 5433: 5420: 5410: 5397: 5381: 5352: 5350: 5343: 5330: 5328: 5321: 5305: 5303: 5296: 5286: 5271: 5258: 5233: 5220: 5218: 5211: 5192: 5179: 5177: 5170: 5151: 5138: 5136: 5129: 5108: 5106: 5099: 5091: 5089: 5038: 5029: 5027: 5020: 5005: 4996: 4994: 4987: 4977: 4962: 4953: 4951: 4944: 4926: 4917: 4915: 4908: 4902: 4859: 4847: 4838: 4830: 4820: 4807: 4795: 4790: 4775: 4765: 4749: 4719: 4714: 4708: 4671: 4659: 4650: 4645: 4632: 4616: 4600: 4581: 4571: 4556: 4503: 4491: 4479: 4477: 4470: 4460: 4445: 4436: 4431: 4425: 4345: 4333: 4324: 4316: 4306: 4295: 4282: 4270: 4265: 4259: 4117: 4115: 4074: 4033: 4024: 4014: 4004: 3992: 3960: 3951: 3941: 3936: 3926: 3912: 3907: 3898: 3892: 3856: 3847: 3832: 3823: 3818: 3808: 3793: 3784: 3766: 3757: 3751: 3721: 3709: 3700: 3690: 3678: 3637: 3620: 3579: 3563: 3550: 3544: 3453: 3443: 3416: 3411: 3409: 3408: 3391: 3386: 3384: 3383: 3368: 3358: 3331: 3326: 3324: 3323: 3308: 3298: 3271: 3266: 3264: 3263: 3246: 3216:{\displaystyle \Omega (v)=D(Dv)=D^{2}v\,} 3212: 3203: 3164: 3156:, the curvature endomorphism is given by 3113: 3101: 3091: 3073: 3030: 3024: 3023: 3014: 3002: 3001: 2993: 2946: 2931: 2917: 2912: 2904: 2857: 2840: 2823: 2803: 2795: 2724: 2719: 2709: 2704: 2699: 2686: 2681: 2665: 2655: 2650: 2640: 2635: 2630: 2614: 2609: 2599: 2594: 2589: 2573: 2563: 2558: 2548: 2543: 2538: 2522: 2517: 2508: 2388: 2373: 2351: 2337: 2332: 2324: 2290: 2285: 2275: 2265: 2249: 2244: 2239: 2231: 2225: 2224: 2211: 2210: 2207: 2090: 2058: 2038: 2018: 2007: 1975: 1966: 1956: 1951: 1938: 1928: 1917: 1907: 1896: 1881: 1872: 1856: 1846: 1835: 1817: 1808: 1798: 1782: 1771: 1756: 1701: 1696: 1683: 1673: 1662: 1649: 1640: 1527: 1522: 1521: 1464: 1431: 1421: 1390: 1380: 1356: 1247: 1215:is the bundle of differential 1-forms on 1181: 1147: 1108: 1060: 1040: 1006: 999: 993: 992: 973: 964: 941: 932: 916: 907: 895: 889: 888: 880: 857: 855: 835: 808: 799: 793: 767: 758: 748: 738: 727: 715: 693: 692: 690: 670: 650: 630: 585: 575: 560: 558: 536: 535: 533: 511: 507: 506: 503: 482: 478: 477: 474: 454: 433: 429: 428: 419: 399: 379: 353: 333: 313: 285: 257: 233: 210: 186: 9666:Covariance and contravariance of vectors 7056:is a vector bundle with structure group 442:{\displaystyle U\times \mathbb {R} ^{k}} 308:of a manifold. That is, given any point 144:, there is an additional invariant: the 42:is a manner of organizing the data of a 8175: 8173: 8155: 8130: 8115: 5062:For simplicity, suppose that the frame 3743:The components of the torsion are then 1300:{\displaystyle D(fv)=v\otimes (df)+fDv} 1031:, such frame fields are referred to as 140:identifying the vector bundle with the 7198:. In detail, using the fact that the 6590:, the connection form transforms via 4186:, the metric connection is called the 132:invariant of a connection form is its 8126: 7816:) with the adjoint representation of 5789:, one works with frames that form an 5781:. For example, in the presence of a 4251:define the Levi-Civita connection by 96:A connection form associates to each 7: 8327:(New ed.), Wiley-Interscience, 8309:(New ed.), Wiley-Interscience, 8142: 5816:The holomorphic tangent bundle of a 3152:In terms of the exterior connection 872:. As a matrix equation, this reads 348:, there exists an open neighborhood 6934: 5742:is symmetric on its lower indices. 5650:Assuming again for simplicity that 4144:Example: the Levi-Civita connection 3641:{\displaystyle \Theta =D\theta .\,} 3512:. In this case, the vector bundle 2123:. Conversely, a matrix of 1-forms 9529:Tensors in curvilinear coordinates 6248: 6092: 5824:). Here the structure group is GL 5678: 5665: 5546: 5340: 5318: 5293: 5283: 5208: 5167: 5126: 5096: 4905: 4827: 4787: 4711: 4467: 4313: 4262: 4121: 4085: 4079: 4021: 3994: 3948: 3895: 3754: 3622: 3440: 3427: 3355: 3342: 3295: 3282: 3248: 3166: 3088: 3081: 3075: 3008: 2995: 2940: 2906: 2797: 2457:is equipped with a trivialization 1418: 1405: 1377: 1364: 1178: 1162: 1131: 1116: 25: 7544:-valued one-form on each product 7186:-frames taken over each point of 6010:. Informally, the vector bundle 5904:, then a matrix-valued function ( 3500:Suppose that the fibre dimension 1999:Taking components on both sides, 1574:on the sheaf of graded modules Γ( 1075:being established by the atlas). 394:for which the vector bundle over 8248:Principles of algebraic geometry 8017: 7974: 7908: 7894: 7864:. Then the pullback of ω along 7769: 7732: 7424: 7407: 7113: 7096: 6972: 6901: 6793: 6737: 6619: 6453: 5614: 5559: 5039: 5006: 4963: 4927: 4848: 4660: 4492: 4446: 4334: 4034: 3961: 3908: 3857: 3833: 3794: 3767: 3710: 3598:is a linear isomorphism for all 3025: 3015: 3003: 2947: 2913: 2858: 2841: 2824: 2804: 2720: 2700: 2682: 2651: 2631: 2610: 2590: 2559: 2539: 2518: 2389: 2333: 2226: 2212: 2091: 2059: 2039: 2019: 1976: 1882: 1818: 1007: 994: 974: 942: 917: 890: 858: 809: 768: 561: 520:{\displaystyle \mathbb {R} ^{k}} 491:{\displaystyle \mathbb {R} ^{k}} 469:. The vector space structure on 8211:Topics in Differential Geometry 7593: 5865:Holomorphic tangent bundles on 5736:which vanishes if and only if Γ 5486:, especially in the context of 4417:), then the connection form is 4243:, defined on an open subset of 2238: 8472:Differentiable/Smooth manifold 8039: 8033: 8030: 8027: 8013: 8007: 7986: 7969: 7899: 7889: 7742: 7727: 7678: 7666: 7616: 7584: 7496: 7490: 7400: 7396: 7381: 7362: 7359: 7353: 7338: 7319: 7316: 6976: 6968: 6912: 6896: 6804: 6788: 6741: 6733: 6704: 6687: 6652: 6635: 6629: 6615: 6457: 6449: 6347: 6344: 6338: 6323: 6270: 6264: 6206: 6200: 6182: 6179: 6173: 6167: 6141: 6138: 6132: 6126: 6102: 6095: 5854:on a manifold equipped with a 5618: 5610: 5563: 5555: 5361: 5239: 5204: 5198: 5163: 5157: 5122: 5043: 5035: 5010: 5002: 4967: 4959: 4931: 4923: 4852: 4844: 4664: 4656: 4606: 4590: 4496: 4488: 4450: 4442: 4338: 4330: 4038: 4030: 3965: 3957: 3916: 3904: 3861: 3853: 3837: 3829: 3798: 3790: 3771: 3763: 3714: 3706: 3572: 3468: 3465: 3459: 3430: 3412: 3387: 3377: 3345: 3327: 3317: 3285: 3267: 3257: 3251: 3193: 3184: 3175: 3169: 3133: 3130: 3118: 3084: 3019: 3011: 2951: 2943: 2921: 2909: 2862: 2854: 2845: 2837: 2828: 2820: 2808: 2800: 2730: 2695: 2692: 2677: 2662: 2626: 2620: 2585: 2570: 2534: 2528: 2513: 2393: 2385: 2341: 2329: 2095: 2087: 2081: 2069: 2063: 2055: 2043: 2035: 2023: 2015: 1980: 1972: 1886: 1878: 1825: 1822: 1814: 1791: 1518: 1508: 1496: 1487: 1481: 1469: 1440: 1408: 1402: 1399: 1367: 1314:is the exterior derivative of 1282: 1273: 1261: 1252: 1171: 1165: 1156: 1134: 1128: 1125: 1119: 1011: 1003: 978: 970: 946: 938: 921: 913: 813: 805: 772: 764: 582: 568: 120:, in much the same way as the 1: 9582:Exterior covariant derivative 9514:Tensor (intrinsic definition) 8123:Griffiths & Harris (1978) 7832:-connection ω in a principal 6475:compatible with the structure 6070:provided that the associated 4133:{\displaystyle \,D\Omega =0.} 2491:) of 1-forms defined on each 1562:is homogeneous of degree deg 1085:Exterior covariant derivative 665:. For example, suppose that 9607:Raising and lowering indices 7540:as follows, by specifying a 6477:if the matrix of one-forms ω 4148:As an example, suppose that 2111:where it is understood that 865:{\displaystyle \mathbf {e} } 700:{\displaystyle \mathbb {e} } 543:{\displaystyle \mathbb {C} } 367:{\displaystyle U\subseteq M} 9845:Gluon field strength tensor 9178:Classification of manifolds 6775:Or, using matrix products: 6042:with the natural action of 5077:. Then, employing now the 4175:. For the special case of 2981:corresponding to the frame 1239:is a smooth function, then 9989: 9656:Cartan formalism (physics) 9476:Penrose graphical notation 6229:(which may also depend on 5809:is the fibre dimension of 2772: 1082: 1055:(the coordinate system on 174: 166:Connection (vector bundle) 163: 91:gauge covariant derivative 9328:Glossary of tensor theory 9324: 9254:over commutative algebras 8359:Spivak, Michael (1999b), 8341:Spivak, Michael (1999a), 8279:10.1007/978-3-642-21298-7 7040:larger principal bundle. 5848:acting on unitary frames. 5774:, which are related by a 3884:under a change in frame: 2444:} is an open covering of 1211:of a vector bundle, and Ω 171:Frames on a vector bundle 9953:Connection (mathematics) 9912:Gregorio Ricci-Curbastro 9784:Riemann curvature tensor 9491:Van der Waerden notation 8970:Riemann curvature tensor 7828:Conversely, a principal 6504:Under a change of frame 6363:where the coefficients ω 6062:with the structure of a 5464:Riemann curvature tensor 3536:) such that the mapping 2783:of a connection form in 2478:is a system of matrices 2419:fails to transform in a 2415:Note in particular that 9882:Elwin Bruno Christoffel 9815:Angular momentum tensor 9486:Tetrad (index notation) 9456:Abstract index notation 8250:, John Wiley and sons, 7190:. This is a principal 6233:). Differentiation at 6038:whose typical fibre is 5926:to produce a new frame 5822:almost complex manifold 2751:compatibility condition 2431:Global connection forms 227:differentiable manifold 136:. In the presence of a 79:differentiable manifold 9696:Levi-Civita connection 8762:Manifold with boundary 8477:Differential structure 8055: 7929: 7860:is a local section of 7782: 7626: 7516: 7300: 7274: 7144: 7064:} be an open cover of 7020:adjoint representation 6983: 6858: 6766: 6569: 6485:) takes its values in 6464: 6354: 6213: 6054:Compatible connections 5994: 5900:) is a local frame of 5726: 5641: 5490:) that is the section 5449: 5053: 4874: 4684: 4516: 4358: 4311: 4198:on the tangent bundle 4196:Levi-Civita connection 4134: 4098: 4048: 3975: 3871: 3734: 3642: 3589: 3526:vector-valued one-form 3524:is a globally defined 3475: 3217: 3143: 3040: 2964: 2872: 2740: 2406: 2303: 2102: 1990: 1933: 1912: 1851: 1787: 1714: 1678: 1549: 1447: 1301: 1231:is a local section of 1194: 1069: 1049: 1018: 866: 844: 820: 779: 743: 701: 679: 659: 639: 619: 544: 521: 492: 463: 443: 408: 388: 368: 342: 322: 294: 266: 242: 219: 195: 126:Levi-Civita connection 46:using the language of 9958:Differential geometry 9922:Jan Arnoldus Schouten 9877:Augustin-Louis Cauchy 9357:Differential geometry 8363:, Publish or Perish, 8345:, Publish or Perish, 8264:Jost, Jürgen (2011), 8056: 7938:Changing frames by a 7930: 7783: 7627: 7517: 7301: 7299:{\displaystyle \sim } 7275: 7145: 6984: 6859: 6767: 6570: 6465: 6355: 6214: 6074:maps always send one 6034:with structure group 5995: 5727: 5642: 5517:, the solder form is 5450: 5081:on repeated indices, 5054: 4875: 4685: 4517: 4359: 4291: 4188:Riemannian connection 4135: 4099: 4049: 3976: 3872: 3735: 3643: 3590: 3496:Soldering and torsion 3476: 3218: 3144: 3041: 2965: 2873: 2741: 2407: 2304: 2103: 1991: 1913: 1892: 1831: 1767: 1715: 1658: 1550: 1448: 1302: 1195: 1099:differential operator 1070: 1050: 1019: 867: 845: 821: 780: 723: 702: 680: 660: 640: 620: 545: 522: 493: 464: 444: 409: 389: 369: 343: 328:on the base manifold 323: 302:local trivializations 295: 267: 243: 220: 196: 36:differential geometry 9897:Carl Friedrich Gauss 9830:stress–energy tensor 9825:Cauchy stress tensor 9577:Covariant derivative 9539:Antisymmetric tensor 9471:Multi-index notation 8909:Covariant derivative 8460:Topological manifold 8197:See Chern and Moser. 8090:Ehresmann connection 7957: 7883: 7872:-valued one-form on 7658: 7559: 7313: 7290: 7285:equivalence relation 7220: 7090: 7026:on its Lie algebra. 6890: 6782: 6597: 6511: 6392: 6244: 6089: 6046:as a subgroup of GL( 6003:Two such frames are 5933: 5661: 5542: 5088: 5079:summation convention 4901: 4707: 4555: 4424: 4258: 4114: 4073: 3991: 3891: 3882:contravariant tensor 3750: 3677: 3651:The torsion Θ is an 3619: 3543: 3245: 3163: 3072: 2992: 2903: 2885:. Specifically, if 2794: 2507: 2323: 2206: 2195:matrix of functions 2006: 1755: 1639: 1463: 1355: 1246: 1227:. Specifically, if 1203:where Γ denotes the 1107: 1079:Exterior connections 1059: 1039: 879: 854: 843:{\displaystyle \xi } 834: 792: 714: 689: 678:{\displaystyle \xi } 669: 649: 629: 625:be a local frame on 557: 532: 502: 473: 453: 418: 398: 378: 352: 332: 312: 304:, in analogy to the 284: 256: 232: 209: 185: 118:transition functions 75:principal connection 27:Math/physics concept 9774:Nonmetricity tensor 9629:(2nd-order tensors) 9597:Hodge star operator 9587:Exterior derivative 9436:Transport phenomena 9421:Continuum mechanics 9377:Multilinear algebra 8943:Exterior derivative 8545:Atiyah–Singer index 8494:Riemannian manifold 8384:, Springer-Verlag, 7762: 7723: 7489: 7014:along the function 6758: 6732: 6717: 6683: 6665: 6614: 6564: 6526: 6448: 6322: 6199: 6115: 5986: 5948: 5609: 5525:is the dual basis. 5488:classical mechanics 4843: 4655: 4441: 4329: 4249:Christoffel symbols 3946: 3828: 3053:with values in the 2985:. Then the 2-form 2717: 2648: 2607: 2556: 2295: 2257: 2143:In order to extend 1961: 1706: 1607:, it is the unique 1566:. In other words, 1225:exterior derivative 205:of fibre dimension 122:Christoffel symbols 114:exterior derivative 34:, and specifically 9907:Tullio Levi-Civita 9850:Metric tensor (GR) 9764:Levi-Civita symbol 9617:Tensor contraction 9431:General relativity 9367:Euclidean geometry 9249:Secondary calculus 9203:Singularity theory 9158:Parallel transport 8926:De Rham cohomology 8565:Generalized Stokes 8240:Griffiths, Phillip 8232:10.1007/BF02392146 8051: 7946:, one sees that ω( 7925: 7778: 7748: 7709: 7622: 7512: 7469: 7296: 7270: 7252: 7182:be the set of all 7140: 7000:Maurer-Cartan form 6979: 6854: 6762: 6744: 6718: 6703: 6669: 6651: 6600: 6565: 6550: 6539: 6514: 6496:-valued two-form. 6460: 6434: 6420: 6350: 6308: 6297: 6209: 6185: 6156: 6101: 6072:parallel transport 5990: 5972: 5961: 5936: 5722: 5637: 5595: 5594: 5484:canonical one-form 5445: 5443: 5391: 5049: 4982: 4870: 4826: 4825: 4770: 4680: 4641: 4627: 4576: 4512: 4465: 4427: 4354: 4312: 4130: 4094: 4064:Bianchi identities 4058:Bianchi identities 4044: 4009: 3971: 3932: 3931: 3867: 3814: 3813: 3730: 3695: 3655:-valued 2-form on 3638: 3585: 3490:de Rham cohomology 3471: 3213: 3139: 3065:). Symbolically, 3036: 2960: 2868: 2781:curvature two-form 2736: 2698: 2629: 2588: 2537: 2402: 2299: 2281: 2270: 2245: 2151:is chosen. Write 2098: 1986: 1947: 1710: 1692: 1545: 1443: 1297: 1190: 1065: 1045: 1029:general relativity 1014: 983: 862: 840: 816: 775: 697: 675: 655: 635: 615: 540: 517: 488: 459: 439: 404: 384: 364: 338: 318: 290: 262: 238: 215: 191: 65:, and so is not a 52:differential forms 9968:Maps of manifolds 9940: 9939: 9902:Hermann Grassmann 9858: 9857: 9810:Moment of inertia 9671:Differential form 9646:Affine connection 9461:Einstein notation 9444: 9443: 9372:Exterior calculus 9352:Coordinate system 9284: 9283: 9166: 9165: 8931:Differential form 8585:Whitney embedding 8519:Differential form 8288:978-3-642-21297-0 8100:Affine connection 8095:Cartan connection 7942:-valued function 7454: 7243: 7157:-valued function 7037:Charles Ehresmann 7030:Principal bundles 6947: 6530: 6411: 6374:of the Lie group 6335: 6288: 6261: 6147: 5952: 5791:orthonormal basis 5748:contorsion tensor 5585: 5476:metric connection 5390: 4973: 4816: 4761: 4612: 4567: 4456: 4173:metric connection 4154:Riemannian metric 4000: 3922: 3804: 3686: 3488:(in the sense of 3426: 3421: 3407: 3401: 3396: 3382: 3341: 3336: 3322: 3281: 3276: 3262: 3116: 3055:endomorphism ring 2261: 2242: 1525: 1068:{\displaystyle M} 1048:{\displaystyle M} 658:{\displaystyle E} 638:{\displaystyle E} 462:{\displaystyle U} 407:{\displaystyle U} 387:{\displaystyle x} 341:{\displaystyle M} 321:{\displaystyle x} 293:{\displaystyle E} 265:{\displaystyle E} 241:{\displaystyle M} 218:{\displaystyle k} 194:{\displaystyle E} 18:Connection 1-form 16:(Redirected from 9980: 9973:Smooth functions 9917:Bernhard Riemann 9749: 9592:Exterior product 9559:Two-point tensor 9544:Symmetric tensor 9426:Electromagnetism 9340: 9311: 9304: 9297: 9288: 9276:Stratified space 9234:Fréchet manifold 8948:Interior product 8841: 8538: 8434: 8427: 8420: 8411: 8406: 8394: 8373: 8355: 8337: 8319: 8299: 8272: 8260: 8235: 8234: 8198: 8195: 8189: 8186: 8180: 8177: 8168: 8165: 8159: 8152: 8146: 8139: 8133: 8120: 8060: 8058: 8057: 8052: 8020: 7994: 7993: 7978: 7977: 7934: 7932: 7931: 7926: 7918: 7917: 7912: 7911: 7898: 7897: 7848:. Suppose that 7787: 7785: 7784: 7779: 7774: 7773: 7772: 7761: 7756: 7741: 7740: 7735: 7722: 7717: 7708: 7707: 7706: 7705: 7682: 7681: 7631: 7629: 7628: 7623: 7603: 7602: 7571: 7570: 7521: 7519: 7518: 7513: 7508: 7507: 7488: 7480: 7465: 7464: 7455: 7452: 7450: 7449: 7434: 7433: 7428: 7427: 7417: 7416: 7411: 7410: 7380: 7379: 7337: 7336: 7305: 7303: 7302: 7297: 7279: 7277: 7276: 7271: 7266: 7262: 7251: 7232: 7231: 7202:-frames are all 7149: 7147: 7146: 7141: 7139: 7138: 7123: 7122: 7117: 7116: 7106: 7105: 7100: 7099: 7072:-frames on each 7018:, and Ad is the 6988: 6986: 6985: 6980: 6975: 6964: 6963: 6962: 6961: 6948: 6945: 6939: 6938: 6937: 6927: 6926: 6905: 6904: 6863: 6861: 6860: 6855: 6844: 6843: 6822: 6821: 6797: 6796: 6771: 6769: 6768: 6763: 6757: 6752: 6740: 6731: 6726: 6716: 6711: 6702: 6701: 6682: 6677: 6664: 6659: 6650: 6649: 6622: 6613: 6608: 6574: 6572: 6571: 6566: 6563: 6558: 6549: 6548: 6538: 6522: 6469: 6467: 6466: 6461: 6456: 6447: 6442: 6430: 6429: 6419: 6407: 6406: 6359: 6357: 6356: 6351: 6337: 6336: 6328: 6321: 6316: 6307: 6306: 6296: 6284: 6283: 6274: 6273: 6263: 6262: 6254: 6222:for some matrix 6218: 6216: 6215: 6210: 6198: 6193: 6166: 6165: 6155: 6125: 6124: 6114: 6109: 6058:A connection is 5999: 5997: 5996: 5991: 5985: 5980: 5971: 5970: 5960: 5944: 5873:In general, let 5842:hermitian metric 5818:complex manifold 5795:orthogonal group 5754:Structure groups 5731: 5729: 5728: 5723: 5721: 5720: 5708: 5707: 5698: 5697: 5689: 5686: 5685: 5673: 5672: 5646: 5644: 5643: 5638: 5633: 5632: 5617: 5608: 5603: 5593: 5581: 5580: 5562: 5554: 5553: 5534: 5520: 5512: 5454: 5452: 5451: 5446: 5444: 5440: 5439: 5434: 5431: 5430: 5415: 5414: 5402: 5401: 5392: 5383: 5376: 5373: 5372: 5368: 5364: 5360: 5359: 5351: 5348: 5347: 5338: 5337: 5329: 5326: 5325: 5313: 5312: 5304: 5301: 5300: 5291: 5290: 5276: 5275: 5263: 5262: 5249: 5246: 5245: 5238: 5237: 5228: 5227: 5219: 5216: 5215: 5197: 5196: 5187: 5186: 5178: 5175: 5174: 5156: 5155: 5146: 5145: 5137: 5134: 5133: 5113: 5112: 5107: 5104: 5103: 5076: 5058: 5056: 5055: 5050: 5042: 5034: 5033: 5028: 5025: 5024: 5009: 5001: 5000: 4995: 4992: 4991: 4981: 4966: 4958: 4957: 4952: 4949: 4948: 4930: 4922: 4921: 4916: 4913: 4912: 4879: 4877: 4876: 4871: 4869: 4865: 4864: 4863: 4851: 4842: 4837: 4824: 4812: 4811: 4802: 4801: 4800: 4799: 4780: 4779: 4769: 4754: 4753: 4726: 4725: 4724: 4723: 4689: 4687: 4686: 4681: 4676: 4675: 4663: 4654: 4649: 4637: 4636: 4626: 4605: 4604: 4586: 4585: 4575: 4547: 4521: 4519: 4518: 4513: 4508: 4507: 4495: 4487: 4486: 4478: 4475: 4474: 4464: 4449: 4440: 4435: 4389:cotangent bundle 4363: 4361: 4360: 4355: 4350: 4349: 4337: 4328: 4323: 4310: 4305: 4287: 4286: 4277: 4276: 4275: 4274: 4242: 4232: 4139: 4137: 4136: 4131: 4103: 4101: 4100: 4095: 4053: 4051: 4050: 4045: 4037: 4029: 4028: 4019: 4018: 4008: 3980: 3978: 3977: 3972: 3964: 3956: 3955: 3945: 3940: 3930: 3911: 3903: 3902: 3876: 3874: 3873: 3868: 3860: 3852: 3851: 3836: 3827: 3822: 3812: 3797: 3789: 3788: 3770: 3762: 3761: 3739: 3737: 3736: 3731: 3726: 3725: 3713: 3705: 3704: 3694: 3647: 3645: 3644: 3639: 3594: 3592: 3591: 3586: 3584: 3583: 3568: 3567: 3555: 3554: 3480: 3478: 3477: 3472: 3458: 3457: 3448: 3447: 3424: 3423: 3422: 3420: 3415: 3410: 3405: 3399: 3398: 3397: 3395: 3390: 3385: 3380: 3373: 3372: 3363: 3362: 3339: 3338: 3337: 3335: 3330: 3325: 3320: 3313: 3312: 3303: 3302: 3279: 3278: 3277: 3275: 3270: 3265: 3260: 3222: 3220: 3219: 3214: 3208: 3207: 3148: 3146: 3145: 3140: 3117: 3114: 3106: 3105: 3096: 3095: 3045: 3043: 3042: 3037: 3035: 3034: 3029: 3028: 3018: 3007: 3006: 2969: 2967: 2966: 2961: 2950: 2939: 2938: 2916: 2877: 2875: 2874: 2869: 2861: 2844: 2827: 2807: 2745: 2743: 2742: 2737: 2729: 2728: 2723: 2716: 2708: 2703: 2691: 2690: 2685: 2673: 2672: 2660: 2659: 2654: 2647: 2639: 2634: 2619: 2618: 2613: 2606: 2598: 2593: 2581: 2580: 2568: 2567: 2562: 2555: 2547: 2542: 2527: 2526: 2521: 2411: 2409: 2408: 2403: 2392: 2381: 2380: 2359: 2358: 2336: 2308: 2306: 2305: 2300: 2294: 2289: 2280: 2279: 2269: 2253: 2243: 2240: 2230: 2229: 2220: 2216: 2215: 2186: 2107: 2105: 2104: 2099: 2094: 2062: 2042: 2022: 1995: 1993: 1992: 1987: 1979: 1971: 1970: 1960: 1955: 1943: 1942: 1932: 1927: 1911: 1906: 1885: 1877: 1876: 1861: 1860: 1850: 1845: 1821: 1813: 1812: 1803: 1802: 1786: 1781: 1719: 1717: 1716: 1711: 1705: 1700: 1688: 1687: 1677: 1672: 1654: 1653: 1586:Connection forms 1554: 1552: 1551: 1546: 1532: 1531: 1526: 1523: 1452: 1450: 1449: 1444: 1436: 1435: 1426: 1425: 1395: 1394: 1385: 1384: 1338:exterior algebra 1306: 1304: 1303: 1298: 1199: 1197: 1196: 1191: 1186: 1185: 1152: 1151: 1074: 1072: 1071: 1066: 1054: 1052: 1051: 1046: 1023: 1021: 1020: 1015: 1010: 998: 997: 988: 987: 977: 969: 968: 945: 937: 936: 920: 912: 911: 894: 893: 871: 869: 868: 863: 861: 849: 847: 846: 841: 825: 823: 822: 817: 812: 804: 803: 784: 782: 781: 776: 771: 763: 762: 753: 752: 742: 737: 706: 704: 703: 698: 696: 684: 682: 681: 676: 664: 662: 661: 656: 644: 642: 641: 636: 624: 622: 621: 616: 614: 613: 580: 579: 564: 550:in particular.) 549: 547: 546: 541: 539: 526: 524: 523: 518: 516: 515: 510: 497: 495: 494: 489: 487: 486: 481: 468: 466: 465: 460: 448: 446: 445: 440: 438: 437: 432: 413: 411: 410: 405: 393: 391: 390: 385: 373: 371: 370: 365: 347: 345: 344: 339: 327: 325: 324: 319: 299: 297: 296: 291: 271: 269: 268: 263: 247: 245: 244: 239: 224: 222: 221: 216: 200: 198: 197: 192: 71:principal bundle 63:coordinate frame 21: 9988: 9987: 9983: 9982: 9981: 9979: 9978: 9977: 9943: 9942: 9941: 9936: 9887:Albert Einstein 9854: 9835:Einstein tensor 9798: 9779:Ricci curvature 9759:Kronecker delta 9745:Notable tensors 9740: 9661:Connection form 9638: 9632: 9563: 9549:Tensor operator 9506: 9500: 9440: 9416:Computer vision 9409: 9391: 9387:Tensor calculus 9331: 9320: 9315: 9285: 9280: 9219:Banach manifold 9212:Generalizations 9207: 9162: 9099: 8996: 8958:Ricci curvature 8914:Cotangent space 8892: 8830: 8672: 8666: 8625:Exponential map 8589: 8534: 8528: 8448: 8438: 8405:, Prentice–Hall 8397: 8392: 8376: 8371: 8358: 8353: 8340: 8335: 8322: 8317: 8302: 8289: 8270: 8263: 8258: 8238: 8216: 8206: 8201: 8196: 8192: 8187: 8183: 8178: 8171: 8166: 8162: 8153: 8149: 8140: 8136: 8121: 8117: 8113: 8086: 8068:is a vector on 7985: 7955: 7954: 7905: 7881: 7880: 7826: 7812: 7805: 7794: 7763: 7730: 7694: 7689: 7661: 7656: 7655: 7594: 7562: 7557: 7556: 7528: 7499: 7456: 7453: and  7438: 7421: 7404: 7371: 7328: 7311: 7310: 7288: 7287: 7242: 7239: 7223: 7218: 7217: 7209: 7178: 7163: 7127: 7110: 7093: 7088: 7087: 7082: 7046: 7032: 6997: 6950: 6943: 6928: 6918: 6888: 6887: 6832: 6810: 6780: 6779: 6690: 6638: 6595: 6594: 6540: 6509: 6508: 6502: 6500:Change of frame 6480: 6421: 6398: 6390: 6389: 6384: 6366: 6298: 6275: 6247: 6242: 6241: 6228: 6157: 6116: 6087: 6086: 6056: 6016:structure of a 5962: 5931: 5930: 5925: 5919:may act on the 5910: 5899: 5835: 5827: 5764:structure group 5756: 5741: 5712: 5699: 5687: 5677: 5664: 5659: 5658: 5624: 5572: 5545: 5540: 5539: 5529: 5518: 5495: 5472: 5442: 5441: 5432: 5416: 5406: 5393: 5374: 5370: 5369: 5349: 5339: 5327: 5317: 5302: 5292: 5282: 5281: 5277: 5267: 5254: 5247: 5243: 5242: 5229: 5217: 5207: 5188: 5176: 5166: 5147: 5135: 5125: 5114: 5105: 5095: 5086: 5085: 5071: 5026: 5016: 4993: 4983: 4950: 4940: 4914: 4904: 4899: 4898: 4893: 4886: 4855: 4803: 4791: 4786: 4785: 4781: 4771: 4745: 4715: 4710: 4705: 4704: 4699: 4667: 4628: 4596: 4577: 4553: 4552: 4543: 4535: 4526: 4499: 4476: 4466: 4422: 4421: 4415:Kronecker delta 4412: 4403: 4383:}, denotes the 4341: 4278: 4266: 4261: 4256: 4255: 4234: 4222: 4210: 4156:. If one has a 4146: 4112: 4111: 4071: 4070: 4060: 4020: 4010: 3989: 3988: 3947: 3894: 3889: 3888: 3843: 3780: 3753: 3748: 3747: 3717: 3696: 3675: 3674: 3617: 3616: 3575: 3559: 3546: 3541: 3540: 3498: 3449: 3439: 3364: 3354: 3304: 3294: 3243: 3242: 3234:(we can extend 3199: 3161: 3160: 3097: 3087: 3070: 3069: 3022: 2990: 2989: 2927: 2901: 2900: 2792: 2791: 2777: 2771: 2718: 2680: 2661: 2649: 2608: 2569: 2557: 2516: 2505: 2504: 2499: 2490: 2472:connection form 2465: 2456: 2443: 2433: 2369: 2347: 2321: 2320: 2271: 2209: 2204: 2203: 2184: 2168: 2159: 2141: 2139:Change of frame 2004: 2003: 1962: 1934: 1868: 1852: 1804: 1794: 1753: 1752: 1744: 1736: 1679: 1645: 1637: 1636: 1623: 1606: 1592:connection form 1588: 1517: 1461: 1460: 1427: 1417: 1386: 1376: 1353: 1352: 1244: 1243: 1177: 1143: 1105: 1104: 1087: 1081: 1057: 1056: 1037: 1036: 982: 981: 960: 957: 956: 950: 949: 928: 925: 924: 903: 896: 877: 876: 852: 851: 832: 831: 795: 790: 789: 754: 744: 712: 711: 687: 686: 667: 666: 647: 646: 627: 626: 581: 571: 555: 554: 530: 529: 505: 500: 499: 476: 471: 470: 451: 450: 427: 416: 415: 396: 395: 376: 375: 350: 349: 330: 329: 310: 309: 282: 281: 254: 253: 230: 229: 207: 206: 183: 182: 179: 173: 168: 162: 154:structure group 110:change of basis 40:connection form 28: 23: 22: 15: 12: 11: 5: 9986: 9984: 9976: 9975: 9970: 9965: 9960: 9955: 9945: 9944: 9938: 9937: 9935: 9934: 9929: 9927:Woldemar Voigt 9924: 9919: 9914: 9909: 9904: 9899: 9894: 9892:Leonhard Euler 9889: 9884: 9879: 9874: 9868: 9866: 9864:Mathematicians 9860: 9859: 9856: 9855: 9853: 9852: 9847: 9842: 9837: 9832: 9827: 9822: 9817: 9812: 9806: 9804: 9800: 9799: 9797: 9796: 9791: 9789:Torsion tensor 9786: 9781: 9776: 9771: 9766: 9761: 9755: 9753: 9746: 9742: 9741: 9739: 9738: 9733: 9728: 9723: 9718: 9713: 9708: 9703: 9698: 9693: 9688: 9683: 9678: 9673: 9668: 9663: 9658: 9653: 9648: 9642: 9640: 9634: 9633: 9631: 9630: 9624: 9622:Tensor product 9619: 9614: 9612:Symmetrization 9609: 9604: 9602:Lie derivative 9599: 9594: 9589: 9584: 9579: 9573: 9571: 9565: 9564: 9562: 9561: 9556: 9551: 9546: 9541: 9536: 9531: 9526: 9524:Tensor density 9521: 9516: 9510: 9508: 9502: 9501: 9499: 9498: 9496:Voigt notation 9493: 9488: 9483: 9481:Ricci calculus 9478: 9473: 9468: 9466:Index notation 9463: 9458: 9452: 9450: 9446: 9445: 9442: 9441: 9439: 9438: 9433: 9428: 9423: 9418: 9412: 9410: 9408: 9407: 9402: 9396: 9393: 9392: 9390: 9389: 9384: 9382:Tensor algebra 9379: 9374: 9369: 9364: 9362:Dyadic algebra 9359: 9354: 9348: 9346: 9337: 9333: 9332: 9325: 9322: 9321: 9316: 9314: 9313: 9306: 9299: 9291: 9282: 9281: 9279: 9278: 9273: 9268: 9263: 9258: 9257: 9256: 9246: 9241: 9236: 9231: 9226: 9221: 9215: 9213: 9209: 9208: 9206: 9205: 9200: 9195: 9190: 9185: 9180: 9174: 9172: 9168: 9167: 9164: 9163: 9161: 9160: 9155: 9150: 9145: 9140: 9135: 9130: 9125: 9120: 9115: 9109: 9107: 9101: 9100: 9098: 9097: 9092: 9087: 9082: 9077: 9072: 9067: 9057: 9052: 9047: 9037: 9032: 9027: 9022: 9017: 9012: 9006: 9004: 8998: 8997: 8995: 8994: 8989: 8984: 8983: 8982: 8972: 8967: 8966: 8965: 8955: 8950: 8945: 8940: 8939: 8938: 8928: 8923: 8922: 8921: 8911: 8906: 8900: 8898: 8894: 8893: 8891: 8890: 8885: 8880: 8875: 8874: 8873: 8863: 8858: 8853: 8847: 8845: 8838: 8832: 8831: 8829: 8828: 8823: 8813: 8808: 8794: 8789: 8784: 8779: 8774: 8772:Parallelizable 8769: 8764: 8759: 8758: 8757: 8747: 8742: 8737: 8732: 8727: 8722: 8717: 8712: 8707: 8702: 8692: 8682: 8676: 8674: 8668: 8667: 8665: 8664: 8659: 8654: 8652:Lie derivative 8649: 8647:Integral curve 8644: 8639: 8634: 8633: 8632: 8622: 8617: 8616: 8615: 8608:Diffeomorphism 8605: 8599: 8597: 8591: 8590: 8588: 8587: 8582: 8577: 8572: 8567: 8562: 8557: 8552: 8547: 8541: 8539: 8530: 8529: 8527: 8526: 8521: 8516: 8511: 8506: 8501: 8496: 8491: 8486: 8485: 8484: 8479: 8469: 8468: 8467: 8456: 8454: 8453:Basic concepts 8450: 8449: 8439: 8437: 8436: 8429: 8422: 8414: 8408: 8407: 8395: 8390: 8374: 8369: 8356: 8351: 8338: 8333: 8320: 8315: 8300: 8287: 8261: 8256: 8244:Harris, Joseph 8236: 8214: 8209:Chern, S.-S., 8205: 8202: 8200: 8199: 8190: 8181: 8169: 8160: 8156:Spivak (1999a) 8147: 8134: 8131:Spivak (1999a) 8114: 8112: 8109: 8108: 8107: 8105:Curvature form 8102: 8097: 8092: 8085: 8082: 8062: 8061: 8050: 8047: 8044: 8041: 8038: 8035: 8032: 8029: 8026: 8023: 8019: 8015: 8012: 8009: 8006: 8003: 8000: 7997: 7992: 7988: 7984: 7981: 7976: 7971: 7968: 7965: 7962: 7936: 7935: 7924: 7921: 7916: 7910: 7904: 7901: 7896: 7891: 7888: 7825: 7822: 7810: 7803: 7792: 7789: 7788: 7777: 7771: 7766: 7760: 7755: 7751: 7747: 7744: 7739: 7734: 7729: 7726: 7721: 7716: 7712: 7704: 7701: 7697: 7692: 7688: 7685: 7680: 7677: 7674: 7671: 7668: 7664: 7633: 7632: 7621: 7618: 7615: 7612: 7609: 7606: 7601: 7597: 7592: 7589: 7586: 7583: 7580: 7577: 7574: 7569: 7565: 7526: 7523: 7522: 7511: 7506: 7502: 7498: 7495: 7492: 7487: 7484: 7479: 7476: 7472: 7468: 7463: 7459: 7448: 7445: 7441: 7437: 7432: 7426: 7420: 7415: 7409: 7402: 7398: 7395: 7392: 7389: 7386: 7383: 7378: 7374: 7370: 7367: 7364: 7361: 7358: 7355: 7352: 7349: 7346: 7343: 7340: 7335: 7331: 7327: 7324: 7321: 7318: 7306:is defined by 7295: 7281: 7280: 7269: 7265: 7261: 7258: 7255: 7250: 7246: 7241: 7238: 7235: 7230: 7226: 7207: 7176: 7161: 7151: 7150: 7137: 7134: 7130: 7126: 7121: 7115: 7109: 7104: 7098: 7080: 7045: 7042: 7031: 7028: 7002:for the group 6993: 6990: 6989: 6978: 6974: 6970: 6967: 6960: 6957: 6953: 6942: 6936: 6931: 6925: 6921: 6917: 6914: 6911: 6908: 6903: 6898: 6895: 6865: 6864: 6853: 6850: 6847: 6842: 6839: 6835: 6831: 6828: 6825: 6820: 6817: 6813: 6809: 6806: 6803: 6800: 6795: 6790: 6787: 6773: 6772: 6761: 6756: 6751: 6747: 6743: 6739: 6735: 6730: 6725: 6721: 6715: 6710: 6706: 6700: 6697: 6693: 6689: 6686: 6681: 6676: 6672: 6668: 6663: 6658: 6654: 6648: 6645: 6641: 6637: 6634: 6631: 6628: 6625: 6621: 6617: 6612: 6607: 6603: 6576: 6575: 6562: 6557: 6553: 6547: 6543: 6537: 6533: 6529: 6525: 6521: 6517: 6501: 6498: 6478: 6471: 6470: 6459: 6455: 6451: 6446: 6441: 6437: 6433: 6428: 6424: 6418: 6414: 6410: 6405: 6401: 6397: 6382: 6364: 6361: 6360: 6349: 6346: 6343: 6340: 6334: 6331: 6325: 6320: 6315: 6311: 6305: 6301: 6295: 6291: 6287: 6282: 6278: 6272: 6269: 6266: 6260: 6257: 6250: 6226: 6220: 6219: 6208: 6205: 6202: 6197: 6192: 6188: 6184: 6181: 6178: 6175: 6172: 6169: 6164: 6160: 6154: 6150: 6146: 6143: 6140: 6137: 6134: 6131: 6128: 6123: 6119: 6113: 6108: 6104: 6100: 6097: 6094: 6055: 6052: 6001: 6000: 5989: 5984: 5979: 5975: 5969: 5965: 5959: 5955: 5951: 5947: 5943: 5939: 5923: 5908: 5897: 5871: 5870: 5863: 5856:spin structure 5849: 5840:). In case a 5833: 5825: 5814: 5755: 5752: 5737: 5734: 5733: 5719: 5715: 5711: 5706: 5702: 5696: 5693: 5684: 5680: 5676: 5671: 5667: 5648: 5647: 5636: 5631: 5627: 5623: 5620: 5616: 5612: 5607: 5602: 5598: 5592: 5588: 5584: 5579: 5575: 5571: 5568: 5565: 5561: 5557: 5552: 5548: 5521:, where again 5471: 5468: 5456: 5455: 5438: 5429: 5426: 5423: 5419: 5413: 5409: 5405: 5400: 5396: 5389: 5386: 5380: 5377: 5375: 5371: 5367: 5363: 5358: 5355: 5346: 5342: 5336: 5333: 5324: 5320: 5316: 5311: 5308: 5299: 5295: 5289: 5285: 5280: 5274: 5270: 5266: 5261: 5257: 5253: 5250: 5248: 5244: 5241: 5236: 5232: 5226: 5223: 5214: 5210: 5206: 5203: 5200: 5195: 5191: 5185: 5182: 5173: 5169: 5165: 5162: 5159: 5154: 5150: 5144: 5141: 5132: 5128: 5124: 5121: 5118: 5115: 5111: 5102: 5098: 5094: 5093: 5060: 5059: 5048: 5045: 5041: 5037: 5032: 5023: 5019: 5015: 5012: 5008: 5004: 4999: 4990: 4986: 4980: 4976: 4972: 4969: 4965: 4961: 4956: 4947: 4943: 4939: 4936: 4933: 4929: 4925: 4920: 4911: 4907: 4889: 4885: 4882: 4881: 4880: 4868: 4862: 4858: 4854: 4850: 4846: 4841: 4836: 4833: 4829: 4823: 4819: 4815: 4810: 4806: 4798: 4794: 4789: 4784: 4778: 4774: 4768: 4764: 4760: 4757: 4752: 4748: 4744: 4741: 4738: 4735: 4732: 4729: 4722: 4718: 4713: 4697: 4691: 4690: 4679: 4674: 4670: 4666: 4662: 4658: 4653: 4648: 4644: 4640: 4635: 4631: 4625: 4622: 4619: 4615: 4611: 4608: 4603: 4599: 4595: 4592: 4589: 4584: 4580: 4574: 4570: 4566: 4563: 4560: 4539: 4531: 4523: 4522: 4511: 4506: 4502: 4498: 4494: 4490: 4485: 4482: 4473: 4469: 4463: 4459: 4455: 4452: 4448: 4444: 4439: 4434: 4430: 4408: 4399: 4365: 4364: 4353: 4348: 4344: 4340: 4336: 4332: 4327: 4322: 4319: 4315: 4309: 4304: 4301: 4298: 4294: 4290: 4285: 4281: 4273: 4269: 4264: 4218: 4194:. This is the 4181:tangent bundle 4145: 4142: 4141: 4140: 4129: 4126: 4123: 4120: 4105: 4104: 4093: 4090: 4087: 4084: 4081: 4078: 4059: 4056: 4055: 4054: 4043: 4040: 4036: 4032: 4027: 4023: 4017: 4013: 4007: 4003: 3999: 3996: 3982: 3981: 3970: 3967: 3963: 3959: 3954: 3950: 3944: 3939: 3935: 3929: 3925: 3921: 3918: 3915: 3910: 3906: 3901: 3897: 3878: 3877: 3866: 3863: 3859: 3855: 3850: 3846: 3842: 3839: 3835: 3831: 3826: 3821: 3817: 3811: 3807: 3803: 3800: 3796: 3792: 3787: 3783: 3779: 3776: 3773: 3769: 3765: 3760: 3756: 3741: 3740: 3729: 3724: 3720: 3716: 3712: 3708: 3703: 3699: 3693: 3689: 3685: 3682: 3649: 3648: 3636: 3633: 3630: 3627: 3624: 3596: 3595: 3582: 3578: 3574: 3571: 3566: 3562: 3558: 3553: 3549: 3497: 3494: 3482: 3481: 3470: 3467: 3464: 3461: 3456: 3452: 3446: 3442: 3438: 3435: 3432: 3429: 3419: 3414: 3404: 3394: 3389: 3379: 3376: 3371: 3367: 3361: 3357: 3353: 3350: 3347: 3344: 3334: 3329: 3319: 3316: 3311: 3307: 3301: 3297: 3293: 3290: 3287: 3284: 3274: 3269: 3259: 3256: 3253: 3250: 3224: 3223: 3211: 3206: 3202: 3198: 3195: 3192: 3189: 3186: 3183: 3180: 3177: 3174: 3171: 3168: 3150: 3149: 3138: 3135: 3132: 3129: 3126: 3123: 3120: 3112: 3109: 3104: 3100: 3094: 3090: 3086: 3083: 3080: 3077: 3047: 3046: 3033: 3027: 3021: 3017: 3013: 3010: 3005: 3000: 2997: 2971: 2970: 2959: 2956: 2953: 2949: 2945: 2942: 2937: 2934: 2930: 2926: 2923: 2920: 2915: 2911: 2908: 2883:Poincaré lemma 2879: 2878: 2867: 2864: 2860: 2856: 2853: 2850: 2847: 2843: 2839: 2836: 2833: 2830: 2826: 2822: 2819: 2816: 2813: 2810: 2806: 2802: 2799: 2787:is defined by 2775:Curvature form 2773:Main article: 2770: 2767: 2747: 2746: 2735: 2732: 2727: 2722: 2715: 2712: 2707: 2702: 2697: 2694: 2689: 2684: 2679: 2676: 2671: 2668: 2664: 2658: 2653: 2646: 2643: 2638: 2633: 2628: 2625: 2622: 2617: 2612: 2605: 2602: 2597: 2592: 2587: 2584: 2579: 2576: 2572: 2566: 2561: 2554: 2551: 2546: 2541: 2536: 2533: 2530: 2525: 2520: 2515: 2512: 2495: 2486: 2461: 2452: 2439: 2432: 2429: 2413: 2412: 2401: 2398: 2395: 2391: 2387: 2384: 2379: 2376: 2372: 2368: 2365: 2362: 2357: 2354: 2350: 2346: 2343: 2340: 2335: 2331: 2328: 2310: 2309: 2298: 2293: 2288: 2284: 2278: 2274: 2268: 2264: 2260: 2256: 2252: 2248: 2237: 2234: 2228: 2223: 2219: 2214: 2164: 2155: 2140: 2137: 2109: 2108: 2097: 2093: 2089: 2086: 2083: 2080: 2077: 2074: 2071: 2068: 2065: 2061: 2057: 2054: 2051: 2048: 2045: 2041: 2037: 2034: 2031: 2028: 2025: 2021: 2017: 2014: 2011: 1997: 1996: 1985: 1982: 1978: 1974: 1969: 1965: 1959: 1954: 1950: 1946: 1941: 1937: 1931: 1926: 1923: 1920: 1916: 1910: 1905: 1902: 1899: 1895: 1891: 1888: 1884: 1880: 1875: 1871: 1867: 1864: 1859: 1855: 1849: 1844: 1841: 1838: 1834: 1830: 1827: 1824: 1820: 1816: 1811: 1807: 1801: 1797: 1793: 1790: 1785: 1780: 1777: 1774: 1770: 1766: 1763: 1760: 1740: 1732: 1721: 1720: 1709: 1704: 1699: 1695: 1691: 1686: 1682: 1676: 1671: 1668: 1665: 1661: 1657: 1652: 1648: 1644: 1619: 1602: 1587: 1584: 1556: 1555: 1544: 1541: 1538: 1535: 1530: 1520: 1516: 1513: 1510: 1507: 1504: 1501: 1498: 1495: 1492: 1489: 1486: 1483: 1480: 1477: 1474: 1471: 1468: 1454: 1453: 1442: 1439: 1434: 1430: 1424: 1420: 1416: 1413: 1410: 1407: 1404: 1401: 1398: 1393: 1389: 1383: 1379: 1375: 1372: 1369: 1366: 1363: 1360: 1336:with the full 1308: 1307: 1296: 1293: 1290: 1287: 1284: 1281: 1278: 1275: 1272: 1269: 1266: 1263: 1260: 1257: 1254: 1251: 1201: 1200: 1189: 1184: 1180: 1176: 1173: 1170: 1167: 1164: 1161: 1158: 1155: 1150: 1146: 1142: 1139: 1136: 1133: 1130: 1127: 1124: 1121: 1118: 1115: 1112: 1083:Main article: 1080: 1077: 1064: 1044: 1025: 1024: 1013: 1009: 1005: 1002: 996: 991: 986: 980: 976: 972: 967: 963: 959: 958: 955: 952: 951: 948: 944: 940: 935: 931: 927: 926: 923: 919: 915: 910: 906: 902: 901: 899: 892: 887: 884: 860: 839: 815: 811: 807: 802: 798: 786: 785: 774: 770: 766: 761: 757: 751: 747: 741: 736: 733: 730: 726: 722: 719: 695: 674: 654: 634: 612: 609: 606: 603: 600: 597: 594: 591: 588: 584: 578: 574: 570: 567: 563: 538: 514: 509: 485: 480: 458: 449:projecting to 436: 431: 426: 423: 403: 383: 363: 360: 357: 337: 317: 289: 278:local sections 272:is an ordered 261: 237: 214: 190: 175:Main article: 172: 169: 161: 160:Vector bundles 158: 142:tangent bundle 134:curvature form 89:, through the 26: 24: 14: 13: 10: 9: 6: 4: 3: 2: 9985: 9974: 9971: 9969: 9966: 9964: 9963:Fiber bundles 9961: 9959: 9956: 9954: 9951: 9950: 9948: 9933: 9930: 9928: 9925: 9923: 9920: 9918: 9915: 9913: 9910: 9908: 9905: 9903: 9900: 9898: 9895: 9893: 9890: 9888: 9885: 9883: 9880: 9878: 9875: 9873: 9870: 9869: 9867: 9865: 9861: 9851: 9848: 9846: 9843: 9841: 9838: 9836: 9833: 9831: 9828: 9826: 9823: 9821: 9818: 9816: 9813: 9811: 9808: 9807: 9805: 9801: 9795: 9792: 9790: 9787: 9785: 9782: 9780: 9777: 9775: 9772: 9770: 9769:Metric tensor 9767: 9765: 9762: 9760: 9757: 9756: 9754: 9750: 9747: 9743: 9737: 9734: 9732: 9729: 9727: 9724: 9722: 9719: 9717: 9714: 9712: 9709: 9707: 9704: 9702: 9699: 9697: 9694: 9692: 9689: 9687: 9684: 9682: 9681:Exterior form 9679: 9677: 9674: 9672: 9669: 9667: 9664: 9662: 9659: 9657: 9654: 9652: 9649: 9647: 9644: 9643: 9641: 9635: 9628: 9625: 9623: 9620: 9618: 9615: 9613: 9610: 9608: 9605: 9603: 9600: 9598: 9595: 9593: 9590: 9588: 9585: 9583: 9580: 9578: 9575: 9574: 9572: 9570: 9566: 9560: 9557: 9555: 9554:Tensor bundle 9552: 9550: 9547: 9545: 9542: 9540: 9537: 9535: 9532: 9530: 9527: 9525: 9522: 9520: 9517: 9515: 9512: 9511: 9509: 9503: 9497: 9494: 9492: 9489: 9487: 9484: 9482: 9479: 9477: 9474: 9472: 9469: 9467: 9464: 9462: 9459: 9457: 9454: 9453: 9451: 9447: 9437: 9434: 9432: 9429: 9427: 9424: 9422: 9419: 9417: 9414: 9413: 9411: 9406: 9403: 9401: 9398: 9397: 9394: 9388: 9385: 9383: 9380: 9378: 9375: 9373: 9370: 9368: 9365: 9363: 9360: 9358: 9355: 9353: 9350: 9349: 9347: 9345: 9341: 9338: 9334: 9330: 9329: 9323: 9319: 9312: 9307: 9305: 9300: 9298: 9293: 9292: 9289: 9277: 9274: 9272: 9271:Supermanifold 9269: 9267: 9264: 9262: 9259: 9255: 9252: 9251: 9250: 9247: 9245: 9242: 9240: 9237: 9235: 9232: 9230: 9227: 9225: 9222: 9220: 9217: 9216: 9214: 9210: 9204: 9201: 9199: 9196: 9194: 9191: 9189: 9186: 9184: 9181: 9179: 9176: 9175: 9173: 9169: 9159: 9156: 9154: 9151: 9149: 9146: 9144: 9141: 9139: 9136: 9134: 9131: 9129: 9126: 9124: 9121: 9119: 9116: 9114: 9111: 9110: 9108: 9106: 9102: 9096: 9093: 9091: 9088: 9086: 9083: 9081: 9078: 9076: 9073: 9071: 9068: 9066: 9062: 9058: 9056: 9053: 9051: 9048: 9046: 9042: 9038: 9036: 9033: 9031: 9028: 9026: 9023: 9021: 9018: 9016: 9013: 9011: 9008: 9007: 9005: 9003: 8999: 8993: 8992:Wedge product 8990: 8988: 8985: 8981: 8978: 8977: 8976: 8973: 8971: 8968: 8964: 8961: 8960: 8959: 8956: 8954: 8951: 8949: 8946: 8944: 8941: 8937: 8936:Vector-valued 8934: 8933: 8932: 8929: 8927: 8924: 8920: 8917: 8916: 8915: 8912: 8910: 8907: 8905: 8902: 8901: 8899: 8895: 8889: 8886: 8884: 8881: 8879: 8876: 8872: 8869: 8868: 8867: 8866:Tangent space 8864: 8862: 8859: 8857: 8854: 8852: 8849: 8848: 8846: 8842: 8839: 8837: 8833: 8827: 8824: 8822: 8818: 8814: 8812: 8809: 8807: 8803: 8799: 8795: 8793: 8790: 8788: 8785: 8783: 8780: 8778: 8775: 8773: 8770: 8768: 8765: 8763: 8760: 8756: 8753: 8752: 8751: 8748: 8746: 8743: 8741: 8738: 8736: 8733: 8731: 8728: 8726: 8723: 8721: 8718: 8716: 8713: 8711: 8708: 8706: 8703: 8701: 8697: 8693: 8691: 8687: 8683: 8681: 8678: 8677: 8675: 8669: 8663: 8660: 8658: 8655: 8653: 8650: 8648: 8645: 8643: 8640: 8638: 8635: 8631: 8630:in Lie theory 8628: 8627: 8626: 8623: 8621: 8618: 8614: 8611: 8610: 8609: 8606: 8604: 8601: 8600: 8598: 8596: 8592: 8586: 8583: 8581: 8578: 8576: 8573: 8571: 8568: 8566: 8563: 8561: 8558: 8556: 8553: 8551: 8548: 8546: 8543: 8542: 8540: 8537: 8533:Main results 8531: 8525: 8522: 8520: 8517: 8515: 8514:Tangent space 8512: 8510: 8507: 8505: 8502: 8500: 8497: 8495: 8492: 8490: 8487: 8483: 8480: 8478: 8475: 8474: 8473: 8470: 8466: 8463: 8462: 8461: 8458: 8457: 8455: 8451: 8446: 8442: 8435: 8430: 8428: 8423: 8421: 8416: 8415: 8412: 8404: 8400: 8396: 8393: 8391:0-387-90419-0 8387: 8383: 8379: 8375: 8372: 8370:0-914098-72-1 8366: 8362: 8357: 8354: 8352:0-914098-71-3 8348: 8344: 8339: 8336: 8334:0-471-15732-5 8330: 8326: 8321: 8318: 8316:0-471-15733-3 8312: 8308: 8307: 8301: 8298: 8294: 8290: 8284: 8280: 8276: 8269: 8268: 8262: 8259: 8257:0-471-05059-8 8253: 8249: 8245: 8241: 8237: 8233: 8228: 8224: 8220: 8215: 8212: 8208: 8207: 8203: 8194: 8191: 8185: 8182: 8179:Wells (1973). 8176: 8174: 8170: 8164: 8161: 8157: 8151: 8148: 8144: 8138: 8135: 8132: 8128: 8124: 8119: 8116: 8110: 8106: 8103: 8101: 8098: 8096: 8093: 8091: 8088: 8087: 8083: 8081: 8079: 8075: 8071: 8067: 8045: 8042: 8036: 8024: 8021: 8010: 8001: 7995: 7990: 7982: 7979: 7966: 7963: 7953: 7952: 7951: 7949: 7945: 7941: 7922: 7919: 7914: 7902: 7886: 7879: 7878: 7877: 7875: 7871: 7867: 7863: 7859: 7855: 7851: 7847: 7843: 7839: 7835: 7831: 7823: 7821: 7819: 7815: 7808: 7801: 7797: 7775: 7764: 7758: 7753: 7749: 7745: 7737: 7724: 7719: 7714: 7710: 7702: 7699: 7695: 7690: 7686: 7683: 7675: 7672: 7669: 7662: 7654: 7653: 7652: 7650: 7646: 7642: 7638: 7619: 7613: 7610: 7607: 7604: 7599: 7595: 7590: 7587: 7581: 7578: 7575: 7572: 7567: 7563: 7555: 7554: 7553: 7551: 7547: 7543: 7539: 7537: 7531: 7509: 7504: 7500: 7493: 7485: 7482: 7477: 7474: 7470: 7466: 7461: 7457: 7446: 7443: 7439: 7435: 7430: 7418: 7413: 7393: 7390: 7387: 7384: 7376: 7372: 7368: 7365: 7356: 7350: 7347: 7344: 7341: 7333: 7329: 7325: 7322: 7309: 7308: 7307: 7293: 7286: 7267: 7259: 7256: 7253: 7248: 7244: 7236: 7233: 7228: 7224: 7216: 7215: 7214: 7212: 7205: 7201: 7197: 7194:-bundle over 7193: 7189: 7185: 7181: 7173: 7171: 7167: 7160: 7156: 7135: 7132: 7128: 7124: 7119: 7107: 7102: 7086: 7085: 7084: 7079: 7076:, denoted by 7075: 7071: 7068:, along with 7067: 7063: 7059: 7055: 7051: 7048:Suppose that 7043: 7041: 7038: 7029: 7027: 7025: 7021: 7017: 7013: 7009: 7005: 7001: 6996: 6965: 6958: 6955: 6951: 6940: 6929: 6923: 6919: 6915: 6909: 6906: 6893: 6886: 6885: 6884: 6882: 6878: 6874: 6870: 6851: 6848: 6845: 6840: 6837: 6833: 6829: 6826: 6823: 6818: 6815: 6811: 6807: 6801: 6798: 6785: 6778: 6777: 6776: 6759: 6754: 6749: 6745: 6728: 6723: 6719: 6713: 6708: 6698: 6695: 6691: 6684: 6679: 6674: 6670: 6666: 6661: 6656: 6646: 6643: 6639: 6632: 6626: 6623: 6610: 6605: 6601: 6593: 6592: 6591: 6589: 6585: 6581: 6560: 6555: 6551: 6545: 6541: 6535: 6531: 6527: 6523: 6519: 6515: 6507: 6506: 6505: 6499: 6497: 6495: 6490: 6488: 6484: 6476: 6444: 6439: 6435: 6431: 6426: 6422: 6416: 6412: 6408: 6403: 6399: 6395: 6388: 6387: 6386: 6379: 6377: 6373: 6370: 6341: 6332: 6329: 6318: 6313: 6309: 6303: 6299: 6293: 6289: 6285: 6280: 6276: 6267: 6258: 6255: 6240: 6239: 6238: 6236: 6232: 6225: 6203: 6195: 6190: 6186: 6176: 6170: 6162: 6158: 6152: 6148: 6144: 6135: 6129: 6121: 6117: 6111: 6106: 6098: 6085: 6084: 6083: 6081: 6077: 6073: 6069: 6065: 6061: 6053: 6051: 6049: 6045: 6041: 6037: 6033: 6029: 6025: 6021: 6019: 6013: 6009: 6007: 5987: 5982: 5977: 5973: 5967: 5963: 5957: 5953: 5949: 5945: 5941: 5937: 5929: 5928: 5927: 5922: 5918: 5914: 5907: 5903: 5896: 5892: 5888: 5884: 5880: 5876: 5868: 5864: 5861: 5857: 5853: 5850: 5847: 5846:unitary group 5843: 5839: 5831: 5823: 5819: 5815: 5812: 5808: 5804: 5800: 5799: 5798: 5796: 5792: 5788: 5784: 5780: 5777: 5773: 5769: 5765: 5761: 5753: 5751: 5749: 5743: 5740: 5717: 5713: 5709: 5704: 5700: 5694: 5691: 5682: 5674: 5669: 5657: 5656: 5655: 5653: 5634: 5629: 5625: 5621: 5605: 5600: 5596: 5590: 5586: 5582: 5577: 5573: 5569: 5566: 5550: 5538: 5537: 5536: 5533: 5526: 5524: 5516: 5511: 5507: 5503: 5499: 5493: 5489: 5485: 5481: 5477: 5469: 5467: 5465: 5461: 5436: 5427: 5424: 5421: 5417: 5411: 5407: 5403: 5398: 5394: 5387: 5384: 5378: 5365: 5356: 5353: 5344: 5334: 5331: 5322: 5314: 5309: 5306: 5297: 5287: 5278: 5272: 5268: 5264: 5259: 5255: 5251: 5234: 5230: 5224: 5221: 5212: 5201: 5193: 5189: 5183: 5180: 5171: 5160: 5152: 5148: 5142: 5139: 5130: 5119: 5116: 5109: 5100: 5084: 5083: 5082: 5080: 5074: 5069: 5065: 5046: 5030: 5021: 5017: 5013: 4997: 4988: 4984: 4978: 4974: 4970: 4954: 4945: 4941: 4937: 4934: 4918: 4909: 4897: 4896: 4895: 4892: 4883: 4866: 4860: 4856: 4839: 4834: 4831: 4821: 4817: 4813: 4808: 4804: 4796: 4792: 4782: 4776: 4772: 4766: 4762: 4758: 4750: 4746: 4742: 4739: 4736: 4730: 4727: 4720: 4716: 4703: 4702: 4701: 4696: 4677: 4672: 4668: 4651: 4646: 4642: 4638: 4633: 4629: 4623: 4620: 4617: 4613: 4609: 4601: 4597: 4593: 4587: 4582: 4578: 4572: 4568: 4564: 4561: 4558: 4551: 4550: 4549: 4546: 4542: 4538: 4534: 4529: 4509: 4504: 4500: 4483: 4480: 4471: 4461: 4457: 4453: 4437: 4432: 4428: 4420: 4419: 4418: 4416: 4411: 4407: 4402: 4398: 4394: 4390: 4386: 4382: 4379:= 1, 2, ..., 4378: 4374: 4370: 4351: 4346: 4342: 4325: 4320: 4317: 4307: 4302: 4299: 4296: 4292: 4288: 4283: 4279: 4271: 4267: 4254: 4253: 4252: 4250: 4246: 4241: 4237: 4230: 4227:= 1, 2, ..., 4226: 4221: 4217: 4213: 4207: 4205: 4201: 4197: 4193: 4189: 4185: 4182: 4178: 4174: 4170: 4169:bundle metric 4166: 4162: 4159: 4158:vector bundle 4155: 4151: 4143: 4127: 4124: 4118: 4110: 4109: 4108: 4091: 4088: 4082: 4076: 4069: 4068: 4067: 4065: 4057: 4041: 4025: 4015: 4011: 4005: 4001: 3997: 3987: 3986: 3985: 3968: 3952: 3942: 3937: 3933: 3927: 3923: 3919: 3913: 3899: 3887: 3886: 3885: 3883: 3864: 3848: 3844: 3840: 3824: 3819: 3815: 3809: 3805: 3801: 3785: 3781: 3777: 3774: 3758: 3746: 3745: 3744: 3727: 3722: 3718: 3701: 3697: 3691: 3687: 3683: 3680: 3673: 3672: 3671: 3669: 3665: 3660: 3658: 3654: 3634: 3631: 3628: 3625: 3615: 3614: 3613: 3611: 3610: 3605: 3601: 3580: 3576: 3569: 3564: 3560: 3556: 3551: 3547: 3539: 3538: 3537: 3535: 3531: 3527: 3523: 3519: 3515: 3511: 3507: 3503: 3495: 3493: 3491: 3487: 3486:chain complex 3462: 3454: 3450: 3444: 3436: 3433: 3417: 3402: 3392: 3374: 3369: 3365: 3359: 3351: 3348: 3332: 3314: 3309: 3305: 3299: 3291: 3288: 3272: 3254: 3241: 3240: 3239: 3237: 3233: 3229: 3209: 3204: 3200: 3196: 3190: 3187: 3181: 3178: 3172: 3159: 3158: 3157: 3155: 3136: 3127: 3124: 3121: 3110: 3107: 3102: 3098: 3092: 3078: 3068: 3067: 3066: 3064: 3060: 3056: 3052: 3031: 2998: 2988: 2987: 2986: 2984: 2980: 2976: 2957: 2954: 2935: 2932: 2928: 2924: 2918: 2899: 2898: 2897: 2895: 2892: 2888: 2884: 2865: 2851: 2848: 2834: 2831: 2817: 2814: 2811: 2790: 2789: 2788: 2786: 2782: 2776: 2768: 2766: 2764: 2760: 2756: 2752: 2733: 2725: 2713: 2710: 2705: 2687: 2674: 2669: 2666: 2656: 2644: 2641: 2636: 2623: 2615: 2603: 2600: 2595: 2582: 2577: 2574: 2564: 2552: 2549: 2544: 2531: 2523: 2510: 2503: 2502: 2501: 2498: 2494: 2489: 2485: 2481: 2477: 2473: 2469: 2464: 2460: 2455: 2451: 2447: 2442: 2438: 2430: 2428: 2426: 2422: 2418: 2399: 2396: 2382: 2377: 2374: 2370: 2366: 2363: 2360: 2355: 2352: 2348: 2344: 2338: 2326: 2319: 2318: 2317: 2315: 2296: 2291: 2286: 2282: 2276: 2272: 2266: 2262: 2258: 2254: 2250: 2246: 2235: 2232: 2221: 2217: 2202: 2201: 2200: 2198: 2194: 2190: 2183: 2180:Suppose that 2178: 2176: 2172: 2167: 2163: 2158: 2154: 2150: 2146: 2138: 2136: 2134: 2130: 2126: 2122: 2118: 2114: 2084: 2078: 2075: 2072: 2066: 2052: 2049: 2046: 2032: 2029: 2026: 2012: 2009: 2002: 2001: 2000: 1983: 1967: 1963: 1957: 1952: 1948: 1944: 1939: 1935: 1929: 1924: 1921: 1918: 1914: 1908: 1903: 1900: 1897: 1893: 1889: 1873: 1869: 1865: 1862: 1857: 1853: 1847: 1842: 1839: 1836: 1832: 1828: 1809: 1805: 1799: 1795: 1788: 1783: 1778: 1775: 1772: 1768: 1764: 1761: 1758: 1751: 1750: 1749: 1747: 1743: 1739: 1735: 1730: 1726: 1707: 1702: 1697: 1693: 1689: 1684: 1680: 1674: 1669: 1666: 1663: 1659: 1655: 1650: 1646: 1642: 1635: 1634: 1633: 1631: 1627: 1622: 1618: 1614: 1610: 1605: 1601: 1597: 1593: 1585: 1583: 1581: 1577: 1573: 1569: 1565: 1561: 1542: 1539: 1536: 1533: 1528: 1514: 1511: 1505: 1502: 1499: 1493: 1490: 1484: 1478: 1475: 1472: 1466: 1459: 1458: 1457: 1437: 1432: 1428: 1422: 1414: 1411: 1396: 1391: 1387: 1381: 1373: 1370: 1361: 1358: 1351: 1350: 1349: 1347: 1343: 1339: 1335: 1331: 1330:-valued forms 1329: 1325:to arbitrary 1324: 1319: 1317: 1313: 1294: 1291: 1288: 1285: 1279: 1276: 1270: 1267: 1264: 1258: 1255: 1249: 1242: 1241: 1240: 1238: 1234: 1230: 1226: 1222: 1218: 1214: 1210: 1206: 1187: 1182: 1174: 1168: 1159: 1153: 1148: 1144: 1140: 1137: 1122: 1113: 1110: 1103: 1102: 1101: 1100: 1097:is a type of 1096: 1092: 1086: 1078: 1076: 1062: 1042: 1034: 1030: 1000: 989: 984: 965: 961: 953: 933: 929: 908: 904: 897: 885: 882: 875: 874: 873: 850:in the frame 837: 829: 800: 796: 759: 755: 749: 745: 739: 734: 731: 728: 724: 720: 717: 710: 709: 708: 672: 652: 632: 610: 607: 604: 601: 598: 595: 592: 589: 586: 576: 572: 565: 551: 512: 483: 456: 434: 424: 421: 401: 381: 361: 358: 355: 335: 315: 307: 303: 287: 279: 275: 259: 251: 235: 228: 212: 204: 203:vector bundle 188: 178: 170: 167: 159: 157: 155: 151: 147: 143: 139: 135: 131: 127: 123: 119: 115: 111: 107: 103: 102:vector bundle 99: 94: 92: 88: 84: 80: 76: 72: 68: 64: 60: 55: 53: 49: 48:moving frames 45: 41: 37: 33: 19: 9932:Hermann Weyl 9736:Vector space 9721:Pseudotensor 9686:Fiber bundle 9660: 9639:abstractions 9534:Mixed tensor 9519:Tensor field 9326: 9198:Moving frame 9193:Morse theory 9183:Gauge theory 9127: 8975:Tensor field 8904:Closed/Exact 8883:Vector field 8851:Distribution 8792:Hypercomplex 8787:Quaternionic 8524:Vector field 8482:Smooth atlas 8402: 8381: 8360: 8342: 8324: 8305: 8266: 8247: 8222: 8218: 8210: 8193: 8184: 8163: 8150: 8137: 8127:Wells (1980) 8118: 8076:denotes the 8073: 8069: 8065: 8063: 7947: 7943: 7939: 7937: 7873: 7869: 7865: 7861: 7857: 7853: 7849: 7845: 7841: 7837: 7833: 7829: 7827: 7817: 7813: 7806: 7799: 7795: 7790: 7648: 7644: 7640: 7636: 7634: 7549: 7545: 7541: 7535: 7529: 7524: 7282: 7210: 7203: 7199: 7195: 7191: 7187: 7183: 7179: 7174: 7169: 7165: 7158: 7154: 7152: 7077: 7073: 7069: 7065: 7061: 7057: 7053: 7049: 7047: 7033: 7023: 7015: 7011: 7003: 6994: 6991: 6880: 6876: 6872: 6868: 6866: 6774: 6587: 6583: 6579: 6577: 6503: 6493: 6491: 6486: 6482: 6474: 6472: 6380: 6375: 6371: 6362: 6234: 6230: 6223: 6221: 6079: 6075: 6067: 6063: 6057: 6047: 6043: 6039: 6035: 6032:fibre bundle 6027: 6023: 6017: 6015: 6011: 6005: 6004: 6002: 5920: 5916: 5912: 5905: 5901: 5894: 5890: 5886: 5882: 5878: 5874: 5872: 5867:CR manifolds 5837: 5829: 5810: 5806: 5802: 5786: 5778: 5771: 5767: 5759: 5757: 5744: 5738: 5735: 5651: 5649: 5531: 5527: 5522: 5514: 5509: 5505: 5501: 5497: 5491: 5479: 5473: 5459: 5457: 5072: 5063: 5061: 4890: 4887: 4694: 4692: 4548:is given by 4544: 4540: 4536: 4532: 4527: 4524: 4409: 4405: 4400: 4396: 4392: 4391:, such that 4380: 4376: 4372: 4368: 4366: 4244: 4239: 4235: 4228: 4224: 4219: 4215: 4211: 4208: 4203: 4199: 4192:torsion-free 4183: 4176: 4164: 4160: 4149: 4147: 4106: 4061: 3983: 3879: 3742: 3667: 3663: 3661: 3656: 3652: 3650: 3607: 3603: 3599: 3597: 3533: 3529: 3521: 3513: 3509: 3505: 3501: 3499: 3483: 3235: 3231: 3227: 3225: 3153: 3151: 3062: 3058: 3050: 3048: 2982: 2974: 2972: 2893: 2890: 2886: 2880: 2784: 2780: 2778: 2762: 2758: 2754: 2750: 2748: 2496: 2492: 2487: 2483: 2479: 2475: 2471: 2467: 2462: 2458: 2453: 2449: 2445: 2440: 2436: 2434: 2424: 2416: 2414: 2313: 2311: 2196: 2192: 2188: 2181: 2179: 2174: 2170: 2165: 2161: 2156: 2152: 2148: 2144: 2142: 2135:is defined. 2132: 2128: 2124: 2120: 2116: 2112: 2110: 1998: 1745: 1741: 1737: 1733: 1728: 1724: 1722: 1629: 1620: 1616: 1612: 1608: 1603: 1599: 1595: 1591: 1589: 1579: 1575: 1567: 1563: 1559: 1557: 1455: 1345: 1341: 1333: 1327: 1322: 1320: 1315: 1311: 1309: 1236: 1232: 1228: 1220: 1216: 1212: 1202: 1094: 1088: 1026: 827: 826:denotes the 787: 552: 249: 180: 177:Frame bundle 150:fiber bundle 146:torsion form 129: 95: 87:gauge theory 56: 39: 29: 9872:Élie Cartan 9820:Spin tensor 9794:Weyl tensor 9752:Mathematics 9716:Multivector 9507:definitions 9405:Engineering 9344:Mathematics 9143:Levi-Civita 9133:Generalized 9105:Connections 9055:Lie algebra 8987:Volume form 8888:Vector flow 8861:Pushforward 8856:Lie bracket 8755:Lie algebra 8720:G-structure 8509:Pushforward 8489:Submanifold 8399:Wells, R.O. 8378:Wells, R.O. 8225:: 219–271, 8143:Jost (2011) 8078:pushforward 7802:action on F 7538:-connection 7532:, define a 7206:-related, F 7164:defined on 7008:pulled back 6385:defined by 6369:Lie algebra 6367:are in the 6066:-bundle on 4894:) given by 3522:solder form 3518:solder form 2448:, and each 2241:i.e.,  250:local frame 138:solder form 128:. The main 59:Élie Cartan 32:mathematics 9947:Categories 9701:Linear map 9569:Operations 9266:Stratifold 9224:Diffeology 9020:Associated 8821:Symplectic 8806:Riemannian 8735:Hyperbolic 8662:Submersion 8570:Hopf–Rinow 8504:Submersion 8499:Smooth map 8219:Acta Math. 8204:References 7868:defines a 7534:principal 7283:where the 6060:compatible 5860:spin group 5762:carries a 5070:, so that 4385:dual basis 4179:being the 4152:carries a 2979:dual basis 2199:such that 1632:such that 1572:derivation 1456:such that 1091:connection 828:components 164:See also: 44:connection 9840:EM tensor 9676:Dimension 9627:Transpose 9148:Principal 9123:Ehresmann 9080:Subbundle 9070:Principal 9045:Fibration 9025:Cotangent 8897:Covectors 8750:Lie group 8730:Hermitian 8673:manifolds 8642:Immersion 8637:Foliation 8575:Noether's 8560:Frobenius 8555:De Rham's 8550:Darboux's 8441:Manifolds 8049:⟩ 8046:ω 8022:⋅ 8005:⟨ 7999:⟩ 7996:ω 7991:∗ 7980:⋅ 7961:⟨ 7920:ω 7915:∗ 7887:ω 7765:ω 7759:∗ 7750:π 7725:ω 7720:∗ 7711:π 7700:− 7663:ω 7617:→ 7611:× 7596:π 7585:→ 7579:× 7564:π 7483:− 7436:⋅ 7401:⟺ 7391:× 7385:∈ 7357:∼ 7348:× 7342:∈ 7294:∼ 7268:∼ 7257:× 7245:∐ 7153:for some 7125:⋅ 6966:ω 6956:− 6930:ω 6924:∗ 6907:⋅ 6894:ω 6846:ω 6838:− 6816:− 6799:⋅ 6786:ω 6755:δ 6750:α 6729:γ 6724:δ 6720:ω 6714:β 6709:γ 6696:− 6680:γ 6675:α 6662:β 6657:γ 6644:− 6624:⋅ 6611:β 6606:α 6602:ω 6561:β 6556:α 6546:β 6536:β 6532:∑ 6520:α 6445:β 6440:α 6436:ω 6432:⊗ 6427:β 6417:β 6413:∑ 6404:α 6333:˙ 6330:γ 6319:β 6314:α 6310:ω 6304:β 6294:β 6290:∑ 6281:α 6259:˙ 6256:γ 6249:∇ 6237:=0 gives 6196:β 6191:α 6171:γ 6163:β 6153:β 6149:∑ 6130:γ 6122:α 6099:γ 6093:Γ 5983:β 5978:α 5968:β 5958:β 5954:∑ 5942:α 5776:Lie group 5714:θ 5710:∧ 5701:θ 5679:Γ 5666:Θ 5626:θ 5622:∧ 5597:ω 5587:∑ 5574:θ 5547:Θ 5408:θ 5404:∧ 5395:θ 5341:Γ 5319:Γ 5294:Γ 5284:∂ 5269:θ 5265:∧ 5256:θ 5231:θ 5209:Γ 5202:∧ 5190:θ 5168:Γ 5149:θ 5127:Γ 5097:Ω 5068:holonomic 5018:ω 5014:∧ 4985:ω 4975:∑ 4942:ω 4906:Ω 4884:Curvature 4828:Γ 4818:∑ 4788:∇ 4763:∑ 4756:⟩ 4734:⟨ 4712:∇ 4643:ω 4639:⊗ 4614:∑ 4588:⊗ 4569:∑ 4501:θ 4468:Γ 4458:∑ 4429:ω 4314:Γ 4293:∑ 4263:∇ 4122:Ω 4092:θ 4089:∧ 4086:Ω 4080:Θ 4022:Θ 4002:∑ 3995:Θ 3949:Θ 3924:∑ 3896:Θ 3845:θ 3841:∧ 3816:ω 3806:∑ 3782:θ 3755:Θ 3698:θ 3688:∑ 3681:θ 3632:θ 3623:Θ 3573:→ 3548:θ 3455:∗ 3441:Λ 3437:⊗ 3428:Γ 3413:→ 3403:… 3388:→ 3370:∗ 3356:Λ 3352:⊗ 3343:Γ 3328:→ 3310:∗ 3296:Λ 3292:⊗ 3283:Γ 3268:→ 3249:Γ 3167:Ω 3111:⊗ 3103:∗ 3089:Λ 3082:Γ 3079:∈ 3076:Ω 3032:∗ 3009:Ω 2996:Ω 2941:Ω 2933:− 2907:Ω 2852:ω 2849:∧ 2835:ω 2818:ω 2798:Ω 2769:Curvature 2711:− 2675:ω 2667:− 2642:− 2601:− 2575:− 2550:− 2511:ω 2421:tensorial 2383:ω 2375:− 2353:− 2327:ω 2292:β 2287:α 2277:β 2267:β 2263:∑ 2251:α 2085:ξ 2079:ω 2053:ξ 2050:ω 2033:ξ 2013:ξ 1968:α 1964:ξ 1958:β 1953:α 1949:ω 1945:⊗ 1940:β 1919:β 1915:∑ 1898:α 1894:∑ 1874:α 1870:ξ 1863:⊗ 1858:α 1837:α 1833:∑ 1810:α 1806:ξ 1800:α 1773:α 1769:∑ 1762:ξ 1703:β 1698:α 1694:ω 1690:⊗ 1685:β 1664:β 1660:∑ 1651:α 1626:one-forms 1543:α 1537:∧ 1512:− 1503:α 1500:∧ 1479:α 1476:∧ 1433:∗ 1423:∗ 1419:Λ 1415:⊗ 1406:Γ 1403:→ 1392:∗ 1382:∗ 1378:Λ 1374:⊗ 1365:Γ 1271:⊗ 1207:of local 1179:Ω 1175:⊗ 1163:Γ 1149:∗ 1141:⊗ 1132:Γ 1129:→ 1117:Γ 1001:ξ 962:ξ 954:⋮ 930:ξ 905:ξ 883:ξ 838:ξ 801:α 797:ξ 760:α 756:ξ 750:α 729:α 725:∑ 718:ξ 673:ξ 605:… 587:α 577:α 425:× 359:⊆ 130:tensorial 67:tensorial 9706:Manifold 9691:Geodesic 9449:Notation 9244:Orbifold 9239:K-theory 9229:Diffiety 8953:Pullback 8767:Oriented 8745:Kenmotsu 8725:Hadamard 8671:Types of 8620:Geodesic 8445:Glossary 8401:(1980), 8380:(1973), 8246:(1978), 8084:See also 7852: : 7836:-bundle 7060:. Let { 6871: : 6524:′ 6014:has the 6008:-related 5946:′ 5805:) where 4233:, where 3484:to be a 2255:′ 2218:′ 2129:a priori 1748:. Then 1615:matrix ( 1209:sections 707:. Then 124:for the 9803:Physics 9637:Related 9400:Physics 9318:Tensors 9188:History 9171:Related 9085:Tangent 9063:)  9043:)  9010:Adjoint 9002:Bundles 8980:density 8878:Torsion 8844:Vectors 8836:Tensors 8819:)  8804:)  8800:,  8798:Pseudo− 8777:Poisson 8710:Finsler 8705:Fibered 8700:Contact 8698:)  8690:Complex 8688:)  8657:Section 8297:2829653 7006:, here 6998:is the 6992:where ω 6020:-bundle 5893:. If ( 5852:Spinors 5519:{{{1}}} 5470:Torsion 5462:is the 4387:of the 3609:torsion 2977:be the 1219:. For 1033:tetrads 225:over a 152:with a 116:of the 83:physics 9731:Vector 9726:Spinor 9711:Matrix 9505:Tensor 9153:Vector 9138:Koszul 9118:Cartan 9113:Affine 9095:Vector 9090:Tensor 9075:Spinor 9065:Normal 9061:Stable 9015:Affine 8919:bundle 8871:bundle 8817:Almost 8740:Kähler 8696:Almost 8686:Almost 8680:Closed 8580:Sard's 8536:(list) 8388:  8367:  8349:  8331:  8313:  8295:  8285:  8254:  8072:, and 8064:where 7651:, set 6578:where 5832:) ⊂ GL 5783:metric 5458:where 4238:= dim 3528:θ ∈ Ω( 3425:  3406:  3400:  3381:  3340:  3321:  3280:  3261:  1558:where 1310:where 1235:, and 788:where 106:matrix 9651:Basis 9336:Scope 9261:Sheaf 9035:Fiber 8811:Rizza 8782:Prime 8613:Local 8603:Curve 8465:Atlas 8271:(PDF) 8111:Notes 7175:Let F 6879:is a 6582:is a 6030:is a 5885:⊂ GL( 5504:) = T 5496:Hom(T 4413:(the 4163:over 3520:. A 2749:This 1624:) of 1570:is a 1205:sheaf 306:atlas 274:basis 248:. A 201:be a 100:of a 98:basis 9128:Form 9030:Dual 8963:flow 8826:Tame 8802:Sub− 8715:Flat 8595:Maps 8386:ISBN 8365:ISBN 8347:ISBN 8329:ISBN 8311:ISBN 8283:ISBN 8252:ISBN 8154:See 8141:See 7643:) ∈ 7525:On F 5881:and 5820:(or 5530:Θ = 4404:) = 4062:The 3226:for 3057:Hom( 2779:The 2435:If { 1590:The 553:Let 252:for 181:Let 73:, a 50:and 38:, a 9050:Jet 8275:doi 8227:doi 8223:133 7022:of 7010:to 6473:is 6082:): 6050:). 5911:): 5785:in 5770:on 5508:⊗ T 5500:, T 5494:of 5075:= 0 5066:is 4530:= Σ 4371:= { 4367:If 4214:= ( 4202:of 3666:of 3504:of 3492:). 3115:Hom 2761:⊗ Ω 2474:on 2466:of 2127:is 1731:= Σ 1628:on 1582:). 1578:⊗ Ω 1524:deg 1093:in 1027:In 830:of 374:of 280:of 276:of 30:In 9949:: 9041:Co 8293:MR 8291:, 8281:, 8242:; 8221:, 8172:^ 8129:, 8125:, 8080:. 7876:: 7856:→ 7820:. 7647:× 7548:× 7172:. 7168:∩ 7162:UV 7052:→ 6946:Ad 6875:→ 6489:. 6378:. 5915:→ 5834:2n 5750:. 5739:kj 5532:Dθ 5466:. 5073:dθ 4700:: 4375:| 4223:| 4206:. 4200:TM 4184:TM 4128:0. 3659:. 3602:∈ 3230:∈ 2889:→ 2427:. 2316:: 2191:× 2177:. 2160:= 1611:× 1348:: 1318:. 1312:df 1089:A 156:. 104:a 93:. 54:. 9310:e 9303:t 9296:v 9059:( 9039:( 8815:( 8796:( 8694:( 8684:( 8447:) 8443:( 8433:e 8426:t 8419:v 8277:: 8229:: 8074:d 8070:M 8066:X 8043:, 8040:) 8037:X 8034:( 8031:] 8028:) 8025:g 8018:e 8014:( 8011:d 8008:[ 8002:= 7987:) 7983:g 7975:e 7970:( 7967:, 7964:X 7948:e 7944:g 7940:G 7923:. 7909:e 7903:= 7900:) 7895:e 7890:( 7874:M 7870:g 7866:e 7862:P 7858:P 7854:M 7850:e 7846:M 7842:M 7840:→ 7838:P 7834:G 7830:G 7818:G 7814:E 7811:G 7807:E 7804:G 7800:G 7796:E 7793:G 7776:. 7770:g 7754:2 7746:+ 7743:) 7738:U 7733:e 7728:( 7715:1 7703:1 7696:g 7691:d 7687:A 7684:= 7679:) 7676:g 7673:, 7670:x 7667:( 7649:G 7645:U 7641:g 7639:, 7637:x 7620:G 7614:G 7608:U 7605:: 7600:2 7591:, 7588:U 7582:G 7576:U 7573:: 7568:1 7550:G 7546:U 7542:g 7536:G 7530:E 7527:G 7510:. 7505:V 7501:g 7497:) 7494:x 7491:( 7486:1 7478:V 7475:U 7471:h 7467:= 7462:U 7458:g 7447:V 7444:U 7440:h 7431:U 7425:e 7419:= 7414:V 7408:e 7397:) 7394:G 7388:V 7382:) 7377:V 7373:g 7369:, 7366:x 7363:( 7360:( 7354:) 7351:G 7345:U 7339:) 7334:U 7330:g 7326:, 7323:x 7320:( 7317:( 7264:/ 7260:G 7254:U 7249:U 7237:= 7234:E 7229:G 7225:F 7211:E 7208:G 7204:G 7200:G 7196:M 7192:G 7188:M 7184:G 7180:E 7177:G 7170:V 7166:U 7159:h 7155:G 7136:V 7133:U 7129:h 7120:U 7114:e 7108:= 7103:V 7097:e 7081:U 7078:e 7074:U 7070:G 7066:M 7062:U 7058:G 7054:M 7050:E 7024:G 7016:g 7012:M 7004:G 6995:g 6977:) 6973:e 6969:( 6959:1 6952:g 6941:+ 6935:g 6920:g 6916:= 6913:) 6910:g 6902:e 6897:( 6881:G 6877:G 6873:M 6869:g 6852:. 6849:g 6841:1 6834:g 6830:+ 6827:g 6824:d 6819:1 6812:g 6808:= 6805:) 6802:g 6794:e 6789:( 6760:. 6746:g 6742:) 6738:e 6734:( 6705:) 6699:1 6692:g 6688:( 6685:+ 6671:g 6667:d 6653:) 6647:1 6640:g 6636:( 6633:= 6630:) 6627:g 6620:e 6616:( 6588:M 6584:G 6580:g 6552:g 6542:e 6528:= 6516:e 6494:g 6487:g 6483:e 6481:( 6479:α 6458:) 6454:e 6450:( 6423:e 6409:= 6400:e 6396:D 6383:α 6376:G 6372:g 6365:α 6348:) 6345:) 6342:0 6339:( 6324:( 6300:e 6286:= 6277:e 6271:) 6268:0 6265:( 6235:t 6231:t 6227:α 6224:g 6207:) 6204:t 6201:( 6187:g 6183:) 6180:) 6177:t 6174:( 6168:( 6159:e 6145:= 6142:) 6139:) 6136:0 6133:( 6127:( 6118:e 6112:t 6107:0 6103:) 6096:( 6080:t 6076:G 6068:E 6064:G 6048:k 6044:G 6040:R 6036:G 6028:E 6024:G 6018:G 6012:E 6006:G 5988:. 5974:g 5964:e 5950:= 5938:e 5924:α 5921:e 5917:G 5913:M 5909:i 5906:g 5902:E 5898:α 5895:e 5891:R 5887:k 5883:G 5879:k 5875:E 5869:. 5862:. 5838:R 5836:( 5830:C 5828:( 5826:n 5813:. 5811:E 5807:k 5803:k 5787:E 5779:G 5772:E 5768:e 5760:E 5732:, 5718:j 5705:k 5695:j 5692:k 5683:i 5675:= 5670:i 5652:e 5635:. 5630:j 5619:) 5615:e 5611:( 5606:i 5601:j 5591:j 5583:+ 5578:i 5570:d 5567:= 5564:) 5560:e 5556:( 5551:i 5523:θ 5515:e 5510:M 5506:M 5502:M 5498:M 5492:θ 5480:E 5460:R 5437:j 5428:i 5425:q 5422:p 5418:R 5412:q 5399:p 5388:2 5385:1 5379:= 5366:) 5362:) 5357:i 5354:q 5345:k 5335:k 5332:p 5323:j 5315:+ 5310:i 5307:q 5298:j 5288:p 5279:( 5273:q 5260:p 5252:= 5240:) 5235:q 5225:i 5222:q 5213:k 5205:( 5199:) 5194:p 5184:k 5181:p 5172:j 5164:( 5161:+ 5158:) 5153:q 5143:i 5140:q 5131:j 5123:( 5120:d 5117:= 5110:j 5101:i 5064:e 5047:. 5044:) 5040:e 5036:( 5031:k 5022:i 5011:) 5007:e 5003:( 4998:j 4989:k 4979:k 4971:+ 4968:) 4964:e 4960:( 4955:j 4946:i 4938:d 4935:= 4932:) 4928:e 4924:( 4919:j 4910:i 4891:i 4867:) 4861:j 4857:v 4853:) 4849:e 4845:( 4840:k 4835:j 4832:i 4822:j 4814:+ 4809:k 4805:v 4797:i 4793:e 4783:( 4777:k 4773:e 4767:k 4759:= 4751:i 4747:e 4743:, 4740:v 4737:D 4731:= 4728:v 4721:i 4717:e 4698:i 4695:e 4678:. 4673:j 4669:v 4665:) 4661:e 4657:( 4652:k 4647:j 4634:k 4630:e 4624:k 4621:, 4618:j 4610:+ 4607:) 4602:k 4598:v 4594:d 4591:( 4583:k 4579:e 4573:k 4565:= 4562:v 4559:D 4545:v 4541:i 4537:e 4533:i 4528:v 4510:. 4505:k 4497:) 4493:e 4489:( 4484:i 4481:k 4472:j 4462:k 4454:= 4451:) 4447:e 4443:( 4438:j 4433:i 4410:j 4406:δ 4401:j 4397:e 4395:( 4393:θ 4381:n 4377:i 4373:θ 4369:θ 4352:. 4347:k 4343:e 4339:) 4335:e 4331:( 4326:k 4321:j 4318:i 4308:n 4303:1 4300:= 4297:k 4289:= 4284:j 4280:e 4272:i 4268:e 4245:M 4240:M 4236:n 4231:) 4229:n 4225:i 4220:i 4216:e 4212:e 4204:M 4177:E 4165:M 4161:E 4150:M 4125:= 4119:D 4083:= 4077:D 4042:. 4039:) 4035:e 4031:( 4026:i 4016:i 4012:e 4006:i 3998:= 3969:. 3966:) 3962:e 3958:( 3953:j 3943:i 3938:j 3934:g 3928:j 3920:= 3917:) 3914:g 3909:e 3905:( 3900:i 3865:. 3862:) 3858:e 3854:( 3849:j 3838:) 3834:e 3830:( 3825:i 3820:j 3810:j 3802:+ 3799:) 3795:e 3791:( 3786:i 3778:d 3775:= 3772:) 3768:e 3764:( 3759:i 3728:. 3723:i 3719:e 3715:) 3711:e 3707:( 3702:i 3692:i 3684:= 3668:E 3664:e 3657:M 3653:E 3635:. 3629:D 3626:= 3604:M 3600:x 3581:x 3577:E 3570:M 3565:x 3561:T 3557:: 3552:x 3534:E 3532:, 3530:M 3514:E 3510:M 3506:E 3502:k 3469:) 3466:) 3463:M 3460:( 3451:T 3445:n 3434:E 3431:( 3418:D 3393:D 3378:) 3375:M 3366:T 3360:2 3349:E 3346:( 3333:D 3318:) 3315:M 3306:T 3300:1 3289:E 3286:( 3273:D 3258:) 3255:E 3252:( 3236:v 3232:E 3228:v 3210:v 3205:2 3201:D 3197:= 3194:) 3191:v 3188:D 3185:( 3182:D 3179:= 3176:) 3173:v 3170:( 3154:D 3137:. 3134:) 3131:) 3128:E 3125:, 3122:E 3119:( 3108:M 3099:T 3093:2 3085:( 3063:E 3061:, 3059:E 3051:M 3026:e 3020:) 3016:e 3012:( 3004:e 2999:= 2983:e 2975:e 2958:. 2955:g 2952:) 2948:e 2944:( 2936:1 2929:g 2925:= 2922:) 2919:g 2914:e 2910:( 2894:g 2891:e 2887:e 2866:. 2863:) 2859:e 2855:( 2846:) 2842:e 2838:( 2832:+ 2829:) 2825:e 2821:( 2815:d 2812:= 2809:) 2805:e 2801:( 2785:E 2763:M 2759:E 2755:E 2734:. 2731:) 2726:q 2721:e 2714:1 2706:p 2701:e 2696:( 2693:) 2688:p 2683:e 2678:( 2670:1 2663:) 2657:q 2652:e 2645:1 2637:p 2632:e 2627:( 2624:+ 2621:) 2616:q 2611:e 2604:1 2596:p 2591:e 2586:( 2583:d 2578:1 2571:) 2565:q 2560:e 2553:1 2545:p 2540:e 2535:( 2532:= 2529:) 2524:q 2519:e 2514:( 2497:p 2493:U 2488:p 2484:e 2482:( 2480:ω 2476:M 2468:E 2463:p 2459:e 2454:p 2450:U 2446:M 2441:p 2437:U 2425:g 2417:ω 2400:. 2397:g 2394:) 2390:e 2386:( 2378:1 2371:g 2367:+ 2364:g 2361:d 2356:1 2349:g 2345:= 2342:) 2339:g 2334:e 2330:( 2314:ω 2297:. 2283:g 2273:e 2259:= 2247:e 2236:, 2233:g 2227:e 2222:= 2213:e 2197:g 2193:k 2189:k 2185:′ 2182:e 2175:e 2171:e 2169:( 2166:α 2162:ω 2157:α 2153:ω 2149:E 2145:ω 2133:e 2125:ω 2121:ξ 2117:e 2113:d 2096:) 2092:e 2088:( 2082:) 2076:+ 2073:d 2070:( 2067:= 2064:) 2060:e 2056:( 2047:+ 2044:) 2040:e 2036:( 2030:d 2027:= 2024:) 2020:e 2016:( 2010:D 1984:. 1981:) 1977:e 1973:( 1936:e 1930:k 1925:1 1922:= 1909:k 1904:1 1901:= 1890:+ 1887:) 1883:e 1879:( 1866:d 1854:e 1848:k 1843:1 1840:= 1829:= 1826:) 1823:) 1819:e 1815:( 1796:e 1792:( 1789:D 1784:k 1779:1 1776:= 1765:= 1759:D 1746:ξ 1742:α 1738:e 1734:α 1729:ξ 1725:E 1708:. 1681:e 1675:k 1670:1 1667:= 1656:= 1647:e 1643:D 1630:M 1621:α 1617:ω 1613:k 1609:k 1604:α 1600:e 1596:e 1580:M 1576:E 1568:D 1564:v 1560:v 1540:d 1534:v 1529:v 1519:) 1515:1 1509:( 1506:+ 1497:) 1494:v 1491:D 1488:( 1485:= 1482:) 1473:v 1470:( 1467:D 1441:) 1438:M 1429:T 1412:E 1409:( 1400:) 1397:M 1388:T 1371:E 1368:( 1362:: 1359:D 1346:D 1342:D 1334:E 1328:E 1323:D 1316:f 1295:v 1292:D 1289:f 1286:+ 1283:) 1280:f 1277:d 1274:( 1268:v 1265:= 1262:) 1259:v 1256:f 1253:( 1250:D 1237:f 1233:E 1229:v 1221:D 1217:M 1213:M 1188:M 1183:1 1172:) 1169:E 1166:( 1160:= 1157:) 1154:M 1145:T 1138:E 1135:( 1126:) 1123:E 1120:( 1114:: 1111:D 1095:E 1063:M 1043:M 1012:) 1008:e 1004:( 995:e 990:= 985:] 979:) 975:e 971:( 966:k 947:) 943:e 939:( 934:2 922:) 918:e 914:( 909:1 898:[ 891:e 886:= 859:e 814:) 810:e 806:( 773:) 769:e 765:( 746:e 740:k 735:1 732:= 721:= 694:e 653:E 633:E 611:k 608:, 602:, 599:2 596:, 593:1 590:= 583:) 573:e 569:( 566:= 562:e 537:C 513:k 508:R 484:k 479:R 457:U 435:k 430:R 422:U 402:U 382:x 362:M 356:U 336:M 316:x 288:E 260:E 236:M 213:k 189:E 20:)

Index

Connection 1-form
mathematics
differential geometry
connection
moving frames
differential forms
Élie Cartan
coordinate frame
tensorial
principal bundle
principal connection
differentiable manifold
physics
gauge theory
gauge covariant derivative
basis
vector bundle
matrix
change of basis
exterior derivative
transition functions
Christoffel symbols
Levi-Civita connection
curvature form
solder form
tangent bundle
torsion form
fiber bundle
structure group
Connection (vector bundle)

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.