Knowledge (XXG)

Prandtl number

Source 📝

25: 1561: 279: 1388: 821: 703:
For air with a pressure of 1 bar, the Prandtl numbers in the temperature range between −100 °C and +500 °C can be calculated using the formula given below. The temperature is to be used in the unit degree Celsius. The deviations are a maximum of 0.1% from the literature values.
1239: 1344: 846:
The Prandtl numbers for water (1 bar) can be determined in the temperature range between 0 °C and 90 °C using the formula given below. The temperature is to be used in the unit degree Celsius. The deviations are a maximum of 1% from the literature values.
1075: 155: 919: 1556:{\displaystyle \mathrm {Nu} _{x}={\frac {0.3387\mathrm {Re} _{x}^{\frac {1}{2}}\mathrm {Pr} ^{\frac {1}{3}}}{\left(1+\left({\frac {0.0468}{\mathrm {Pr} }}\right)^{\frac {2}{3}}\right)^{\frac {1}{4}}}},\quad \mathrm {Re} \mathrm {Pr} >100.} 548:
are subscripted with a scale variable, the Prandtl number contains no such length scale and is dependent only on the fluid and the fluid state. The Prandtl number is often found in property tables alongside other properties such as
709: 589:
is approximately constant. Therefore, it can be used to determine the thermal conductivity of gases at high temperatures, where it is difficult to measure experimentally due to the formation of convection currents.
1764: 1140: 982:
is small, it means that the heat diffuses quickly compared to the velocity (momentum). This means that for liquid metals the thermal boundary layer is much thicker than the velocity boundary layer.
1245: 991: 1757: 423: 944:, so thermal diffusivity is dominant. However, engine oil with its high viscosity and low heat conductivity, has a higher momentum diffusivity as compared to thermal diffusivity. 274:{\displaystyle \mathrm {Pr} ={\frac {\nu }{\alpha }}={\frac {\mbox{momentum diffusivity}}{\mbox{thermal diffusivity}}}={\frac {\mu /\rho }{k/(c_{p}\rho )}}={\frac {c_{p}\mu }{k}}} 343: 1372: 852: 1105: 2114: 1750: 841: 2119: 1125: 369: 530: 504: 445: 305: 471: 964: 816:{\displaystyle \mathrm {Pr} _{\text{air}}={\frac {10^{9}}{1.1\cdot \vartheta ^{3}-1200\cdot \vartheta ^{2}+322000\cdot \vartheta +1.393\cdot 10^{9}}}} 1773: 1623: 1733: 985:
In laminar boundary layers, the ratio of the thermal to momentum boundary layer thickness over a flat plate is well approximated by
108: 1234:{\displaystyle \mathrm {Nu} _{x}=0.339\mathrm {Re} _{x}^{\frac {1}{2}}\mathrm {Pr} ^{\frac {1}{3}},\quad \mathrm {Pr} \to \infty ,} 42: 1676: 1339:{\displaystyle \mathrm {Nu} _{x}=0.565\mathrm {Re} _{x}^{\frac {1}{2}}\mathrm {Pr} ^{\frac {1}{2}},\quad \mathrm {Pr} \to 0,} 89: 46: 1919: 61: 936:, the momentum diffusivity dominates the behavior. For example, the listed value for liquid mercury indicates that the 68: 1070:{\displaystyle {\frac {\delta _{t}}{\delta }}=\mathrm {Pr} ^{-{\frac {1}{3}}},\quad 0.6\leq \mathrm {Pr} \leq 50,} 35: 75: 1996: 1979: 1572: 968: 2124: 1974: 1577: 640: 378: 57: 1874: 1643: 974:
In heat transfer problems, the Prandtl number controls the relative thickness of the momentum and thermal
1834: 1829: 914:{\displaystyle \mathrm {Pr} _{\text{water}}={\frac {50000}{\vartheta ^{2}+155\cdot \vartheta +3700}}} 554: 474: 314: 134: 2109: 1899: 1352: 372: 146: 1869: 1809: 2083: 1379: 1083: 955:
dissipate through the fluid at about the same rate. Heat diffuses very quickly in liquid metals (
826: 2038: 2003: 1784: 1729: 1682: 1672: 1619: 605: 448: 1110: 354: 2088: 1964: 1959: 1944: 1909: 1819: 691: 82: 1742: 515: 482: 2053: 2033: 1991: 1986: 1814: 1375: 975: 937: 650: 541: 430: 290: 2063: 2043: 2028: 2023: 1954: 1929: 1924: 1914: 1894: 1884: 1849: 1794: 1131: 565: 561: 545: 456: 138: 2103: 2073: 2068: 2058: 2048: 2013: 2008: 1949: 1889: 1879: 1859: 1854: 1824: 1789: 507: 2078: 2018: 1934: 1904: 1864: 1839: 1799: 569: 1378:. These two asymptotic solutions can be blended together using the concept of the 1939: 1844: 1804: 24: 941: 671: 1686: 967:
is much thicker for liquid metals and much thinner for oils relative to the
614: 550: 308: 142: 948: 657: 618: 533: 932:, means the thermal diffusivity dominates. Whereas with large values, 947:
The Prandtl numbers of gases are about 1, which indicates that both
699:
Formula for the calculation of the Prandtl number of air and water
687: 646: 952: 1746: 631: 627: 585:
For most gases over a wide range of temperature and pressure,
18: 346: 1700: 1698: 1696: 1705:
Lienhard IV, John Henry; Lienhard V, John Henry (2017).
560:
The mass transfer analog of the Prandtl number is the
190: 185: 1391: 1355: 1248: 1143: 1113: 1086: 994: 855: 829: 712: 518: 485: 459: 433: 381: 357: 317: 293: 158: 1130:For incompressible flow over a flat plate, the two 49:. Unsourced material may be challenged and removed. 1555: 1366: 1338: 1233: 1119: 1099: 1069: 913: 835: 815: 524: 498: 465: 439: 417: 363: 337: 299: 273: 1709:(4th ed.). Cambridge, MA: Phlogiston Press. 1758: 1637: 1635: 8: 1107:is the thermal boundary layer thickness and 564:and the ratio of the Prandtl number and the 1765: 1751: 1743: 1614:Coulson, J. M.; Richardson, J. F. (1999). 1127:is the momentum boundary layer thickness. 660:(At 0 °C and 20 °C respectively) 1669:Heat transfer : a practical approach 1609: 1607: 1605: 1603: 1601: 1599: 1597: 1595: 1593: 1539: 1531: 1514: 1498: 1484: 1479: 1450: 1442: 1430: 1425: 1417: 1410: 1401: 1393: 1390: 1356: 1354: 1319: 1304: 1296: 1284: 1279: 1271: 1258: 1250: 1247: 1214: 1199: 1191: 1179: 1174: 1166: 1153: 1145: 1142: 1134:correlations are asymptotically correct: 1112: 1091: 1085: 1050: 1028: 1024: 1016: 1001: 995: 993: 884: 874: 865: 857: 854: 828: 804: 773: 754: 737: 731: 722: 714: 711: 517: 490: 484: 458: 432: 406: 391: 380: 356: 327: 316: 292: 256: 249: 231: 219: 206: 200: 183: 170: 159: 157: 109:Learn how and when to remove this message 16:Ratio of kinematic to thermal diffusivity 2115:Dimensionless numbers of fluid mechanics 1774:Dimensionless numbers in fluid mechanics 1728:(3rd. ed.). New York: McGraw-Hill. 2120:Dimensionless numbers of thermodynamics 1589: 418:{\displaystyle \alpha =k/(\rho c_{p})} 1671:(2nd ed.). Boston: McGraw-Hill. 963:) relative to momentum. Consequently 7: 928:Small values of the Prandtl number, 47:adding citations to reliable sources 601:0.003 for molten potassium at 975 K 137:, named after the German physicist 1543: 1540: 1535: 1532: 1488: 1485: 1446: 1443: 1421: 1418: 1397: 1394: 1360: 1357: 1323: 1320: 1300: 1297: 1275: 1272: 1254: 1251: 1225: 1218: 1215: 1195: 1192: 1170: 1167: 1149: 1146: 1054: 1051: 1020: 1017: 861: 858: 718: 715: 163: 160: 14: 610:0.065 for molten lithium at 975 K 149:. The Prandtl number is given as: 940:is more significant compared to 613:around 0.16–0.7 for mixtures of 23: 1530: 1318: 1213: 1043: 843:is the temperature in Celsius. 338:{\displaystyle \nu =\mu /\rho } 34:needs additional citations for 1327: 1222: 412: 396: 307: : momentum diffusivity ( 240: 224: 1: 1616:Chemical Engineering Volume 1 1367:{\displaystyle \mathrm {Re} } 1100:{\displaystyle \delta _{t}} 959:) and very slowly in oils ( 670:between 100 and 40,000 for 2141: 1642:tec-science (2020-05-10). 1618:(6th ed.). Elsevier. 836:{\displaystyle \vartheta } 451:, (SI units: Pa s = N s/m) 141:, defined as the ratio of 1780: 1667:Çengel, Yunus A. (2003). 1707:A Heat Transfer Textbook 1573:Turbulent Prandtl number 679:10,000 for polymer melts 636:1.38 for gaseous ammonia 1578:Magnetic Prandtl number 1120:{\displaystyle \delta } 969:velocity boundary layer 924:Physical interpretation 364:{\displaystyle \alpha } 1557: 1368: 1340: 1235: 1121: 1101: 1071: 965:thermal boundary layer 915: 837: 817: 540:Note that whereas the 526: 510:, (SI units: J/(kg·K)) 500: 467: 441: 419: 365: 339: 301: 275: 1724:White, F. M. (2006). 1558: 1369: 1341: 1236: 1122: 1102: 1072: 916: 838: 818: 527: 525:{\displaystyle \rho } 501: 499:{\displaystyle c_{p}} 477:, (SI units: W/(m·K)) 468: 442: 420: 366: 340: 302: 276: 1389: 1353: 1246: 1141: 1111: 1084: 992: 853: 827: 710: 639:between 4 and 5 for 617:or noble gases with 555:thermal conductivity 516: 483: 475:thermal conductivity 457: 440:{\displaystyle \mu } 431: 379: 355: 315: 300:{\displaystyle \nu } 291: 187:momentum diffusivity 156: 143:momentum diffusivity 135:dimensionless number 43:improve this article 1440: 1294: 1189: 593:Typical values for 576:Experimental values 536:, (SI units: kg/m). 373:thermal diffusivity 309:kinematic viscosity 192:thermal diffusivity 147:thermal diffusivity 1920:Keulegan–Carpenter 1726:Viscous Fluid Flow 1553: 1416: 1380:Norm (mathematics) 1364: 1336: 1270: 1231: 1165: 1117: 1097: 1067: 911: 833: 813: 522: 496: 463: 437: 415: 361: 335: 297: 271: 194: 189: 2097: 2096: 1625:978-0-7506-4444-0 1525: 1522: 1506: 1492: 1458: 1438: 1312: 1292: 1207: 1187: 1036: 1010: 909: 868: 811: 725: 676:1000 for glycerol 656:13.4 and 7.2 for 604:around 0.015 for 466:{\displaystyle k} 449:dynamic viscosity 425:, (SI units: m/s) 269: 244: 195: 193: 188: 178: 119: 118: 111: 93: 2132: 1767: 1760: 1753: 1744: 1739: 1711: 1710: 1702: 1691: 1690: 1664: 1658: 1657: 1655: 1654: 1644:"Prandtl number" 1639: 1630: 1629: 1611: 1562: 1560: 1559: 1554: 1546: 1538: 1526: 1524: 1523: 1515: 1513: 1509: 1508: 1507: 1499: 1497: 1493: 1491: 1480: 1461: 1460: 1459: 1451: 1449: 1439: 1431: 1429: 1424: 1411: 1406: 1405: 1400: 1373: 1371: 1370: 1365: 1363: 1345: 1343: 1342: 1337: 1326: 1314: 1313: 1305: 1303: 1293: 1285: 1283: 1278: 1263: 1262: 1257: 1240: 1238: 1237: 1232: 1221: 1209: 1208: 1200: 1198: 1188: 1180: 1178: 1173: 1158: 1157: 1152: 1126: 1124: 1123: 1118: 1106: 1104: 1103: 1098: 1096: 1095: 1076: 1074: 1073: 1068: 1057: 1039: 1038: 1037: 1029: 1023: 1011: 1006: 1005: 996: 981: 962: 958: 935: 931: 920: 918: 917: 912: 910: 908: 889: 888: 875: 870: 869: 866: 864: 842: 840: 839: 834: 822: 820: 819: 814: 812: 810: 809: 808: 778: 777: 759: 758: 742: 741: 732: 727: 726: 723: 721: 685: 645:around 7.56 for 641:R-12 refrigerant 626:around 0.71 for 596: 588: 531: 529: 528: 523: 505: 503: 502: 497: 495: 494: 472: 470: 469: 464: 446: 444: 443: 438: 424: 422: 421: 416: 411: 410: 395: 370: 368: 367: 362: 344: 342: 341: 336: 331: 306: 304: 303: 298: 280: 278: 277: 272: 270: 265: 261: 260: 250: 245: 243: 236: 235: 223: 214: 210: 201: 196: 191: 186: 184: 179: 171: 166: 114: 107: 103: 100: 94: 92: 58:"Prandtl number" 51: 27: 19: 2140: 2139: 2135: 2134: 2133: 2131: 2130: 2129: 2100: 2099: 2098: 2093: 1776: 1771: 1736: 1723: 1720: 1718:Further reading 1715: 1714: 1704: 1703: 1694: 1679: 1666: 1665: 1661: 1652: 1650: 1641: 1640: 1633: 1626: 1613: 1612: 1591: 1586: 1569: 1475: 1474: 1467: 1463: 1462: 1441: 1412: 1392: 1387: 1386: 1376:Reynolds number 1351: 1350: 1295: 1249: 1244: 1243: 1190: 1144: 1139: 1138: 1109: 1108: 1087: 1082: 1081: 1015: 997: 990: 989: 979: 976:boundary layers 960: 956: 938:heat conduction 933: 929: 926: 880: 879: 856: 851: 850: 825: 824: 800: 769: 750: 743: 733: 713: 708: 707: 701: 683: 630:and many other 623:0.63 for oxygen 594: 586: 583: 578: 542:Reynolds number 514: 513: 486: 481: 480: 455: 454: 429: 428: 402: 377: 376: 353: 352: 313: 312: 289: 288: 282: 252: 251: 227: 215: 202: 154: 153: 115: 104: 98: 95: 52: 50: 40: 28: 17: 12: 11: 5: 2138: 2136: 2128: 2127: 2125:Fluid dynamics 2122: 2117: 2112: 2102: 2101: 2095: 2094: 2092: 2091: 2086: 2081: 2076: 2071: 2066: 2061: 2056: 2051: 2046: 2041: 2036: 2031: 2026: 2021: 2016: 2011: 2006: 2001: 2000: 1999: 1989: 1984: 1983: 1982: 1977: 1967: 1962: 1957: 1952: 1947: 1942: 1937: 1932: 1927: 1922: 1917: 1912: 1907: 1902: 1897: 1892: 1887: 1882: 1877: 1872: 1867: 1862: 1857: 1852: 1847: 1842: 1837: 1832: 1827: 1822: 1817: 1812: 1807: 1802: 1797: 1792: 1787: 1781: 1778: 1777: 1772: 1770: 1769: 1762: 1755: 1747: 1741: 1740: 1734: 1719: 1716: 1713: 1712: 1692: 1677: 1659: 1631: 1624: 1588: 1587: 1585: 1582: 1581: 1580: 1575: 1568: 1565: 1564: 1563: 1552: 1549: 1545: 1542: 1537: 1534: 1529: 1521: 1518: 1512: 1505: 1502: 1496: 1490: 1487: 1483: 1478: 1473: 1470: 1466: 1457: 1454: 1448: 1445: 1437: 1434: 1428: 1423: 1420: 1415: 1409: 1404: 1399: 1396: 1362: 1359: 1347: 1346: 1335: 1332: 1329: 1325: 1322: 1317: 1311: 1308: 1302: 1299: 1291: 1288: 1282: 1277: 1274: 1269: 1266: 1261: 1256: 1253: 1241: 1230: 1227: 1224: 1220: 1217: 1212: 1206: 1203: 1197: 1194: 1186: 1183: 1177: 1172: 1169: 1164: 1161: 1156: 1151: 1148: 1132:Nusselt number 1116: 1094: 1090: 1078: 1077: 1066: 1063: 1060: 1056: 1053: 1049: 1046: 1042: 1035: 1032: 1027: 1022: 1019: 1014: 1009: 1004: 1000: 925: 922: 907: 904: 901: 898: 895: 892: 887: 883: 878: 873: 863: 860: 832: 807: 803: 799: 796: 793: 790: 787: 784: 781: 776: 772: 768: 765: 762: 757: 753: 749: 746: 740: 736: 730: 720: 717: 700: 697: 696: 695: 680: 677: 674: 668: 661: 654: 643: 637: 634: 624: 621: 611: 608: 602: 582: 581:Typical values 579: 577: 574: 566:Schmidt number 562:Schmidt number 546:Grashof number 538: 537: 521: 511: 493: 489: 478: 462: 452: 436: 426: 414: 409: 405: 401: 398: 394: 390: 387: 384: 360: 350: 334: 330: 326: 323: 320: 296: 268: 264: 259: 255: 248: 242: 239: 234: 230: 226: 222: 218: 213: 209: 205: 199: 182: 177: 174: 169: 165: 162: 151: 139:Ludwig Prandtl 123:Prandtl number 117: 116: 31: 29: 22: 15: 13: 10: 9: 6: 4: 3: 2: 2137: 2126: 2123: 2121: 2118: 2116: 2113: 2111: 2108: 2107: 2105: 2090: 2087: 2085: 2082: 2080: 2077: 2075: 2072: 2070: 2067: 2065: 2062: 2060: 2057: 2055: 2052: 2050: 2047: 2045: 2042: 2040: 2037: 2035: 2032: 2030: 2027: 2025: 2022: 2020: 2017: 2015: 2012: 2010: 2007: 2005: 2002: 1998: 1995: 1994: 1993: 1990: 1988: 1985: 1981: 1978: 1976: 1973: 1972: 1971: 1968: 1966: 1963: 1961: 1958: 1956: 1953: 1951: 1948: 1946: 1943: 1941: 1938: 1936: 1933: 1931: 1928: 1926: 1923: 1921: 1918: 1916: 1913: 1911: 1908: 1906: 1903: 1901: 1898: 1896: 1893: 1891: 1888: 1886: 1883: 1881: 1878: 1876: 1873: 1871: 1868: 1866: 1863: 1861: 1858: 1856: 1853: 1851: 1848: 1846: 1843: 1841: 1838: 1836: 1833: 1831: 1830:Chandrasekhar 1828: 1826: 1823: 1821: 1818: 1816: 1813: 1811: 1808: 1806: 1803: 1801: 1798: 1796: 1793: 1791: 1788: 1786: 1783: 1782: 1779: 1775: 1768: 1763: 1761: 1756: 1754: 1749: 1748: 1745: 1737: 1735:0-07-240231-8 1731: 1727: 1722: 1721: 1717: 1708: 1701: 1699: 1697: 1693: 1688: 1684: 1680: 1674: 1670: 1663: 1660: 1649: 1645: 1638: 1636: 1632: 1627: 1621: 1617: 1610: 1608: 1606: 1604: 1602: 1600: 1598: 1596: 1594: 1590: 1583: 1579: 1576: 1574: 1571: 1570: 1566: 1550: 1547: 1527: 1519: 1516: 1510: 1503: 1500: 1494: 1481: 1476: 1471: 1468: 1464: 1455: 1452: 1435: 1432: 1426: 1413: 1407: 1402: 1385: 1384: 1383: 1381: 1377: 1333: 1330: 1315: 1309: 1306: 1289: 1286: 1280: 1267: 1264: 1259: 1242: 1228: 1210: 1204: 1201: 1184: 1181: 1175: 1162: 1159: 1154: 1137: 1136: 1135: 1133: 1128: 1114: 1092: 1088: 1064: 1061: 1058: 1047: 1044: 1040: 1033: 1030: 1025: 1012: 1007: 1002: 998: 988: 987: 986: 983: 977: 972: 970: 966: 954: 950: 945: 943: 939: 923: 921: 905: 902: 899: 896: 893: 890: 885: 881: 876: 871: 848: 844: 830: 805: 801: 797: 794: 791: 788: 785: 782: 779: 774: 770: 766: 763: 760: 755: 751: 747: 744: 738: 734: 728: 705: 698: 693: 689: 681: 678: 675: 673: 669: 666: 662: 659: 655: 652: 648: 644: 642: 638: 635: 633: 629: 625: 622: 620: 616: 612: 609: 607: 603: 600: 599: 598: 591: 580: 575: 573: 571: 567: 563: 558: 556: 552: 547: 543: 535: 519: 512: 509: 508:specific heat 491: 487: 479: 476: 460: 453: 450: 434: 427: 407: 403: 399: 392: 388: 385: 382: 374: 358: 351: 348: 332: 328: 324: 321: 318: 310: 294: 287: 286: 285: 281: 266: 262: 257: 253: 246: 237: 232: 228: 220: 216: 211: 207: 203: 197: 180: 175: 172: 167: 150: 148: 144: 140: 136: 132: 131:Prandtl group 128: 124: 113: 110: 102: 91: 88: 84: 81: 77: 74: 70: 67: 63: 60: –  59: 55: 54:Find sources: 48: 44: 38: 37: 32:This article 30: 26: 21: 20: 1969: 1725: 1706: 1668: 1662: 1651:. Retrieved 1647: 1615: 1348: 1129: 1079: 984: 973: 946: 927: 849: 845: 706: 702: 664: 592: 584: 570:Lewis number 559: 539: 283: 152: 130: 126: 122: 120: 105: 96: 86: 79: 72: 65: 53: 41:Please help 36:verification 33: 2084:Weissenberg 1648:tec-science 615:noble gases 349:units: m/s) 99:August 2014 2110:Convection 2104:Categories 2004:Richardson 1785:Archimedes 1678:0072458933 1653:2020-06-25 1584:References 942:convection 672:engine oil 69:newspapers 2089:Womersley 1980:turbulent 1960:Ohnesorge 1945:Marangoni 1910:Iribarren 1835:Damköhler 1820:Capillary 1328:→ 1226:∞ 1223:→ 1115:δ 1089:δ 1059:≤ 1048:≤ 1026:− 1008:δ 999:δ 900:ϑ 897:⋅ 882:ϑ 831:ϑ 798:⋅ 789:ϑ 786:⋅ 771:ϑ 767:⋅ 761:− 752:ϑ 748:⋅ 551:viscosity 520:ρ 435:μ 400:ρ 383:α 359:α 333:ρ 325:μ 319:ν 295:ν 263:μ 238:ρ 212:ρ 204:μ 176:α 173:ν 2064:Suratman 2054:Strouhal 2034:Sherwood 1997:magnetic 1992:Reynolds 1987:Rayleigh 1975:magnetic 1815:Brinkman 1687:50192222 1567:See also 949:momentum 823:, where 682:around 1 667:-butanol 658:seawater 619:hydrogen 532: : 506: : 473: : 447: : 371: : 2044:Stanton 2039:Shields 2029:Scruton 2024:Schmidt 1970:Prandtl 1955:Nusselt 1930:Laplace 1925:Knudsen 1915:Kapitza 1900:Görtler 1895:Grashof 1885:Galilei 1850:Deborah 1795:Bagnold 1374:is the 978:. When 686:10 for 663:50 for 649:(At 18 606:mercury 568:is the 534:density 284:where: 83:scholar 2074:Ursell 2069:Taylor 2059:Stuart 2049:Stokes 2014:Rossby 2009:Roshko 1965:Péclet 1950:Morton 1890:Graetz 1880:Froude 1870:Eötvös 1860:Eckert 1855:Dukhin 1825:Cauchy 1790:Atwood 1732:  1685:  1675:  1622:  1482:0.0468 1414:0.3387 1349:where 1080:where 961:Pr ≫ 1 957:Pr ≪ 1 934:Pr ≫ 1 930:Pr ≪ 1 783:322000 692:mantle 85:  78:  71:  64:  56:  2079:Weber 2019:Rouse 1935:Lewis 1905:Hagen 1875:Euler 1865:Ekman 1840:Darcy 1800:Bejan 1268:0.565 1163:0.339 877:50000 867:water 795:1.393 688:Earth 647:water 632:gases 597:are: 133:is a 129:) or 90:JSTOR 76:books 1940:Mach 1845:Dean 1810:Bond 1805:Biot 1730:ISBN 1683:OCLC 1673:ISBN 1620:ISBN 1551:100. 1548:> 953:heat 951:and 906:3700 764:1200 553:and 544:and 121:The 62:news 1045:0.6 894:155 745:1.1 724:air 690:'s 628:air 345:, ( 311:), 145:to 45:by 2106:: 1695:^ 1681:. 1646:. 1634:^ 1592:^ 1382:: 1062:50 980:Pr 971:. 802:10 735:10 651:°C 595:Pr 587:Pr 572:. 557:. 375:, 347:SI 127:Pr 1766:e 1759:t 1752:v 1738:. 1689:. 1656:. 1628:. 1544:r 1541:P 1536:e 1533:R 1528:, 1520:4 1517:1 1511:) 1504:3 1501:2 1495:) 1489:r 1486:P 1477:( 1472:+ 1469:1 1465:( 1456:3 1453:1 1447:r 1444:P 1436:2 1433:1 1427:x 1422:e 1419:R 1408:= 1403:x 1398:u 1395:N 1361:e 1358:R 1334:, 1331:0 1324:r 1321:P 1316:, 1310:2 1307:1 1301:r 1298:P 1290:2 1287:1 1281:x 1276:e 1273:R 1265:= 1260:x 1255:u 1252:N 1229:, 1219:r 1216:P 1211:, 1205:3 1202:1 1196:r 1193:P 1185:2 1182:1 1176:x 1171:e 1168:R 1160:= 1155:x 1150:u 1147:N 1093:t 1065:, 1055:r 1052:P 1041:, 1034:3 1031:1 1021:r 1018:P 1013:= 1003:t 903:+ 891:+ 886:2 872:= 862:r 859:P 806:9 792:+ 780:+ 775:2 756:3 739:9 729:= 719:r 716:P 694:. 684:× 665:n 653:) 492:p 488:c 461:k 413:) 408:p 404:c 397:( 393:/ 389:k 386:= 329:/ 322:= 267:k 258:p 254:c 247:= 241:) 233:p 229:c 225:( 221:/ 217:k 208:/ 198:= 181:= 168:= 164:r 161:P 125:( 112:) 106:( 101:) 97:( 87:· 80:· 73:· 66:· 39:.

Index


verification
improve this article
adding citations to reliable sources
"Prandtl number"
news
newspapers
books
scholar
JSTOR
Learn how and when to remove this message
dimensionless number
Ludwig Prandtl
momentum diffusivity
thermal diffusivity
kinematic viscosity
SI
thermal diffusivity
dynamic viscosity
thermal conductivity
specific heat
density
Reynolds number
Grashof number
viscosity
thermal conductivity
Schmidt number
Schmidt number
Lewis number
mercury

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.