Knowledge (XXG)

Concentric tube heat exchanger

Source 📝

664:. Additionally, their robust build means that they can withstand high pressure operations. They also produce turbulent conditions at low flow rates, increasing the heat transfer coefficient, and hence the rate of heat transfer. There are significant disadvantages however, the two most noticeable being their high cost in proportion to heat transfer area; and the impractical lengths required for high heat duties. They also suffer from comparatively high heat losses via their large, outer shells. 97: 443: 92:
For calculations involving the outer stream, the equivalent diameter (or mean hydraulic radius) is used in place of the geometric diameter, as the cross-sectional area of the annulus is not circular. Equivalent diameters are also used for irregular shapes such as rectangular and triangular ducts. For
667:
The simplest form is composed of straight sections of tubing encased within the outer shell, however, alternatives such as corrugated or curved tubing conserve space while maximising heat transfer area per unit volume. They can be arranged in series or in parallel depending on the heating
219: 683:
stream to limit the pressure drop. Beyond double stream heat exchangers, designs involving triple (or more) streams are common; alternating between hot and cool streams, thus heating/cooling the product from both sides.
206: 668:
requirements. Typically constructed from stainless steel, spacers are inserted to retain concentricity, while the tubes are sealed with O-rings, packing, or welded depending on the operating pressures.
73:
for both the inner and outer streams; given their diameters and velocities (or flow rates). For conditions where thermal properties vary significantly, such as for large temperature differences, the
593: 438:{\displaystyle {1 \over U_{o}}={R_{fo}}+{R_{fi}}\cdot {\frac {D_{o}}{D_{i}}}+{\frac {D_{o}}{2k_{w}}}\cdot \ln {\frac {D_{o}}{D_{i}}}+{1 \over h_{o}}+{1 \over h_{i}}\cdot {\frac {D_{o}}{D_{i}}}} 643: 488: 25:
are used in a variety of industries for purposes such as material processing, food preparation, and air-conditioning. They create a temperature driving force by passing
660:, is the simplicity of their design. As such, the insides of both surfaces are easy to clean and maintain, making it ideal for fluids that cause 57:
behaviour of concentric tube heat exchangers can be described by both empirical and numerical analysis. The simplest of these involve the use of
105: 770: 93:
concentric tubes, this relationship simplifies to the difference between the diameters of the shell and the outer surface of the inner tube.
851: 823: 798: 745: 493: 77:
is used. This model takes into consideration the differences between bulk and wall viscosities. Both correlations utilize the
505: 703: 657: 675:
method is more common. The preference is to pass the hot fluid through the inner tube to reduce heat losses, while the
602: 210:
After the heat transfer coefficients (h_{i} and h_{o}) are determined, knowing the resistance due to fouling and
70: 885: 34: 452: 672: 870: 447:
The length of heat exchanger required can then be expressed as a function of the rate of heat transfer:
61:
to model heat transfer; however, the accuracy of these predictions varies depending on the design. For
708: 653: 211: 214:
of the boundary material (k_{w}), the Overall Heat Transfer coefficient (U_{o}) can be calculated.
30: 847: 819: 794: 766: 741: 38: 816:
Coulson & Richardson's Chemical Engineering: Fluid Flow, Heat Transfer and Mass Transfer
82: 698: 86: 78: 74: 66: 21: 879: 693: 54: 42: 58: 89:
to be between 0.7 and 160, Seider-Tate applies to values between 0.7 and 16,700.
96: 713: 497: 17: 680: 62: 676: 201:{\displaystyle D_{\mathrm {eo} }={\frac {4\cdot Area}{WettedPerimeter}}} 661: 492:
Where A is the surface area available for heat transfer and ∆T is the
652:
The primary advantage of a concentric configuration, as opposed to a
500:
can be performed to calculate the heat exchanger’s effectiveness.
95: 26: 671:
While both co and counter configurations are possible, the
85:
is greater than 10,000. While Dittus-Boelter requires the
844:
Processing of Foods: Pasteurization and UHT Sterilization
588:{\displaystyle q_{max}\equiv C_{min}(T_{h,i}-T_{c,i})} 837: 835: 605: 508: 455: 222: 108: 637: 587: 482: 437: 200: 763:Encyclopedia of Energy Engineering and Technology 738:Heat Transfer in Single and Multiphase Systems 842:Michael John Lewis and N. J. Heppell (2000). 8: 638:{\displaystyle E\equiv {\frac {q}{q_{max}}}} 814:J.M. Coulson and J. F. Richardson (1999). 818:(Sixth ed.). Butterworth Heinemann. 731: 729: 621: 612: 604: 570: 551: 532: 513: 507: 462: 454: 427: 417: 411: 400: 391: 380: 371: 360: 350: 344: 326: 312: 306: 295: 285: 279: 266: 261: 248: 243: 232: 223: 221: 127: 114: 113: 107: 483:{\displaystyle A={\frac {Q}{U\Delta T}}} 725: 33:to each other, separated by a physical 784: 782: 648:Concentric tube heat exchanger design 7: 37:in the form of a pipe. This induces 471: 118: 115: 29:streams of different temperatures 14: 871:Thermodynamics of Heat Exchangers 494:log mean temperature difference 791:Heat Transfer Equipment Design 709:Plate and Frame Heat Exchanger 582: 544: 1: 704:Shell and tube heat exchanger 658:shell and tube heat exchanger 69:can be used to determine the 81:and are only valid when the 761:Barney L. Capehart (2007). 902: 496:. From these results, the 45:heat to/from the product. 679:is reserved for the high 71:heat transfer coefficient 65:, non-viscous fluids the 793:. Taylor & Francis. 736:Greg F. Naterer (2002). 789:Ramesh K. Shah (1988). 75:Seider-Tate Correlation 67:Dittus-Boelter Equation 639: 589: 484: 439: 202: 100: 640: 590: 485: 440: 203: 99: 603: 506: 453: 220: 212:thermal conductivity 106: 635: 585: 480: 435: 198: 101: 772:978-0-8493-3653-9 633: 478: 433: 406: 386: 366: 333: 301: 238: 196: 39:forced convection 893: 858: 857: 839: 830: 829: 811: 805: 804: 786: 777: 776: 758: 752: 751: 733: 644: 642: 641: 636: 634: 632: 631: 613: 594: 592: 591: 586: 581: 580: 562: 561: 543: 542: 524: 523: 489: 487: 486: 481: 479: 477: 463: 444: 442: 441: 436: 434: 432: 431: 422: 421: 412: 407: 405: 404: 392: 387: 385: 384: 372: 367: 365: 364: 355: 354: 345: 334: 332: 331: 330: 317: 316: 307: 302: 300: 299: 290: 289: 280: 275: 274: 273: 257: 256: 255: 239: 237: 236: 224: 207: 205: 204: 199: 197: 195: 148: 128: 123: 122: 121: 901: 900: 896: 895: 894: 892: 891: 890: 886:Heat exchangers 876: 875: 867: 862: 861: 854: 841: 840: 833: 826: 813: 812: 808: 801: 788: 787: 780: 773: 760: 759: 755: 748: 735: 734: 727: 722: 690: 650: 617: 601: 600: 566: 547: 528: 509: 504: 503: 467: 451: 450: 423: 413: 396: 376: 356: 346: 322: 318: 308: 291: 281: 262: 244: 228: 218: 217: 149: 129: 109: 104: 103: 83:Reynolds number 51: 22:Heat Exchangers 20:Tube (or Pipe) 12: 11: 5: 899: 897: 889: 888: 878: 877: 874: 873: 866: 865:External links 863: 860: 859: 852: 831: 824: 806: 799: 778: 771: 753: 746: 724: 723: 721: 718: 717: 716: 711: 706: 701: 699:Heat exchanger 696: 689: 686: 673:countercurrent 649: 646: 630: 627: 624: 620: 616: 611: 608: 584: 579: 576: 573: 569: 565: 560: 557: 554: 550: 546: 541: 538: 535: 531: 527: 522: 519: 516: 512: 476: 473: 470: 466: 461: 458: 430: 426: 420: 416: 410: 403: 399: 395: 390: 383: 379: 375: 370: 363: 359: 353: 349: 343: 340: 337: 329: 325: 321: 315: 311: 305: 298: 294: 288: 284: 278: 272: 269: 265: 260: 254: 251: 247: 242: 235: 231: 227: 194: 191: 188: 185: 182: 179: 176: 173: 170: 167: 164: 161: 158: 155: 152: 147: 144: 141: 138: 135: 132: 126: 120: 117: 112: 87:Prandtl number 79:Nusselt number 50: 47: 13: 10: 9: 6: 4: 3: 2: 898: 887: 884: 883: 881: 872: 869: 868: 864: 855: 853:0-8342-1259-5 849: 845: 838: 836: 832: 827: 825:0-7506-4444-3 821: 817: 810: 807: 802: 800:0-89116-729-3 796: 792: 785: 783: 779: 774: 768: 765:. CRC Press. 764: 757: 754: 749: 747:0-8493-1032-6 743: 740:. CRC Press. 739: 732: 730: 726: 719: 715: 712: 710: 707: 705: 702: 700: 697: 695: 694:Heat transfer 692: 691: 687: 685: 682: 678: 674: 669: 665: 663: 659: 655: 647: 645: 628: 625: 622: 618: 614: 609: 606: 598: 595: 577: 574: 571: 567: 563: 558: 555: 552: 548: 539: 536: 533: 529: 525: 520: 517: 514: 510: 501: 499: 495: 490: 474: 468: 464: 459: 456: 448: 445: 428: 424: 418: 414: 408: 401: 397: 393: 388: 381: 377: 373: 368: 361: 357: 351: 347: 341: 338: 335: 327: 323: 319: 313: 309: 303: 296: 292: 286: 282: 276: 270: 267: 263: 258: 252: 249: 245: 240: 233: 229: 225: 215: 213: 208: 192: 189: 186: 183: 180: 177: 174: 171: 168: 165: 162: 159: 156: 153: 150: 145: 142: 139: 136: 133: 130: 124: 110: 98: 94: 90: 88: 84: 80: 76: 72: 68: 64: 60: 56: 55:thermodynamic 48: 46: 44: 40: 36: 32: 28: 24: 23: 19: 846:. Springer. 843: 815: 809: 790: 762: 756: 737: 670: 666: 651: 599: 596: 502: 491: 449: 446: 216: 209: 102: 91: 59:correlations 52: 43:transferring 16: 15: 720:References 714:NTU method 498:NTU method 18:Concentric 681:viscosity 610:≡ 564:− 526:≡ 472:Δ 409:⋅ 342:⁡ 336:⋅ 277:⋅ 134:⋅ 63:turbulent 880:Category 688:See also 35:boundary 31:parallel 677:annulus 662:fouling 850:  822:  797:  769:  744:  597:where 49:Theory 654:plate 27:fluid 848:ISBN 820:ISBN 795:ISBN 767:ISBN 742:ISBN 53:The 656:or 882:: 834:^ 781:^ 728:^ 339:ln 41:, 856:. 828:. 803:. 775:. 750:. 629:x 626:a 623:m 619:q 615:q 607:E 583:) 578:i 575:, 572:c 568:T 559:i 556:, 553:h 549:T 545:( 540:n 537:i 534:m 530:C 521:x 518:a 515:m 511:q 475:T 469:U 465:Q 460:= 457:A 429:i 425:D 419:o 415:D 402:i 398:h 394:1 389:+ 382:o 378:h 374:1 369:+ 362:i 358:D 352:o 348:D 328:w 324:k 320:2 314:o 310:D 304:+ 297:i 293:D 287:o 283:D 271:i 268:f 264:R 259:+ 253:o 250:f 246:R 241:= 234:o 230:U 226:1 193:r 190:e 187:t 184:e 181:m 178:i 175:r 172:e 169:P 166:d 163:e 160:t 157:t 154:e 151:W 146:a 143:e 140:r 137:A 131:4 125:= 119:o 116:e 111:D

Index

Concentric
Heat Exchangers
fluid
parallel
boundary
forced convection
transferring
thermodynamic
correlations
turbulent
Dittus-Boelter Equation
heat transfer coefficient
Seider-Tate Correlation
Nusselt number
Reynolds number
Prandtl number

thermal conductivity
log mean temperature difference
NTU method
plate
shell and tube heat exchanger
fouling
countercurrent
annulus
viscosity
Heat transfer
Heat exchanger
Shell and tube heat exchanger
Plate and Frame Heat Exchanger

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.