Knowledge (XXG)

Confluence (abstract rewriting)

Source 📝

1027: 1019: 17: 51: 632: 519:
This proof starts from the given group axioms A1–A3, and establishes five propositions R4, R6, R10, R11, and R12, each of them using some earlier ones, and R12 being the main theorem. Some of the proofs require non-obvious, or even creative, steps, like applying axiom A2 in reverse, thereby rewriting
57:
The usual rules of elementary arithmetic form an abstract rewriting system. For example, the expression (11 + 9) × (2 + 4) can be evaluated starting either at the left or at the right parentheses; however, in both cases the same result is eventually obtained. If every arithmetic expression evaluates
1354:
it is confluent. Because of this equivalence, a fair bit of variation in definitions is encountered in the literature. For instance, in "Terese" the Church–Rosser property and confluence are defined to be synonymous and identical to the definition of confluence presented here; Church–Rosser as
1363:
The definition of local confluence differs from that of global confluence in that only elements reached from a given element in a single rewriting step are considered. By considering one element reached in a single step and another element reached by an arbitrary sequence, we arrive at the
58:
to the same result regardless of reduction strategy, the arithmetic rewriting system is said to be ground-confluent. Arithmetic rewriting systems may be confluent or only ground-confluent depending on details of the rewriting system.
1343:; that is the normal form of an object is unique if it exists, but it may well not exist. In lambda calculus for instance, the expression (λx.xx)(λx.xx) does not have a normal form because there exists an infinite sequence of 606:
The success of that method does not depend on a certain sophisticated order in which to apply rewrite rules, as confluence ensures that any sequence of rule applications will eventually lead to the same result (while the
1280: 38:
systems, describing which terms in such a system can be rewritten in more than one way, to yield the same result. This article describes the properties in the most abstract setting of an
1310: 940: 615:, not a tinge of creativity is required to perform proofs of term equality; that task hence becomes amenable to computer programs. Modern approaches handle more general 1336:.) In a rewriting system with the Church–Rosser property the word problem may be reduced to the search for a common successor. In a Church–Rosser system, an object has 1466:
A semi-confluent element need not be confluent, but a semi-confluent rewriting system is necessarily confluent, and a confluent system is trivially semi-confluent.
611:
property ensures that any sequence will eventually reach an end at all). Therefore, if a confluent and terminating term rewriting system can be provided for some
647:
in zero or more rewrite steps (denoted by the asterisk). In order for the rewrite relation to be confluent, both reducts must in turn reduce to some common
1474:
Strong confluence is another variation on local confluence that allows us to conclude that a rewriting system is globally confluent. An element
1653: 1897: 1730: 1590: 1170:. Since a sequence of reduction sequences is again a reduction sequence (or, equivalently, since forming the reflexive-transitive closure is 1026: 1660:, with its propositions consistently numbered. Using it, a proof of e.g. R6 consists in applying R11 and R12 in any order to the term ( 1018: 1869: 1758: 1620: 1340: 1219:
A rewriting system may be locally confluent without being (globally) confluent. Examples are shown in figures 1 and 2. However,
1162:, introduced as a notation for reduction sequences, may be viewed as a rewriting system in its own right, whose relation is the 528:
was to avoid the need for such steps, which are difficult to find by an inexperienced human, let alone by a computer program .
1817: 800:
of →. Using the example from the previous paragraph, we have (11+9)×(2+4) → 20×(2+4) and 20×(2+4) → 20×6, so (11+9)×(2+4)
1332:
has this property; hence the name of the property. (The fact that lambda calculus has this property is also known as the
1246: 1720: 1566:
A confluent element need not be strongly confluent, but a strongly confluent rewriting system is necessarily confluent.
1223:
states that if a locally confluent rewriting system has no infinite reduction sequences (in which case it is said to be
1355:
defined here remains unnamed, but is given as an equivalent property; this departure from other texts is deliberate.
16: 1951: 1657: 1597: 1333: 39: 1285: 1887: 917: 1656:
can be used to compute such a system from a given set of equations. Such a system e.g. for groups is shown
1615: 1163: 797: 659:
in which nodes represent expressions and edges represent rewrites. So, for example, if the expression
1610: 1580: 66: 62: 1786:
Alonzo Church and J. Barkley Rosser. Some properties of conversion. Trans. AMS, 39:472-482, 1936
50: 1924: 1893: 1865: 1813: 1754: 1726: 1325: 1220: 612: 1584: 1030:
Figure 2: Infinite non-cyclic, locally-confluent, but not globally confluent rewrite system
541:, a straightforward method exists to prove equality between two expressions (also known as 1857: 1329: 1749:
N. Dershowitz and J.-P. Jouannaud (1990). "Rewrite Systems". In Jan van Leeuwen (ed.).
1351: 1344: 656: 559:, apply equalities from left to right as long as possible, eventually obtaining a term 532: 524:⋅ a" in the first step of R6's proof. One of the historical motivations to develop the 1945: 1883: 1753:. Handbook of Theoretical Computer Science. Vol. B. Elsevier. pp. 243–320. 1321: 950:
is confluent, we say that → is confluent. This property is also sometimes called the
1879: 994:. The single-reduction variant is strictly stronger than the multi-reduction one. 954:, after the shape of the diagram shown on the right. Some authors reserve the term 543: 1690: 958:
for a variant of the diagram with single reductions everywhere; that is, whenever
1864:. Cambridge Tracts in Theoretical Computer Science. Cambridge University Press. 1171: 1007: 717:. Intuitively, this means that the corresponding graph has a directed edge from 1927: 1576: 1022:
Figure 1: Cyclic, locally-confluent, but not globally confluent rewrite system
26:
is inspired from geography, where it means the meeting of two bodies of water.
22: 61:
A second, more abstract example is obtained from the following proof of each
1932: 537: 35: 1144:
in one step. In analogy with this, confluence is sometimes referred to as
1128:
is locally confluent, then → is called locally confluent, or having the
631: 1709:, p. 134: axiom and proposition names follow the original text 1025: 1017: 630: 15: 1744: 1742: 623:
rewriting systems; the latter are a special case of the former.
603:
that can be proven equal at all can be done so by that method.
1563:
is strongly confluent, we say that → is strongly confluent.
814:
With this established, confluence can be defined as follows.
49: 587:
are proven equal. More importantly, if they disagree, then
1583:
is a confluent rewrite system provided one works with a
1350:
A rewriting system possesses the Church–Rosser property
777:, indicating the existence of a reduction sequence from 1719:
Robinson, Alan J. A.; Voronkov, Andrei (5 July 2001).
1463:
is semi-confluent, we say that → is semi-confluent.
1288: 1249: 1010:
is confluent, that is, every term without variables.
920: 1812:. Boca Raton: Chapman & Hall/CRC. p. 184. 1275:{\displaystyle x{\stackrel {*}{\leftrightarrow }}y} 1304: 1274: 934: 1205:. It follows that → is confluent if and only if 1706: 1593:follows from confluence of the braid relations. 1907:Bläsius, K. H.; Bürckert, H.-J., eds. (1992). 1725:. Gulf Professional Publishing. p. 560. 701:). This is represented using arrow notation; 8: 1832: 1795: 1643:to emphasize their left-to-right orientation 1132:. This is different from confluence in that 1596:β-reduction of λ-terms is confluent by the 728:If there is a path between two graph nodes 1305:{\displaystyle x{\mathbin {\downarrow }}y} 1239:A rewriting system is said to possess the 1364:intermediate concept of semi-confluence: 1293: 1292: 1287: 1261: 1256: 1254: 1253: 1248: 935:{\displaystyle b\mathbin {\downarrow } c} 924: 919: 655:A rewriting system can be expressed as a 1691:"Rewrite systems for integer arithmetic" 595:cannot be equal. That is, any two terms 1689:Walters, H.R.; Zantema, H. (Oct 1994). 1681: 1632: 1844: 1774: 1347:(λx.xx)(λx.xx) → (λx.xx)(λx.xx) → ... 30:In computer science and mathematics, 7: 1231:), then it is globally confluent. 14: 1654:Knuth–Bendix completion algorithm 1668:; no other rules are applicable. 1621:Normal form (abstract rewriting) 571:in a similar way. If both terms 1722:Handbook of Automated Reasoning 1892:. Cambridge University Press. 1294: 1257: 925: 1: 1570:Examples of confluent systems 1164:reflexive-transitive closure 798:reflexive-transitive closure 1889:Term Rewriting and All That 1751:Formal Models and Semantics 1707:Bläsius & Bürckert 1992 1130:weak Church–Rosser property 1002:A term rewriting system is 1968: 1911:. Oldenbourg. p. 291. 1860:; de Vrijer, Roel (2003). 617:abstract rewriting systems 500:by R11(r)     40:abstract rewriting system 1833:Baader & Nipkow 1998 1796:Baader & Nipkow 1998 526:theory of term rewriting 216:by A3(r)     1856:"Terese"; Bezem, Marc; 1664:)⋅1 to obtain the term 740:. So, for instance, if 627:General case and theory 1862:Term rewriting systems 1808:Cooper, S. B. (2004). 1765:Here: p.268, Fig.2a+b. 1306: 1276: 1241:Church–Rosser property 1235:Church–Rosser property 1216:is locally confluent. 1031: 1023: 936: 663:can be rewritten into 652: 579:literally agree, then 65:element equalling the 54: 27: 1696:. Utrecht University. 1616:Critical pair (logic) 1598:Church–Rosser theorem 1334:Church–Rosser theorem 1307: 1277: 1140:must be reduced from 1029: 1021: 974:, there must exist a 937: 634: 533:term rewriting system 53: 19: 1810:Computability theory 1328:proved in 1936 that 1286: 1247: 1229:strongly normalizing 918: 760:, then we can write 1611:Convergence (logic) 1591:Matsumoto's theorem 667:, then we say that 473: 415: 337: 262: 175: 74: 46:Motivating examples 1925:Weisstein, Eric W. 1484:strongly confluent 1302: 1272: 1032: 1024: 932: 738:reduction sequence 736:, then it forms a 653: 460: 402: 316: 249: 154: 72: 55: 28: 1952:Rewriting systems 1909:Deduktionssysteme 1899:978-0-521-77920-3 1777:, pp. 10–11. 1732:978-0-444-82949-8 1470:Strong confluence 1326:J. Barkley Rosser 1266: 1146:global confluence 1044:locally confluent 998:Ground confluence 872:, there exists a 826:if for all pairs 635:In this diagram, 613:equational theory 535:is confluent and 517: 516: 458: 457: 400: 399: 314: 313: 247: 246: 152: 151: 34:is a property of 1959: 1938: 1937: 1912: 1903: 1875: 1858:Klop, Jan Willem 1848: 1842: 1836: 1830: 1824: 1823: 1805: 1799: 1793: 1787: 1784: 1778: 1772: 1766: 1764: 1746: 1737: 1736: 1716: 1710: 1704: 1698: 1697: 1695: 1686: 1669: 1650: 1644: 1637: 1535: 1534: 1533: 1530: 1451: 1450: 1449: 1446: 1434: 1433: 1432: 1429: 1409: 1408: 1407: 1404: 1312:for all objects 1311: 1309: 1308: 1303: 1298: 1297: 1281: 1279: 1278: 1273: 1268: 1267: 1265: 1260: 1255: 1215: 1214: 1213: 1210: 1204: 1203: 1202: 1199: 1193: 1192: 1191: 1190: 1189: 1188: 1185: 1179: 1161: 1160: 1159: 1156: 1116: 1115: 1114: 1111: 1099: 1098: 1097: 1094: 1048:weakly confluent 1014:Local confluence 1004:ground confluent 956:diamond property 952:diamond property 941: 939: 938: 933: 928: 910: 909: 908: 905: 893: 892: 891: 888: 868: 867: 866: 863: 851: 850: 849: 846: 810: 809: 808: 805: 795: 794: 793: 790: 773: 772: 771: 768: 679:(alternatively, 650: 646: 642: 639:reduces to both 638: 555:: Starting with 474: 459: 416: 401: 338: 315: 263: 248: 176: 153: 75: 71: 69:of its inverse: 1967: 1966: 1962: 1961: 1960: 1958: 1957: 1956: 1942: 1941: 1923: 1922: 1919: 1906: 1900: 1878: 1872: 1855: 1852: 1851: 1843: 1839: 1831: 1827: 1820: 1807: 1806: 1802: 1794: 1790: 1785: 1781: 1773: 1769: 1761: 1748: 1747: 1740: 1733: 1718: 1717: 1713: 1705: 1701: 1693: 1688: 1687: 1683: 1678: 1673: 1672: 1651: 1647: 1638: 1634: 1629: 1607: 1572: 1531: 1528: 1527: 1526: 1472: 1447: 1444: 1443: 1442: 1430: 1427: 1426: 1425: 1405: 1402: 1401: 1400: 1361: 1359:Semi-confluence 1330:lambda calculus 1284: 1283: 1245: 1244: 1243:if and only if 1237: 1211: 1208: 1207: 1206: 1200: 1197: 1196: 1195: 1186: 1183: 1182: 1181: 1180: 1177: 1176: 1175: 1157: 1154: 1153: 1152: 1112: 1109: 1108: 1107: 1095: 1092: 1091: 1090: 1016: 1000: 916: 915: 906: 903: 902: 901: 889: 886: 885: 884: 864: 861: 860: 859: 847: 844: 843: 842: 806: 803: 802: 801: 791: 788: 787: 786: 769: 766: 765: 764: 709:indicates that 648: 644: 640: 636: 629: 48: 12: 11: 5: 1965: 1963: 1955: 1954: 1944: 1943: 1940: 1939: 1918: 1917:External links 1915: 1914: 1913: 1904: 1898: 1884:Nipkow, Tobias 1876: 1870: 1850: 1849: 1837: 1825: 1818: 1800: 1788: 1779: 1767: 1759: 1738: 1731: 1711: 1699: 1680: 1679: 1677: 1674: 1671: 1670: 1645: 1631: 1630: 1628: 1625: 1624: 1623: 1618: 1613: 1606: 1603: 1602: 1601: 1594: 1588: 1571: 1568: 1482:is said to be 1471: 1468: 1374:semi-confluent 1372:is said to be 1360: 1357: 1352:if and only if 1301: 1296: 1291: 1271: 1264: 1259: 1252: 1236: 1233: 1221:Newman's lemma 1042:is said to be 1015: 1012: 999: 996: 931: 927: 923: 657:directed graph 628: 625: 563:. Obtain from 515: 514: 511: 506: 502: 501: 498: 491: 487: 486: 484: 477: 456: 455: 452: 447: 443: 442: 439: 432: 428: 427: 425: 419: 398: 397: 394: 385: 381: 380: 377: 358: 354: 353: 351: 341: 312: 311: 308: 303: 299: 298: 295: 280: 276: 275: 273: 266: 245: 244: 241: 236: 232: 231: 228: 222: 218: 217: 214: 200: 196: 195: 193: 179: 150: 149: 134: 120: 113: 112: 109: 100: 94: 93: 87: 81: 47: 44: 13: 10: 9: 6: 4: 3: 2: 1964: 1953: 1950: 1949: 1947: 1935: 1934: 1929: 1926: 1921: 1920: 1916: 1910: 1905: 1901: 1895: 1891: 1890: 1885: 1881: 1880:Baader, Franz 1877: 1873: 1871:0-521-39115-6 1867: 1863: 1859: 1854: 1853: 1847:, p. 11. 1846: 1841: 1838: 1835:, p. 11. 1834: 1829: 1826: 1821: 1815: 1811: 1804: 1801: 1797: 1792: 1789: 1783: 1780: 1776: 1771: 1768: 1762: 1760:0-444-88074-7 1756: 1752: 1745: 1743: 1739: 1734: 1728: 1724: 1723: 1715: 1712: 1708: 1703: 1700: 1692: 1685: 1682: 1675: 1667: 1663: 1659: 1655: 1649: 1646: 1642: 1641:rewrite rules 1636: 1633: 1626: 1622: 1619: 1617: 1614: 1612: 1609: 1608: 1604: 1599: 1595: 1592: 1589: 1586: 1585:Gröbner basis 1582: 1578: 1575:Reduction of 1574: 1573: 1569: 1567: 1564: 1562: 1558: 1554: 1550: 1546: 1542: 1538: 1525: 1521: 1517: 1514:there exists 1513: 1509: 1505: 1501: 1497: 1493: 1489: 1485: 1481: 1477: 1469: 1467: 1464: 1462: 1458: 1454: 1441: 1437: 1424: 1420: 1416: 1413:there exists 1412: 1399: 1395: 1391: 1387: 1383: 1379: 1375: 1371: 1367: 1358: 1356: 1353: 1348: 1346: 1342: 1339: 1335: 1331: 1327: 1323: 1322:Alonzo Church 1319: 1315: 1299: 1289: 1269: 1262: 1250: 1242: 1234: 1232: 1230: 1226: 1222: 1217: 1173: 1169: 1165: 1151:The relation 1149: 1147: 1143: 1139: 1135: 1131: 1127: 1123: 1119: 1106: 1102: 1089: 1085: 1081: 1078:there exists 1077: 1073: 1069: 1065: 1061: 1057: 1053: 1050:) if for all 1049: 1045: 1041: 1037: 1028: 1020: 1013: 1011: 1009: 1005: 997: 995: 993: 989: 985: 981: 977: 973: 969: 965: 961: 957: 953: 949: 945: 929: 921: 913: 900: 896: 883: 879: 875: 871: 858: 854: 841: 837: 833: 829: 825: 821: 817: 812: 799: 784: 780: 776: 763: 759: 755: 751: 747: 743: 739: 735: 731: 726: 724: 720: 716: 712: 708: 704: 700: 696: 692: 688: 685: 682: 678: 674: 670: 666: 662: 658: 633: 626: 624: 622: 618: 614: 610: 604: 602: 598: 594: 590: 586: 582: 578: 574: 570: 566: 562: 558: 554: 550: 546: 545: 540: 539: 534: 529: 527: 523: 512: 510: 507: 504: 503: 499: 496: 492: 489: 488: 485: 482: 478: 476: 475: 472: 468: 464: 453: 451: 448: 445: 444: 440: 437: 433: 430: 429: 426: 423: 420: 418: 417: 414: 410: 406: 395: 393: 389: 386: 383: 382: 378: 375: 371: 367: 363: 359: 356: 355: 352: 350: 346: 342: 340: 339: 336: 332: 328: 324: 320: 309: 307: 304: 301: 300: 296: 293: 289: 285: 281: 278: 277: 274: 271: 267: 265: 264: 261: 257: 253: 242: 240: 237: 234: 233: 229: 227: 223: 220: 219: 215: 213: 209: 205: 201: 198: 197: 194: 191: 187: 183: 180: 178: 177: 174: 170: 166: 162: 158: 147: 143: 139: 135: 133: 129: 125: 121: 119:    118: 115: 114: 110: 108: 104: 101: 99: 96: 95: 92: 88: 86: 82: 80: 77: 76: 73:Group axioms 70: 68: 64: 59: 52: 45: 43: 41: 37: 33: 25: 24: 18: 1931: 1908: 1888: 1861: 1840: 1828: 1809: 1803: 1798:, p. 9. 1791: 1782: 1770: 1750: 1721: 1714: 1702: 1684: 1665: 1661: 1648: 1640: 1639:then called 1635: 1565: 1560: 1556: 1552: 1548: 1544: 1540: 1536: 1523: 1519: 1515: 1511: 1507: 1503: 1499: 1495: 1491: 1487: 1483: 1479: 1475: 1473: 1465: 1460: 1456: 1452: 1439: 1435: 1422: 1418: 1414: 1410: 1397: 1393: 1389: 1385: 1381: 1377: 1373: 1369: 1365: 1362: 1349: 1345:β-reductions 1337: 1317: 1313: 1240: 1238: 1228: 1224: 1218: 1167: 1150: 1145: 1141: 1137: 1133: 1129: 1125: 1121: 1117: 1104: 1100: 1087: 1083: 1079: 1075: 1071: 1067: 1063: 1059: 1055: 1051: 1047: 1043: 1039: 1035: 1033: 1003: 1001: 991: 987: 983: 979: 975: 971: 967: 963: 959: 955: 951: 947: 943: 942:). If every 911: 898: 894: 881: 877: 873: 869: 856: 852: 839: 835: 831: 827: 823: 819: 815: 813: 785:. Formally, 782: 778: 774: 761: 757: 753: 749: 745: 741: 737: 733: 729: 727: 722: 718: 714: 710: 706: 702: 698: 694: 690: 686: 683: 680: 676: 672: 668: 664: 660: 654: 620: 619:rather than 616: 608: 605: 600: 596: 592: 588: 584: 580: 576: 572: 568: 564: 560: 556: 552: 548: 542: 536: 530: 525: 521: 518: 508: 494: 480: 470: 466: 462: 449: 435: 421: 412: 408: 404: 391: 387: 373: 369: 365: 361: 348: 344: 334: 330: 326: 322: 318: 305: 291: 287: 283: 269: 259: 255: 251: 238: 225: 211: 207: 203: 189: 185: 181: 172: 168: 164: 160: 156: 145: 141: 137: 131: 127: 123: 116: 106: 102: 97: 90: 84: 78: 60: 56: 31: 29: 21: 1928:"Confluent" 1845:Terese 2003 1775:Terese 2003 1577:polynomials 1555:; if every 1539:and either 1486:if for all 1455:; if every 1376:if for all 1341:normal form 1338:at most one 1225:terminating 1120:. If every 1034:An element 1008:ground term 713:reduces to 609:termination 538:terminating 1819:1584882379 1676:References 1579:modulo an 1172:idempotent 978:such that 838:such that 822:is deemed 684:reduces to 441:by R10(r) 32:confluence 23:confluence 1933:MathWorld 1295:↓ 1263:∗ 1258:↔ 1006:if every 926:↓ 914:(denoted 824:confluent 695:expansion 461:Proof of 403:Proof of 379:by R4(r) 317:Proof of 297:by A2(r) 250:Proof of 155:Proof of 36:rewriting 20:The name 1946:Category 1886:(1998). 1605:See also 1282:implies 752:→ ... → 520:"1" to " 258:) ⋅ 1 = 796:is the 567:a term 67:inverse 1896:  1868:  1816:  1757:  1729:  811:20×6. 693:is an 673:reduct 513:by R6 454:by R6 411:⋅ 1 = 396:by R4 310:by R4 243:by A1 230:by A2 1694:(PDF) 1627:Notes 1581:ideal 1522:with 1498:with 1421:with 1388:with 1086:with 1062:with 880:with 689:, or 671:is a 544:terms 531:If a 497:) ⋅ 1 438:) ⋅ 1 364:) ⋅ ( 286:) ⋅ ( 272:) ⋅ 1 63:group 1894:ISBN 1866:ISBN 1814:ISBN 1755:ISBN 1727:ISBN 1658:here 1652:The 1506:and 1438:and 1396:and 1324:and 1136:and 1103:and 1070:and 1046:(or 986:and 966:and 897:and 855:and 732:and 621:term 599:and 591:and 583:and 575:and 551:and 469:) = 347:) ⋅ 325:) ⋅ 224:1 ⋅ 210:) ⋅ 171:) = 130:) ⋅ 111:= 1 83:1 ⋅ 1547:or 1227:or 1174:), 1166:of 1148:. 781:to 750:c′′ 721:to 697:of 675:of 643:or 465:: ( 463:R12 424:⋅ 1 405:R11 368:⋅ ( 321:: ( 319:R10 254:: ( 184:⋅ ( 140:⋅ ( 1948:: 1930:. 1882:; 1741:^ 1559:∈ 1551:= 1543:→ 1518:∈ 1510:→ 1502:→ 1494:∈ 1490:, 1478:∈ 1459:∈ 1417:∈ 1392:→ 1384:∈ 1380:, 1368:∈ 1320:. 1316:, 1194:= 1124:∈ 1082:∈ 1074:→ 1066:→ 1058:∈ 1054:, 1038:∈ 990:→ 982:→ 970:→ 962:→ 946:∈ 876:∈ 834:∈ 830:, 818:∈ 756:→ 754:d′ 748:→ 746:c′ 744:→ 725:. 705:→ 577:t′ 573:s′ 569:t′ 561:s′ 547:) 407:: 390:⋅ 376:)) 372:⋅ 333:⋅ 329:= 290:⋅ 252:R6 206:⋅ 188:⋅ 163:⋅( 159:: 157:R4 148:) 144:⋅ 136:= 126:⋅ 117:A3 105:⋅ 98:A2 89:= 79:A1 42:. 1936:. 1902:. 1874:. 1822:. 1763:. 1735:. 1666:a 1662:a 1600:. 1587:. 1561:S 1557:a 1553:d 1549:c 1545:d 1541:c 1537:d 1532:→ 1529:∗ 1524:b 1520:S 1516:d 1512:c 1508:a 1504:b 1500:a 1496:S 1492:c 1488:b 1480:S 1476:a 1461:S 1457:a 1453:d 1448:→ 1445:∗ 1440:c 1436:d 1431:→ 1428:∗ 1423:b 1419:S 1415:d 1411:c 1406:→ 1403:∗ 1398:a 1394:b 1390:a 1386:S 1382:c 1378:b 1370:S 1366:a 1318:y 1314:x 1300:y 1290:x 1270:y 1251:x 1212:→ 1209:∗ 1201:→ 1198:∗ 1187:→ 1184:∗ 1178:∗ 1168:→ 1158:→ 1155:∗ 1142:a 1138:c 1134:b 1126:S 1122:a 1118:d 1113:→ 1110:∗ 1105:c 1101:d 1096:→ 1093:∗ 1088:b 1084:S 1080:d 1076:c 1072:a 1068:b 1064:a 1060:S 1056:c 1052:b 1040:S 1036:a 992:d 988:c 984:d 980:b 976:d 972:c 968:a 964:b 960:a 948:S 944:a 930:c 922:b 912:d 907:→ 904:∗ 899:c 895:d 890:→ 887:∗ 882:b 878:S 874:d 870:c 865:→ 862:∗ 857:a 853:b 848:→ 845:∗ 840:a 836:S 832:c 828:b 820:S 816:a 807:→ 804:∗ 792:→ 789:∗ 783:d 779:c 775:d 770:→ 767:∗ 762:c 758:d 742:c 734:d 730:c 723:b 719:a 715:b 711:a 707:b 703:a 699:b 691:a 687:b 681:a 677:a 669:b 665:b 661:a 651:. 649:d 645:c 641:b 637:a 601:t 597:s 593:t 589:s 585:t 581:s 565:t 557:s 553:t 549:s 522:a 509:a 505:= 495:a 493:( 490:= 483:) 481:a 479:( 471:a 467:a 450:a 446:= 436:a 434:( 431:= 422:a 413:a 409:a 392:b 388:a 384:= 374:b 370:a 366:a 362:a 360:( 357:= 349:b 345:a 343:( 335:b 331:a 327:b 323:a 306:a 302:= 294:) 292:a 288:a 284:a 282:( 279:= 270:a 268:( 260:a 256:a 239:b 235:= 226:b 221:= 212:b 208:a 204:a 202:( 199:= 192:) 190:b 186:a 182:a 173:b 169:b 167:⋅ 165:a 161:a 146:c 142:b 138:a 132:c 128:b 124:a 122:( 107:a 103:a 91:a 85:a

Index


confluence
rewriting
abstract rewriting system

group
inverse
term rewriting system
terminating
terms
equational theory

directed graph
reflexive-transitive closure
ground term


reflexive-transitive closure
idempotent
Newman's lemma
Alonzo Church
J. Barkley Rosser
lambda calculus
Church–Rosser theorem
normal form
β-reductions
if and only if
polynomials
ideal
Gröbner basis

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.