Knowledge

Riemann surface

Source 📝

931: 953: 49: 865: 909: 887: 4390: 385: 2935:. This class of hyperbolic surfaces is further subdivided into subclasses according to whether function spaces other than the negative subharmonic functions are degenerate, e.g. Riemann surfaces on which all bounded holomorphic functions are constant, or on which all bounded harmonic functions are constant, or on which all positive harmonic functions are constant, etc. 631: 2926:
The classification scheme above is typically used by geometers. There is a different classification for Riemann surfaces which is typically used by complex analysts. It employs a different definition for "parabolic" and "hyperbolic". In this alternative classification scheme, a Riemann surface is
2721:
with a number of punctures. With no punctures, it is the Riemann sphere, which is elliptic. With one puncture, which can be placed at infinity, it is the complex plane, which is parabolic. With two punctures, it is the punctured plane or alternatively annulus or cylinder, which is parabolic. With
2617:-dimensional. A similar classification of Riemann surfaces of finite type (that is homeomorphic to a closed surface minus a finite number of points) can be given. However in general the moduli space of Riemann surfaces of infinite topological type is too large to admit such a description. 2681:
but any holomorphic map from the sphere to the plane is constant, any holomorphic map from the plane into the unit disk is constant (Liouville's theorem), and in fact any holomorphic map from the plane into the plane minus two points is constant (Little Picard theorem)!
1311:. This is a surprising theorem: Riemann surfaces are given by locally patching charts. If one global condition, namely compactness, is added, the surface is necessarily algebraic. This feature of Riemann surfaces allows one to study them with either the means of 488: 591: 2633:: maps from hyperbolic to parabolic to elliptic are easy, but maps from elliptic to parabolic or parabolic to hyperbolic are very constrained (indeed, generally constant!). There are inclusions of the disc in the plane in the sphere: 1319:. The corresponding statement for higher-dimensional objects is false, i.e. there are compact complex 2-manifolds which are not algebraic. On the other hand, every projective complex manifold is necessarily algebraic, see 2679: 1980: 1772: 1618:
The set of all Riemann surfaces can be divided into three subsets: hyperbolic, parabolic and elliptic Riemann surfaces. Geometrically, these correspond to surfaces with negative, vanishing or positive constant
2337: 1077:
whose inverse is also holomorphic (it turns out that the latter condition is automatic and can therefore be omitted). Two conformally equivalent Riemann surfaces are for all practical purposes identical.
1909: 2459:
of "marked" Riemann surfaces (in addition to the Riemann surface structure one adds the topological data of a "marking", which can be seen as a fixed homeomorphism to the torus). To obtain the analytic
2946:. For example, the Riemann surface consisting of "all complex numbers but 0 and 1" is parabolic in the function-theoretic classification but it is hyperbolic in the geometric classification. 2175: 2120: 2028: 1813: 1569: 415: 2719: 2405: 2285: 2365: 1440: 2836:
fixing infinity, and of the punctured plane is the subgroup leaving invariant the set containing only infinity and zero: either fixing them both, or interchanging them (1/
2730:
at infinity, so not defined at infinity, and misses zero and infinity), but all maps from zero punctures to one or more, or one or two punctures to three or more are constant.
1277: 2780: 1382: 499: 2250: 2225: 2072: 2050: 1839: 3541: 2586: 2453: 2433: 2615: 1700:
which belongs to the conformal class of Riemannian metrics determined by its structure as a Riemann surface. This can be seen as a consequence of the existence of
1678: 4350: 2557: 2526: 2498: 2203: 1698: 1641: 2805:
of the sphere (they have non-constant meromorphic functions), but the sphere does not cover or otherwise map to higher genus surfaces, except as a constant.
1223:), the function field in one variable, i.e. any two meromorphic functions are algebraically dependent. This statement generalizes to higher dimensions, see 4205: 4170: 2915:, with order 504; this is the second Hurwitz surface, and its automorphism group is isomorphic to PSL(2,8), the fourth-smallest non-abelian simple group. 3964: 2626: 4210: 1320: 195: 2636: 3693: 170:). Conversely, a two-dimensional real manifold can be turned into a Riemann surface (usually in several inequivalent ways) if and only if it is 1917: 1204: 4056: 3653: 3534: 3461: 3385: 3343: 3291: 3251: 3212: 3176: 2997: 1726: 4325: 4315: 4300: 4220: 4133: 3744: 3643: 2992: 2866: 4360: 4123: 3139: 4375: 3505: 2293: 1850: 3822: 3527: 2465: 1127: 4370: 4365: 4340: 4195: 4163: 3969: 3880: 3086: 809: 3890: 3817: 3567: 3496: 1346: 794: 4190: 3787: 4305: 3683: 2844: 4330: 4046: 4010: 3007: 2787: 3709: 3622: 3491: 2723: 4355: 4335: 483:{\displaystyle \mathbf {C} \ {\stackrel {}{\hookrightarrow }}\ S^{2}\ {\stackrel {}{\hookleftarrow }}\ \mathbf {C} .} 2140: 2085: 1993: 1778: 1455: 4020: 3658: 3372:, IRMA Lectures in Mathematics and Theoretical Physics, vol. 19, European Mathematical Society (EMS), ZĂŒrich, 3320:, IRMA Lectures in Mathematics and Theoretical Physics, vol. 13, European Mathematical Society (EMS), ZĂŒrich, 3278:, IRMA Lectures in Mathematics and Theoretical Physics, vol. 11, European Mathematical Society (EMS), ZĂŒrich, 3131: 3110: 2134: 2130: 2126: 42: 4421: 4416: 4394: 4156: 4066: 3199: 1280: 845: 4345: 3979: 3959: 3895: 3812: 3673: 3002: 199: 4235: 4200: 3714: 2693: 2370: 2258: 1308: 930: 864: 407: 272: 3678: 2415:. But while in the two former case the (parabolic) Riemann surface structure is unique, varying the parameter 1291:
The existence of non-constant meromorphic functions can be used to show that any compact Riemann surface is a
952: 3125: 2875:
It is known that every finite group can be realized as the full group of isometries of some Riemann surface.
382:
is a Riemann surface. More generally, every non-empty open subset of a Riemann surface is a Riemann surface.
350:
by means of the charts. Showing that a conformal structure determines a complex structure is more difficult.
4255: 3870: 2889:, with order 168; this is the first Hurwitz surface, and its automorphism group is isomorphic to the unique 2802: 1775: 1712: 1644: 1304: 3079:
Discontinuous Groups and Riemann Surfaces: Proceedings of the 1973 Conference at the University of Maryland
2342: 1047:) wherever it is defined. The composition of two holomorphic maps is holomorphic. The two Riemann surfaces 4270: 3663: 1708: 1701: 979: 493:
On the intersection of these two open sets, composing one embedding with the inverse of the other gives
331: 4041: 3777: 2854:), though the square lattice and hexagonal lattice have addition symmetries from rotation by 90° and 60°. 4295: 3577: 2783: 2727: 2630: 908: 886: 674: 187: 3739: 3688: 1250: 2893:
of order 168, which is the second-smallest non-abelian simple group. This group is isomorphic to both
1406: 586:{\displaystyle \mathbf {C} ^{\times }\ \to \ \mathbf {C} ^{\times }\ \ \ \,\ \ \ z\ \mapsto \ z^{-1}.} 4128: 3989: 3900: 3648: 3486: 2795: 2749: 2746:
genus, except as constant maps. This is because holomorphic and meromorphic maps behave locally like
2456: 1396: 1351: 1193: 1003: 288: 132: 3954: 1232: 4320: 4230: 4215: 3832: 3797: 3754: 3734: 2970: 2931:
if there are no non-constant negative subharmonic functions on the surface and is otherwise called
2560: 2123: 1648: 1620: 813: 314:, the space is homeomorphic to a subset of the real plane. The supplement "Riemann" signifies that 303: 128: 35: 3270: 2233: 2208: 2055: 2033: 1822: 4240: 4095: 3668: 3453: 3412: 3357: 3321: 3305: 2791: 1316: 1292: 299: 215: 159: 31: 3875: 3855: 3827: 2960: 2955: 3417:
Nachrichten der Akademie der Wissenschaften in Göttingen. II. Mathematisch-Physikalische Klasse
2500:
is a hyperbolic Riemann surface, that is isomorphic to a quotient of the upper half-plane by a
4310: 4250: 3984: 3931: 3802: 3617: 3612: 3457: 3424: 3381: 3339: 3287: 3247: 3226: 3208: 3172: 3135: 3082: 3074: 2987: 1312: 1189: 327: 323: 295: 236: 3186: 2565: 4245: 4225: 4179: 3974: 3860: 3837: 3400: 3373: 3331: 3279: 3194: 2912: 2905: 2726:. One can map from one puncture to two, via the exponential map (which is entire and has an 1912: 1716: 1300: 1244: 1169:
Every non-compact Riemann surface admits non-constant holomorphic functions (with values in
1012: 343: 252: 248: 232: 211: 175: 167: 105: 101: 93: 3471: 3436: 3353: 3301: 3222: 3056: 2625:
The geometric classification is reflected in maps between Riemann surfaces, as detailed in
2438: 2418: 4265: 4100: 3905: 3749: 3572: 3551: 3467: 3432: 3404: 3349: 3297: 3243: 3218: 3204: 3168: 2965: 2851: 2591: 2435:
in the third case gives non-isomorphic Riemann surfaces. The description by the parameter
1987: 1654: 1212: 801: 723: 613: 244: 229: 191: 3447: 2826: 729:
Every elliptic curve is an algebraic curve, given by (the compactification of) the locus
179: 3772: 4280: 4275: 4074: 3597: 3582: 3559: 2938:
To avoid confusion, call the classification based on metrics of constant curvature the
2814: 2542: 2511: 2505: 2501: 2483: 2188: 1683: 1626: 1442: 1228: 1197: 1174: 1135: 1057: 722:(or we restrict to an open subset containing no such points). This is an example of an 402: 284: 256: 112:: locally near every point they look like patches of the complex plane, but the global 48: 4410: 4115: 3885: 3865: 3792: 3587: 3309: 2975: 2886: 2879: 2469: 361: 334:
if the angles they measure are the same. Choosing an equivalence class of metrics on
260: 109: 17: 3361: 4260: 4051: 4025: 4015: 4005: 3807: 3627: 3443: 3102: 2890: 2818: 2461: 280: 183: 2847:
is the real Möbius group; this is conjugate to the automorphism group of the disk.
342:
A complex structure gives rise to a conformal structure by choosing the standard
4285: 3926: 3764: 1986:
A Riemann surface is elliptic, parabolic or hyperbolic according to whether its
1596: 1161:
has positive determinant. Consequently, the complex atlas is an oriented atlas.
1146: 371: 89: 3415:(1955), "Meromorphe Funktionen auf kompakten analytischen Mannigfaltigkeiten", 76:
in the complex plane; the vertical coordinate represents the imaginary part of
3921: 2205:
is a Riemann surface whose universal cover is isomorphic to the complex plane
1296: 1087: 837: 600:
is holomorphic, so these two embeddings define a Riemann surface structure on
384: 171: 3519: 3428: 2674:{\displaystyle \Delta \subset \mathbf {C} \subset {\widehat {\mathbf {C} }},} 3782: 3230: 3160: 3045:, Ch. 3.11) for the construction of a corresponding complex structure. 2464:(forgetting the marking) one takes the quotient of TeichmĂŒller space by the 1845: 1227:. Meromorphic functions can be given fairly explicitly, in terms of Riemann 1066: 2690:
These statements are clarified by considering the type of a Riemann sphere
3264:, Graduate Studies in Mathematics, vol. 5, American Mathematical Soc. 2850:
genus 1 – the isometry group of a torus is in general translations (as an
2411:
Topologically there are only three types: the plane, the cylinder and the
1595:
in the sense of algebraic geometry. Reversing this is accomplished by the
718:
defines a Riemann surface provided there are no points on this locus with
2898: 2894: 2833: 2738:
Continuing in this vein, compact Riemann surfaces can map to surfaces of
1975:{\displaystyle \mathbf {H} :=\{z\in \mathbf {C} :\mathrm {Im} (z)>0\}} 597: 163: 113: 4105: 4090: 2861: â‰„ 2, the isometry group is finite, and has order at most 84( 1767:{\displaystyle {\widehat {\mathbf {C} }}:=\mathbf {C} \cup \{\infty \}} 1283:
and the fact there exists a positive line bundle on any complex curve.
1303:. Actually, it can be shown that every compact Riemann surface can be 406:. It has two open subsets which we identify with the complex plane by 4085: 3395:
Remmert, Reinhold (1998). "From Riemann Surfaces to Complex Spaces".
3326: 3316:
Lawton, Sean; Peterson, Elisha (2009), Papadopoulos, Athanase (ed.),
3057:"KODAIRA'S THEOREM AND COMPACTIFICATION OF MUMFORD'S MODULI SPACE Mg" 2533: 394: 117: 178:. Given this, the sphere and torus admit complex structures but the 4148: 1719:
Riemann surface is conformally equivalent to one of the following:
697:) is any complex polynomial in two variables, its vanishing locus 673:
Important examples of non-compact Riemann surfaces are provided by
2529: 2412: 2137:
and so any Riemann surface whose universal cover is isomorphic to
640: 629: 383: 319: 121: 47: 108:. Riemann surfaces can be thought of as deformed versions of the 3377: 3335: 3283: 2786:, and for compact Riemann surfaces these are constrained by the 2074:. The elements in each class admit a more precise description. 630: 4152: 3523: 646:
has many different Riemann surface structures, all of the form
220:
There are several equivalent definitions of a Riemann surface.
2817:
of a uniformized Riemann surface (equivalently, the conformal
2332:{\displaystyle \mathbf {C} /(\mathbf {Z} +\mathbf {Z} \tau )} 1904:{\displaystyle \mathbf {D} :=\{z\in \mathbf {C} :|z|<1\}} 1065:
to emphasize the conformal point of view) if there exists a
852:> 1, there are other Riemann surface structures of genus 104:. These surfaces were first studied by and are named after 1134:
is just the real linear map given by multiplication by the
2559:
is compact. Then its topological type is described by its
612:âˆȘ {∞}. The Riemann sphere has another description, as the 116:
can be quite different. For example, they can look like a
2227:
then it is isomorphic to one of the following surfaces:
52:
The Riemann surface for the multivalued complex function
3081:. Ann. Math. Studies. Vol. 79. pp. 207–226. 2942:, and the one based on degeneracy of function spaces 2752: 2696: 2639: 2594: 2568: 2545: 2514: 2486: 2441: 2421: 2373: 2345: 2296: 2261: 2236: 2211: 2191: 2143: 2088: 2058: 2036: 1996: 1920: 1853: 1825: 1781: 1729: 1686: 1657: 1629: 1458: 1409: 1354: 1253: 502: 418: 318:
is endowed with an additional structure which allows
41:
For the Riemann surface of a subring of a field, see
2722:
three or more punctures, it is hyperbolic – compare
1707:
In complex analytic terms, the PoincarĂ©–Koebe
283:
to the open unit disk of the complex plane, and the
4114: 4065: 4034: 3998: 3947: 3940: 3914: 3846: 3763: 3727: 3702: 3636: 3605: 3596: 3558: 1173:). In fact, every non-compact Riemann surface is a 1086:Each Riemann surface, being a complex manifold, is 400:has a unique Riemann surface structure, called the 338:
is the additional datum of the conformal structure.
2825:genus 0 – the isometry group of the sphere is the 2774: 2713: 2673: 2609: 2580: 2551: 2520: 2492: 2447: 2427: 2399: 2359: 2331: 2279: 2244: 2219: 2197: 2169: 2114: 2066: 2044: 2022: 1974: 1903: 1833: 1807: 1766: 1692: 1672: 1635: 1563: 1434: 1376: 1271: 585: 482: 346:given on the complex plane and transporting it to 306:. Again, manifold means that locally at any point 287:between two overlapping charts are required to be 666:is any complex non-real number. These are called 166:, but it contains more structure (specifically a 3506:"Complex Analysis on Riemann Surfaces Math 213b" 388:The Riemann sphere and stereographic projection. 1118:can be considered as a map from an open set of 2869:; surfaces that realize this bound are called 2170:{\displaystyle \mathbf {P} ^{1}(\mathbf {C} )} 2115:{\displaystyle \mathbf {P} ^{1}(\mathbf {C} )} 2023:{\displaystyle \mathbf {P} ^{1}(\mathbf {C} )} 1808:{\displaystyle \mathbf {P} ^{1}(\mathbf {C} )} 1564:{\displaystyle ^{2}=4^{3}-g_{2}\wp (z)-g_{3},} 4164: 3535: 2829:of projective transforms of the complex line, 2801:For example, hyperbolic Riemann surfaces are 2588:. Its TeichmĂŒller space and moduli space are 978:As with any map between complex manifolds, a 8: 4206:Grothendieck–Hirzebruch–Riemann–Roch theorem 1969: 1929: 1898: 1862: 1761: 1755: 190:do not. Every compact Riemann surface is a 1623:. That is, every connected Riemann surface 1588:depend on τ, thus giving an elliptic curve 1192:. However, there always exist non-constant 4171: 4157: 4149: 3944: 3602: 3542: 3528: 3520: 2911:For genus 7 the order is maximized by the 2885:For genus 3 the order is maximized by the 2878:For genus 2 the order is maximized by the 2508:for the surface). The topological type of 1196:(holomorphic functions with values in the 1184:every holomorphic function with values in 1180:In contrast, on a compact Riemann surface 844: + 1 such that the above has no 4351:Riemann–Roch theorem for smooth manifolds 3325: 3026: 2763: 2751: 2714:{\displaystyle {\widehat {\mathbf {C} }}} 2700: 2698: 2697: 2695: 2657: 2655: 2654: 2646: 2638: 2593: 2567: 2544: 2513: 2485: 2440: 2420: 2400:{\displaystyle \mathrm {Im} (\tau )>0} 2374: 2372: 2352: 2344: 2318: 2310: 2302: 2297: 2295: 2280:{\displaystyle \mathbf {C} /\mathbf {Z} } 2272: 2267: 2262: 2260: 2237: 2235: 2212: 2210: 2190: 2159: 2150: 2145: 2142: 2104: 2095: 2090: 2087: 2059: 2057: 2037: 2035: 2012: 2003: 1998: 1995: 1946: 1938: 1921: 1919: 1887: 1879: 1871: 1854: 1852: 1826: 1824: 1797: 1788: 1783: 1780: 1747: 1733: 1731: 1730: 1728: 1685: 1656: 1628: 1552: 1527: 1514: 1483: 1457: 1414: 1408: 1359: 1353: 1263: 1259: 1256: 1255: 1252: 571: 545: 530: 525: 509: 504: 501: 472: 464: 459: 457: 456: 447: 435: 430: 428: 427: 419: 417: 84:), whose real part is represented by hue. 3370:Handbook of TeichmĂŒller theory. Vol. III 64:) in a neighborhood of the origin. The ( 3318:Handbook of TeichmĂŒller theory. Vol. II 3130:(1st ed.), Princeton, New Jersey: 3109:(1st ed.), Princeton, New Jersey: 3030: 3019: 2832:the isometry group of the plane is the 2528:can be any orientable surface save the 2129:on it by biholomorphic transformations 1090:as a real manifold. For complex charts 860: 322:measurement on the manifold, namely an 3965:Clifford's theorem on special divisors 3272:Handbook of TeichmĂŒller theory. Vol. I 2539:A case of particular interest is when 1224: 1149:of multiplication by a complex number 298:of (real) dimension two – a two-sided 3262:Algebraic curves and Riemann surfaces 2998:Identity theorem for Riemann surfaces 2944:the function-theoretic classification 2360:{\displaystyle \tau \in \mathbf {C} } 1247:since they can be embedded into some 808:have Riemann surface structures, as ( 127:Examples of Riemann surfaces include 72:) coordinates are the coordinates of 7: 3368:Papadopoulos, Athanase, ed. (2012), 3269:Papadopoulos, Athanase, ed. (2007), 3042: 2122:is the only example, as there is no 2982:Theorems regarding Riemann surfaces 1403:. This function and its derivative 1039:is holomorphic (as a function from 4316:Riemannian connection on a surface 4221:Measurable Riemann mapping theorem 4134:Vector bundles on algebraic curves 4057:Weber's theorem (Algebraic curves) 3654:Hasse's theorem on elliptic curves 3644:Counting points on elliptic curves 3167:(2nd ed.), Berlin, New York: 3124:Rodin, Burton; Sario, Leo (1968), 2640: 2378: 2375: 1950: 1947: 1758: 1614:Classification of Riemann surfaces 1606:), which can be used to determine 1533: 1498: 1463: 1411: 1356: 1326:As an example, consider the torus 974:Further definitions and properties 367:is the most basic Riemann surface. 330:. Two such metrics are considered 124:or several sheets glued together. 25: 2922:Function-theoretic classification 2798:of a space and a ramified cover. 2177:must itself be isomorphic to it. 1651:with constant curvature equal to 1272:{\displaystyle \mathbb {CP} ^{n}} 1243:All compact Riemann surfaces are 4389: 4388: 3449:The concept of a Riemann surface 2701: 2658: 2647: 2353: 2319: 2311: 2298: 2273: 2263: 2238: 2213: 2160: 2146: 2105: 2091: 2060: 2038: 2013: 1999: 1939: 1922: 1872: 1855: 1827: 1798: 1784: 1748: 1734: 1435:{\displaystyle \wp _{\tau }'(z)} 951: 929: 907: 885: 863: 526: 505: 473: 420: 27:One-dimensional complex manifold 4301:Riemann's differential equation 4211:Hirzebruch–Riemann–Roch theorem 3745:Hurwitz's automorphisms theorem 3075:"Maximal groups and signatures" 2993:Hurwitz's automorphisms theorem 2867:Hurwitz's automorphisms theorem 2775:{\displaystyle z\mapsto z^{n},} 1377:{\displaystyle \wp _{\tau }(z)} 100:is a connected one-dimensional 4326:Riemann–Hilbert correspondence 4196:Generalized Riemann hypothesis 3970:Gonality of an algebraic curve 3881:Differential of the first kind 2908:is a highly symmetric surface. 2809:Isometries of Riemann surfaces 2756: 2388: 2382: 2326: 2307: 2164: 2156: 2109: 2101: 2017: 2009: 1960: 1954: 1888: 1880: 1802: 1794: 1542: 1536: 1511: 1507: 1501: 1495: 1480: 1476: 1470: 1459: 1429: 1423: 1371: 1365: 561: 518: 460: 431: 410:from the North or South poles 1: 4361:Riemann–Siegel theta function 4124:Birkhoff–Grothendieck theorem 3823:Nagata's conjecture on curves 3694:Schoof–Elkies–Atkin algorithm 3568:Five points determine a conic 3132:D. Von Nostrand Company, Inc. 2621:Maps between Riemann surfaces 1774:, which is isomorphic to the 993:between two Riemann surfaces 795:Weierstrass elliptic function 4376:Riemann–von Mangoldt formula 3684:Supersingular elliptic curve 2504:(this is sometimes called a 2245:{\displaystyle \mathbf {C} } 2220:{\displaystyle \mathbf {C} } 2067:{\displaystyle \mathbf {D} } 2045:{\displaystyle \mathbf {C} } 1834:{\displaystyle \mathbf {C} } 1203:âˆȘ {∞}). More precisely, the 749:for certain complex numbers 408:stereographically projecting 143:, e.g. the subset of pairs ( 3891:Riemann's existence theorem 3818:Hilbert's sixteenth problem 3710:Elliptic curve cryptography 3623:Fundamental pair of periods 3492:Encyclopedia of Mathematics 2476:Hyperbolic Riemann surfaces 1911:which is isomorphic to the 158:Every Riemann surface is a 4438: 4371:Riemann–Stieltjes integral 4366:Riemann–Silberstein vector 4341:Riemann–Liouville integral 4021:Moduli of algebraic curves 3452:(3rd ed.), New York: 3111:Princeton University Press 2843:the isometry group of the 2181:Parabolic Riemann surfaces 1309:complex projective 3-space 1069:holomorphic function from 209: 40: 29: 4384: 4306:Riemann's minimal surface 4186: 2821:) reflects its geometry: 2782:so non-constant maps are 2468:. In this case it is the 2078:Elliptic Riemann surfaces 1711:(a generalization of the 1384:belonging to the lattice 1281:Kodaira embedding theorem 1098:with transition function 162:: a two-dimensional real 4331:Riemann–Hilbert problems 4236:Riemann curvature tensor 4201:Grand Riemann hypothesis 4191:Cauchy–Riemann equations 3788:Cayley–Bacharach theorem 3715:Elliptic curve primality 3240:Compact Riemann Surfaces 2940:geometric classification 2803:ramified covering spaces 2734:Ramified covering spaces 2135:properly discontinuously 1279:. This follows from the 294:A Riemann surface is an 247:that is endowed with an 30:Not to be confused with 4256:Riemann mapping theorem 4047:Riemann–Hurwitz formula 4011:Gromov–Witten invariant 3871:Compact Riemann surface 3659:Mazur's torsion theorem 3008:Riemann–Hurwitz formula 2788:Riemann–Hurwitz formula 2581:{\displaystyle g\geq 2} 2480:In the remaining cases 1713:Riemann mapping theorem 1574:where the coefficients 1449:. There is an equation 1295:, i.e. can be given by 1188:is constant due to the 192:complex algebraic curve 4356:Riemann–Siegel formula 4336:Riemann–Lebesgue lemma 4271:Riemann series theorem 3664:Modular elliptic curve 3260:Miranda, Rick (1995), 3073:Greenberg, L. (1974). 2784:ramified covering maps 2776: 2715: 2675: 2611: 2582: 2553: 2522: 2494: 2449: 2429: 2401: 2361: 2333: 2281: 2246: 2221: 2199: 2171: 2116: 2068: 2046: 2024: 1976: 1905: 1835: 1809: 1768: 1709:uniformization theorem 1702:isothermal coordinates 1694: 1674: 1637: 1565: 1445:the function field of 1436: 1378: 1287:Analytic vs. algebraic 1273: 1157:|, so the Jacobian of 1063:conformally equivalent 814:hyperelliptic surfaces 635: 587: 484: 389: 85: 4296:Riemann zeta function 3578:Rational normal curve 3515:. Harvard University. 3397:SĂ©minaires et CongrĂšs 3238:Jost, JĂŒrgen (2006), 3187:Riemann Surfaces Book 3105:; Sario, Leo (1960), 3027:Farkas & Kra 1980 2777: 2728:essential singularity 2716: 2676: 2631:Little Picard theorem 2612: 2583: 2554: 2523: 2495: 2450: 2448:{\displaystyle \tau } 2430: 2428:{\displaystyle \tau } 2402: 2362: 2334: 2282: 2247: 2222: 2200: 2172: 2117: 2069: 2047: 2025: 1977: 1906: 1836: 1810: 1769: 1695: 1675: 1638: 1566: 1437: 1379: 1274: 1194:meromorphic functions 1145:). However, the real 675:analytic continuation 633: 588: 485: 387: 374:of the complex plane 239:one. This means that 210:Further information: 188:real projective plane 133:multivalued functions 51: 43:Zariski–Riemann space 18:Conformally invariant 4346:Riemann–Roch theorem 4129:Stable vector bundle 3990:Weil reciprocity law 3980:Riemann–Roch theorem 3960:Brill–Noether theory 3896:Riemann–Roch theorem 3813:Genus–degree formula 3674:Mordell–Weil theorem 3649:Division polynomials 3246:, pp. 208–219, 3242:, Berlin, New York: 3203:, Berlin, New York: 3184:Pablo ArĂ©s Gastesi, 3159:Farkas, Hershel M.; 3003:Riemann–Roch theorem 2865: âˆ’ 1), by 2796:Euler characteristic 2794:, which relates the 2750: 2694: 2637: 2610:{\displaystyle 6g-6} 2592: 2566: 2543: 2512: 2484: 2439: 2419: 2371: 2343: 2294: 2259: 2234: 2209: 2189: 2141: 2086: 2056: 2034: 1994: 1918: 1851: 1823: 1779: 1727: 1715:) states that every 1684: 1673:{\displaystyle -1,0} 1655: 1627: 1456: 1407: 1397:meromorphic function 1352: 1347:Weierstrass function 1251: 500: 416: 200:Riemann–Roch theorem 4321:Riemannian geometry 4231:Riemann Xi function 4216:Local zeta function 3941:Structure of curves 3833:Quartic plane curve 3755:Hyperelliptic curve 3735:De Franchis theorem 3679:Nagell–Lutz theorem 3413:Siegel, Carl Ludwig 3127:Principal Functions 2971:Mapping class group 2627:Liouville's theorem 2466:mapping class group 2082:The Riemann sphere 1723:The Riemann sphere 1647:2-dimensional real 1621:sectional curvature 1610:and hence a torus. 1422: 1299:equations inside a 1007:if for every chart 304:conformal structure 36:Riemannian manifold 4241:Riemann hypothesis 3948:Divisors on curves 3740:Faltings's theorem 3689:Schoof's algorithm 3669:Modularity theorem 3454:Dover Publications 3234:, esp. chapter IV. 3200:Algebraic Geometry 2819:automorphism group 2792:algebraic topology 2772: 2742:genus, but not to 2711: 2671: 2607: 2578: 2549: 2518: 2490: 2445: 2425: 2397: 2357: 2329: 2277: 2242: 2217: 2195: 2167: 2112: 2064: 2042: 2020: 1972: 1901: 1831: 1819:The complex plane 1805: 1764: 1690: 1670: 1633: 1561: 1432: 1410: 1374: 1317:algebraic geometry 1293:projective variety 1269: 793:)) where ℘ is the 636: 583: 480: 390: 328:Riemannian metrics 302:– together with a 263:: for every point 224:A Riemann surface 216:Conformal geometry 92:, particularly in 86: 32:Riemannian surface 4404: 4403: 4311:Riemannian circle 4251:Riemann invariant 4146: 4145: 4142: 4141: 4042:Hasse–Witt matrix 3985:Weierstrass point 3932:Smooth completion 3901:TeichmĂŒller space 3803:Cubic plane curve 3723: 3722: 3637:Arithmetic theory 3618:Elliptic integral 3613:Elliptic function 3487:"Riemann surface" 3463:978-0-486-47004-7 3387:978-3-03719-103-3 3345:978-3-03719-055-5 3293:978-3-03719-029-6 3253:978-3-540-33065-3 3214:978-0-387-90244-9 3195:Hartshorne, Robin 3178:978-0-387-90465-8 2988:Branching theorem 2871:Hurwitz surfaces. 2708: 2686:Punctured spheres 2665: 2552:{\displaystyle X} 2521:{\displaystyle X} 2493:{\displaystyle X} 2457:TeichmĂŒller space 2198:{\displaystyle X} 1990:is isomorphic to 1741: 1693:{\displaystyle 1} 1636:{\displaystyle X} 1190:maximum principle 810:compactifications 566: 560: 554: 551: 548: 544: 541: 538: 523: 517: 471: 466: 455: 442: 437: 426: 324:equivalence class 296:oriented manifold 237:complex dimension 168:complex structure 16:(Redirected from 4429: 4422:Bernhard Riemann 4417:Riemann surfaces 4392: 4391: 4246:Riemann integral 4226:Riemann (crater) 4180:Bernhard Riemann 4173: 4166: 4159: 4150: 3975:Jacobian variety 3945: 3848:Riemann surfaces 3838:Real plane curve 3798:Cramer's paradox 3778:BĂ©zout's theorem 3603: 3552:algebraic curves 3544: 3537: 3530: 3521: 3516: 3510: 3500: 3474: 3439: 3408: 3390: 3364: 3329: 3312: 3277: 3265: 3256: 3233: 3181: 3165:Riemann Surfaces 3145: 3144: 3121: 3115: 3114: 3107:Riemann Surfaces 3099: 3093: 3092: 3070: 3064: 3063: 3061: 3052: 3046: 3039: 3033: 3024: 2913:Macbeath surface 2882:, with order 48. 2845:upper half-plane 2781: 2779: 2778: 2773: 2768: 2767: 2720: 2718: 2717: 2712: 2710: 2709: 2704: 2699: 2680: 2678: 2677: 2672: 2667: 2666: 2661: 2656: 2650: 2616: 2614: 2613: 2608: 2587: 2585: 2584: 2579: 2558: 2556: 2555: 2550: 2527: 2525: 2524: 2519: 2499: 2497: 2496: 2491: 2454: 2452: 2451: 2446: 2434: 2432: 2431: 2426: 2406: 2404: 2403: 2398: 2381: 2366: 2364: 2363: 2358: 2356: 2338: 2336: 2335: 2330: 2322: 2314: 2306: 2301: 2286: 2284: 2283: 2278: 2276: 2271: 2266: 2251: 2249: 2248: 2243: 2241: 2226: 2224: 2223: 2218: 2216: 2204: 2202: 2201: 2196: 2176: 2174: 2173: 2168: 2163: 2155: 2154: 2149: 2121: 2119: 2118: 2113: 2108: 2100: 2099: 2094: 2073: 2071: 2070: 2065: 2063: 2051: 2049: 2048: 2043: 2041: 2029: 2027: 2026: 2021: 2016: 2008: 2007: 2002: 1981: 1979: 1978: 1973: 1953: 1942: 1925: 1913:upper half-plane 1910: 1908: 1907: 1902: 1891: 1883: 1875: 1858: 1840: 1838: 1837: 1832: 1830: 1814: 1812: 1811: 1806: 1801: 1793: 1792: 1787: 1773: 1771: 1770: 1765: 1751: 1743: 1742: 1737: 1732: 1717:simply connected 1699: 1697: 1696: 1691: 1679: 1677: 1676: 1671: 1643:admits a unique 1642: 1640: 1639: 1634: 1570: 1568: 1567: 1562: 1557: 1556: 1532: 1531: 1519: 1518: 1488: 1487: 1469: 1441: 1439: 1438: 1433: 1418: 1383: 1381: 1380: 1375: 1364: 1363: 1301:projective space 1278: 1276: 1275: 1270: 1268: 1267: 1262: 1245:algebraic curves 1235:of the surface. 1023:in the atlas of 1019:and every chart 955: 933: 911: 889: 867: 720:∂P/∂x, ∂P/∂y = 0 683:Algebraic curves 592: 590: 589: 584: 579: 578: 564: 558: 552: 549: 546: 542: 539: 536: 535: 534: 529: 521: 515: 514: 513: 508: 489: 487: 486: 481: 476: 469: 468: 467: 465: 463: 458: 453: 452: 451: 440: 439: 438: 436: 434: 429: 424: 423: 344:Euclidean metric 233:complex manifold 212:Complex manifold 106:Bernhard Riemann 102:complex manifold 94:complex analysis 21: 4437: 4436: 4432: 4431: 4430: 4428: 4427: 4426: 4407: 4406: 4405: 4400: 4380: 4291:Riemann surface 4266:Riemann problem 4182: 4177: 4147: 4138: 4110: 4101:Delta invariant 4079: 4061: 4030: 3994: 3955:Abel–Jacobi map 3936: 3910: 3906:Torelli theorem 3876:Dessin d'enfant 3856:Belyi's theorem 3842: 3828:PlĂŒcker formula 3759: 3750:Hurwitz surface 3719: 3698: 3632: 3606:Analytic theory 3598:Elliptic curves 3592: 3573:Projective line 3560:Rational curves 3554: 3548: 3508: 3503: 3485: 3482: 3477: 3464: 3442: 3411: 3394: 3388: 3367: 3346: 3315: 3294: 3275: 3268: 3259: 3254: 3244:Springer-Verlag 3237: 3215: 3205:Springer-Verlag 3193: 3179: 3169:Springer-Verlag 3158: 3154: 3149: 3148: 3142: 3134:, p. 199, 3123: 3122: 3118: 3101: 3100: 3096: 3089: 3072: 3071: 3067: 3059: 3055:Nollet, Scott. 3054: 3053: 3049: 3041:See (Jost  3040: 3036: 3025: 3021: 3016: 2984: 2966:Lorentz surface 2961:KĂ€hler manifold 2956:Dessin d'enfant 2952: 2924: 2906:Bring's surface 2852:Abelian variety 2811: 2759: 2748: 2747: 2736: 2692: 2691: 2688: 2635: 2634: 2623: 2590: 2589: 2564: 2563: 2541: 2540: 2510: 2509: 2482: 2481: 2478: 2437: 2436: 2417: 2416: 2369: 2368: 2341: 2340: 2292: 2291: 2257: 2256: 2232: 2231: 2207: 2206: 2187: 2186: 2183: 2144: 2139: 2138: 2089: 2084: 2083: 2080: 2054: 2053: 2032: 2031: 1997: 1992: 1991: 1988:universal cover 1916: 1915: 1849: 1848: 1821: 1820: 1782: 1777: 1776: 1725: 1724: 1682: 1681: 1653: 1652: 1625: 1624: 1616: 1594: 1587: 1580: 1548: 1523: 1510: 1479: 1462: 1454: 1453: 1405: 1404: 1355: 1350: 1349: 1289: 1254: 1249: 1248: 1241: 1233:Abel–Jacobi map 1229:theta functions 1167: 1084: 976: 969: 956: 947: 934: 925: 912: 903: 890: 881: 868: 859: 846:singular points 724:algebraic curve 685: 680: 668:elliptic curves 614:projective line 567: 524: 503: 498: 497: 443: 414: 413: 370:Every nonempty 356: 285:transition maps 245:Hausdorff space 243:is a connected 218: 208: 98:Riemann surface 46: 39: 28: 23: 22: 15: 12: 11: 5: 4435: 4433: 4425: 4424: 4419: 4409: 4408: 4402: 4401: 4399: 4398: 4385: 4382: 4381: 4379: 4378: 4373: 4368: 4363: 4358: 4353: 4348: 4343: 4338: 4333: 4328: 4323: 4318: 4313: 4308: 4303: 4298: 4293: 4288: 4283: 4281:Riemann sphere 4278: 4276:Riemann solver 4273: 4268: 4263: 4258: 4253: 4248: 4243: 4238: 4233: 4228: 4223: 4218: 4213: 4208: 4203: 4198: 4193: 4187: 4184: 4183: 4178: 4176: 4175: 4168: 4161: 4153: 4144: 4143: 4140: 4139: 4137: 4136: 4131: 4126: 4120: 4118: 4116:Vector bundles 4112: 4111: 4109: 4108: 4103: 4098: 4093: 4088: 4083: 4077: 4071: 4069: 4063: 4062: 4060: 4059: 4054: 4049: 4044: 4038: 4036: 4032: 4031: 4029: 4028: 4023: 4018: 4013: 4008: 4002: 4000: 3996: 3995: 3993: 3992: 3987: 3982: 3977: 3972: 3967: 3962: 3957: 3951: 3949: 3942: 3938: 3937: 3935: 3934: 3929: 3924: 3918: 3916: 3912: 3911: 3909: 3908: 3903: 3898: 3893: 3888: 3883: 3878: 3873: 3868: 3863: 3858: 3852: 3850: 3844: 3843: 3841: 3840: 3835: 3830: 3825: 3820: 3815: 3810: 3805: 3800: 3795: 3790: 3785: 3780: 3775: 3769: 3767: 3761: 3760: 3758: 3757: 3752: 3747: 3742: 3737: 3731: 3729: 3725: 3724: 3721: 3720: 3718: 3717: 3712: 3706: 3704: 3700: 3699: 3697: 3696: 3691: 3686: 3681: 3676: 3671: 3666: 3661: 3656: 3651: 3646: 3640: 3638: 3634: 3633: 3631: 3630: 3625: 3620: 3615: 3609: 3607: 3600: 3594: 3593: 3591: 3590: 3585: 3583:Riemann sphere 3580: 3575: 3570: 3564: 3562: 3556: 3555: 3549: 3547: 3546: 3539: 3532: 3524: 3518: 3517: 3501: 3481: 3480:External links 3478: 3476: 3475: 3462: 3440: 3409: 3391: 3386: 3365: 3344: 3313: 3292: 3266: 3257: 3252: 3235: 3213: 3191: 3182: 3177: 3155: 3153: 3150: 3147: 3146: 3140: 3116: 3094: 3087: 3065: 3047: 3034: 3018: 3017: 3015: 3012: 3011: 3010: 3005: 3000: 2995: 2990: 2983: 2980: 2979: 2978: 2973: 2968: 2963: 2958: 2951: 2948: 2923: 2920: 2919: 2918: 2917: 2916: 2909: 2902: 2883: 2873: 2855: 2848: 2841: 2830: 2815:isometry group 2810: 2807: 2771: 2766: 2762: 2758: 2755: 2735: 2732: 2707: 2703: 2687: 2684: 2670: 2664: 2660: 2653: 2649: 2645: 2642: 2622: 2619: 2606: 2603: 2600: 2597: 2577: 2574: 2571: 2548: 2517: 2506:Fuchsian model 2502:Fuchsian group 2489: 2477: 2474: 2444: 2424: 2409: 2408: 2396: 2393: 2390: 2387: 2384: 2380: 2377: 2355: 2351: 2348: 2328: 2325: 2321: 2317: 2313: 2309: 2305: 2300: 2288: 2275: 2270: 2265: 2253: 2240: 2215: 2194: 2182: 2179: 2166: 2162: 2158: 2153: 2148: 2111: 2107: 2103: 2098: 2093: 2079: 2076: 2062: 2040: 2019: 2015: 2011: 2006: 2001: 1984: 1983: 1971: 1968: 1965: 1962: 1959: 1956: 1952: 1949: 1945: 1941: 1937: 1934: 1931: 1928: 1924: 1900: 1897: 1894: 1890: 1886: 1882: 1878: 1874: 1870: 1867: 1864: 1861: 1857: 1842: 1829: 1817: 1804: 1800: 1796: 1791: 1786: 1763: 1760: 1757: 1754: 1750: 1746: 1740: 1736: 1689: 1669: 1666: 1663: 1660: 1649:Riemann metric 1632: 1615: 1612: 1592: 1585: 1578: 1572: 1571: 1560: 1555: 1551: 1547: 1544: 1541: 1538: 1535: 1530: 1526: 1522: 1517: 1513: 1509: 1506: 1503: 1500: 1497: 1494: 1491: 1486: 1482: 1478: 1475: 1472: 1468: 1465: 1461: 1431: 1428: 1425: 1421: 1417: 1413: 1373: 1370: 1367: 1362: 1358: 1330: :=  1321:Chow's theorem 1288: 1285: 1266: 1261: 1258: 1240: 1237: 1205:function field 1198:Riemann sphere 1175:Stein manifold 1166: 1163: 1136:complex number 1083: 1080: 975: 972: 971: 970: 957: 950: 948: 935: 928: 926: 913: 906: 904: 891: 884: 882: 869: 862: 858: 857: 831: 830: 798: 781:) is sent to ( 748: 747: 727: 717: 716: 686: 684: 681: 679: 678: 671: 637: 598:transition map 594: 593: 582: 577: 574: 570: 563: 557: 533: 528: 520: 512: 507: 491: 490: 479: 475: 462: 450: 446: 433: 422: 403:Riemann sphere 391: 368: 357: 355: 352: 340: 339: 292: 257:open unit disk 207: 204: 196:Chow's theorem 26: 24: 14: 13: 10: 9: 6: 4: 3: 2: 4434: 4423: 4420: 4418: 4415: 4414: 4412: 4397: 4396: 4387: 4386: 4383: 4377: 4374: 4372: 4369: 4367: 4364: 4362: 4359: 4357: 4354: 4352: 4349: 4347: 4344: 4342: 4339: 4337: 4334: 4332: 4329: 4327: 4324: 4322: 4319: 4317: 4314: 4312: 4309: 4307: 4304: 4302: 4299: 4297: 4294: 4292: 4289: 4287: 4284: 4282: 4279: 4277: 4274: 4272: 4269: 4267: 4264: 4262: 4259: 4257: 4254: 4252: 4249: 4247: 4244: 4242: 4239: 4237: 4234: 4232: 4229: 4227: 4224: 4222: 4219: 4217: 4214: 4212: 4209: 4207: 4204: 4202: 4199: 4197: 4194: 4192: 4189: 4188: 4185: 4181: 4174: 4169: 4167: 4162: 4160: 4155: 4154: 4151: 4135: 4132: 4130: 4127: 4125: 4122: 4121: 4119: 4117: 4113: 4107: 4104: 4102: 4099: 4097: 4094: 4092: 4089: 4087: 4084: 4082: 4080: 4073: 4072: 4070: 4068: 4067:Singularities 4064: 4058: 4055: 4053: 4050: 4048: 4045: 4043: 4040: 4039: 4037: 4033: 4027: 4024: 4022: 4019: 4017: 4014: 4012: 4009: 4007: 4004: 4003: 4001: 3997: 3991: 3988: 3986: 3983: 3981: 3978: 3976: 3973: 3971: 3968: 3966: 3963: 3961: 3958: 3956: 3953: 3952: 3950: 3946: 3943: 3939: 3933: 3930: 3928: 3925: 3923: 3920: 3919: 3917: 3915:Constructions 3913: 3907: 3904: 3902: 3899: 3897: 3894: 3892: 3889: 3887: 3886:Klein quartic 3884: 3882: 3879: 3877: 3874: 3872: 3869: 3867: 3866:Bolza surface 3864: 3862: 3861:Bring's curve 3859: 3857: 3854: 3853: 3851: 3849: 3845: 3839: 3836: 3834: 3831: 3829: 3826: 3824: 3821: 3819: 3816: 3814: 3811: 3809: 3806: 3804: 3801: 3799: 3796: 3794: 3793:Conic section 3791: 3789: 3786: 3784: 3781: 3779: 3776: 3774: 3773:AF+BG theorem 3771: 3770: 3768: 3766: 3762: 3756: 3753: 3751: 3748: 3746: 3743: 3741: 3738: 3736: 3733: 3732: 3730: 3726: 3716: 3713: 3711: 3708: 3707: 3705: 3701: 3695: 3692: 3690: 3687: 3685: 3682: 3680: 3677: 3675: 3672: 3670: 3667: 3665: 3662: 3660: 3657: 3655: 3652: 3650: 3647: 3645: 3642: 3641: 3639: 3635: 3629: 3626: 3624: 3621: 3619: 3616: 3614: 3611: 3610: 3608: 3604: 3601: 3599: 3595: 3589: 3588:Twisted cubic 3586: 3584: 3581: 3579: 3576: 3574: 3571: 3569: 3566: 3565: 3563: 3561: 3557: 3553: 3545: 3540: 3538: 3533: 3531: 3526: 3525: 3522: 3514: 3507: 3504:McMullen, C. 3502: 3498: 3494: 3493: 3488: 3484: 3483: 3479: 3473: 3469: 3465: 3459: 3455: 3451: 3450: 3445: 3444:Weyl, Hermann 3441: 3438: 3434: 3430: 3426: 3422: 3418: 3414: 3410: 3406: 3402: 3398: 3392: 3389: 3383: 3379: 3375: 3371: 3366: 3363: 3359: 3355: 3351: 3347: 3341: 3337: 3333: 3328: 3323: 3319: 3314: 3311: 3307: 3303: 3299: 3295: 3289: 3285: 3281: 3274: 3273: 3267: 3263: 3258: 3255: 3249: 3245: 3241: 3236: 3232: 3228: 3224: 3220: 3216: 3210: 3206: 3202: 3201: 3196: 3192: 3189: 3188: 3183: 3180: 3174: 3170: 3166: 3162: 3157: 3156: 3151: 3143: 3141:9781468480382 3137: 3133: 3129: 3128: 3120: 3117: 3113:, p. 204 3112: 3108: 3104: 3103:Ahlfors, Lars 3098: 3095: 3090: 3084: 3080: 3076: 3069: 3066: 3058: 3051: 3048: 3044: 3038: 3035: 3032: 3028: 3023: 3020: 3013: 3009: 3006: 3004: 3001: 2999: 2996: 2994: 2991: 2989: 2986: 2985: 2981: 2977: 2976:Serre duality 2974: 2972: 2969: 2967: 2964: 2962: 2959: 2957: 2954: 2953: 2949: 2947: 2945: 2941: 2936: 2934: 2930: 2921: 2914: 2910: 2907: 2904:For genus 4, 2903: 2900: 2896: 2892: 2888: 2887:Klein quartic 2884: 2881: 2880:Bolza surface 2877: 2876: 2874: 2872: 2868: 2864: 2860: 2856: 2853: 2849: 2846: 2842: 2839: 2835: 2831: 2828: 2824: 2823: 2822: 2820: 2816: 2808: 2806: 2804: 2799: 2797: 2793: 2789: 2785: 2769: 2764: 2760: 2753: 2745: 2741: 2733: 2731: 2729: 2725: 2724:pair of pants 2705: 2685: 2683: 2668: 2662: 2651: 2643: 2632: 2628: 2620: 2618: 2604: 2601: 2598: 2595: 2575: 2572: 2569: 2562: 2546: 2537: 2535: 2531: 2515: 2507: 2503: 2487: 2475: 2473: 2471: 2470:modular curve 2467: 2463: 2458: 2442: 2422: 2414: 2394: 2391: 2385: 2349: 2346: 2323: 2315: 2303: 2289: 2268: 2255:The quotient 2254: 2230: 2229: 2228: 2192: 2180: 2178: 2151: 2136: 2132: 2128: 2125: 2096: 2077: 2075: 2004: 1989: 1966: 1963: 1957: 1943: 1935: 1932: 1926: 1914: 1895: 1892: 1884: 1876: 1868: 1865: 1859: 1847: 1843: 1818: 1815: 1789: 1752: 1744: 1738: 1722: 1721: 1720: 1718: 1714: 1710: 1705: 1703: 1687: 1667: 1664: 1661: 1658: 1650: 1646: 1630: 1622: 1613: 1611: 1609: 1605: 1601: 1598: 1591: 1584: 1577: 1558: 1553: 1549: 1545: 1539: 1528: 1524: 1520: 1515: 1504: 1492: 1489: 1484: 1473: 1466: 1452: 1451: 1450: 1448: 1444: 1426: 1419: 1415: 1402: 1398: 1394: 1391: 1388: +  1387: 1368: 1360: 1348: 1344: 1341: 1338: +  1337: 1333: 1329: 1324: 1322: 1318: 1314: 1310: 1306: 1302: 1298: 1294: 1286: 1284: 1282: 1264: 1246: 1238: 1236: 1234: 1230: 1226: 1225:Siegel (1955) 1222: 1218: 1214: 1210: 1206: 1202: 1199: 1195: 1191: 1187: 1183: 1178: 1176: 1172: 1164: 1162: 1160: 1156: 1152: 1148: 1144: 1140: 1137: 1133: 1129: 1125: 1121: 1117: 1113: 1109: 1105: 1101: 1097: 1093: 1089: 1082:Orientability 1081: 1079: 1076: 1072: 1068: 1064: 1060: 1059: 1058:biholomorphic 1054: 1050: 1046: 1042: 1038: 1034: 1030: 1026: 1022: 1018: 1014: 1010: 1006: 1005: 1000: 996: 992: 988: 984: 981: 973: 968: 964: 960: 954: 949: 946: 942: 938: 932: 927: 924: 920: 916: 910: 905: 902: 898: 894: 888: 883: 880: 876: 872: 866: 861: 855: 851: 847: 843: 839: 836:is a complex 835: 828: 824: 820: 817: 816: 815: 811: 807: 805: 799: 796: 792: 788: 784: 780: 776: 773: +  772: 768: 764: 760: 757:depending on 756: 752: 746: 742: 738: 734: 731: 730: 728: 725: 721: 715: 711: 707: 703: 699: 698: 696: 692: 688: 687: 682: 676: 672: 669: 665: 661: 657: 654: +  653: 649: 645: 642: 638: 632: 628: 626: 622: 618: 615: 611: 607: 603: 599: 580: 575: 572: 568: 555: 531: 510: 496: 495: 494: 477: 448: 444: 412: 411: 409: 405: 404: 399: 396: 392: 386: 381: 377: 373: 369: 366: 363: 362:complex plane 359: 358: 353: 351: 349: 345: 337: 333: 329: 326:of so-called 325: 321: 317: 313: 309: 305: 301: 297: 293: 290: 286: 282: 278: 274: 273:neighbourhood 270: 266: 262: 261:complex plane 258: 254: 250: 246: 242: 238: 234: 231: 227: 223: 222: 221: 217: 213: 205: 203: 201: 197: 193: 189: 185: 181: 177: 173: 169: 165: 161: 156: 154: 150: 146: 142: 138: 134: 130: 125: 123: 119: 115: 111: 110:complex plane 107: 103: 99: 95: 91: 83: 79: 75: 71: 67: 63: 59: 55: 50: 44: 37: 33: 19: 4393: 4290: 4261:Riemann form 4075: 4052:Prym variety 4026:Stable curve 4016:Hodge bundle 4006:ELSV formula 3847: 3808:Fermat curve 3765:Plane curves 3728:Higher genus 3703:Applications 3628:Modular form 3513:Harvard Math 3512: 3490: 3448: 3420: 3416: 3396: 3369: 3327:math/0511271 3317: 3271: 3261: 3239: 3198: 3185: 3164: 3126: 3119: 3106: 3097: 3078: 3068: 3050: 3037: 3031:Miranda 1995 3022: 2943: 2939: 2937: 2932: 2928: 2925: 2891:simple group 2870: 2862: 2858: 2837: 2827:Möbius group 2812: 2800: 2743: 2739: 2737: 2689: 2624: 2538: 2479: 2462:moduli space 2410: 2184: 2081: 1985: 1706: 1617: 1607: 1603: 1599: 1589: 1582: 1575: 1573: 1446: 1400: 1392: 1389: 1385: 1342: 1339: 1335: 1331: 1327: 1325: 1290: 1242: 1239:Algebraicity 1220: 1216: 1211:is a finite 1208: 1200: 1185: 1181: 1179: 1170: 1168: 1158: 1154: 1150: 1142: 1138: 1131: 1123: 1119: 1115: 1111: 1107: 1103: 1099: 1095: 1091: 1085: 1074: 1070: 1062: 1056: 1052: 1048: 1044: 1040: 1036: 1032: 1028: 1024: 1020: 1016: 1008: 1002: 998: 994: 990: 986: 982: 977: 966: 962: 958: 944: 940: 936: 922: 918: 914: 900: 896: 892: 878: 874: 870: 853: 849: 841: 833: 826: 822: 818: 803: 790: 786: 782: 778: 774: 770: 766: 762: 758: 754: 750: 744: 740: 736: 732: 719: 713: 709: 705: 701: 694: 690: 667: 663: 659: 655: 651: 647: 643: 624: 620: 616: 609: 605: 601: 595: 492: 401: 397: 379: 375: 364: 347: 341: 335: 315: 311: 307: 281:homeomorphic 276: 268: 264: 240: 225: 219: 184:Klein bottle 180:Möbius strip 157: 152: 148: 144: 140: 136: 126: 97: 87: 81: 77: 73: 69: 65: 61: 57: 53: 4286:Riemann sum 4081:singularity 3927:Polar curve 3378:10.4171/103 3336:10.4171/055 3284:10.4171/029 2290:A quotient 1597:j-invariant 1147:determinant 1130:in a point 1055:are called 1004:holomorphic 877:) = arcsin 840:of degree 2 604:. As sets, 372:open subset 289:holomorphic 271:there is a 206:Definitions 90:mathematics 4411:Categories 3922:Dual curve 3550:Topics in 3405:1044.01520 3161:Kra, Irwin 3152:References 3088:0691081387 2933:hyperbolic 2857:For genus 2455:gives the 1297:polynomial 1088:orientable 1027:, the map 1001:is called 838:polynomial 800:Likewise, 761:. A point 332:equivalent 176:metrizable 172:orientable 153:w = log(z) 4035:Morphisms 3783:Bitangent 3497:EMS Press 3446:(2009) , 3429:0065-5295 3423:: 71–77, 3310:119593165 2929:parabolic 2757:↦ 2706:^ 2663:^ 2652:⊂ 2644:⊂ 2641:Δ 2602:− 2573:≥ 2443:τ 2423:τ 2386:τ 2350:∈ 2347:τ 2324:τ 1936:∈ 1869:∈ 1846:open disk 1759:∞ 1753:∪ 1739:^ 1659:− 1546:− 1534:℘ 1521:− 1499:℘ 1464:℘ 1416:τ 1412:℘ 1361:τ 1357:℘ 1213:extension 1165:Functions 1067:bijective 712:) = 0} ⊆ 704:) : 573:− 562:↦ 532:× 519:→ 511:× 461:↩ 432:↪ 230:connected 4395:Category 3362:16687772 3231:13348052 3197:(1977), 3163:(1980), 2950:See also 2899:PSL(3,2) 2895:PSL(2,7) 2834:subgroup 2629:and the 1645:complete 1467:′ 1443:generate 1420:′ 1313:analytic 1305:embedded 1231:and the 1153:equals | 1128:Jacobian 980:function 899:) = log 806:surfaces 662:) where 634:A torus. 395:2-sphere 354:Examples 279:that is 198:and the 164:manifold 114:topology 60:) = log( 4106:Tacnode 4091:Crunode 3499:, 2001 3472:0069903 3437:0074061 3354:2524085 3302:2284826 3223:0463157 2927:called 2252:itself; 1345:). The 1011:in the 848:. When 785:) = (℘( 641:2-torus 623:- {0})/ 300:surface 259:of the 255:to the 160:surface 4086:Acnode 3999:Moduli 3470:  3460:  3435:  3427:  3403:  3384:  3360:  3352:  3342:  3308:  3300:  3290:  3250:  3229:  3221:  3211:  3175:  3138:  3085:  2744:higher 2534:sphere 2339:where 2131:freely 2127:acting 1126:whose 832:where 802:genus 777:  658:  565:  559:  553:  550:  547:  543:  540:  537:  522:  516:  470:  454:  441:  425:  253:charts 141:log(z) 129:graphs 118:sphere 3509:(PDF) 3358:S2CID 3322:arXiv 3306:S2CID 3276:(PDF) 3060:(PDF) 3014:Notes 2740:lower 2561:genus 2530:torus 2413:torus 2367:with 2124:group 1395:is a 1307:into 1013:atlas 789:),℘'( 596:This 320:angle 249:atlas 228:is a 151:with 135:like 122:torus 120:or a 4096:Cusp 3458:ISBN 3425:ISSN 3421:1955 3382:ISBN 3340:ISBN 3288:ISBN 3248:ISBN 3227:OCLC 3209:ISBN 3173:ISBN 3136:ISBN 3083:ISBN 3043:2006 2897:and 2813:The 2532:and 2392:> 2133:and 1964:> 1893:< 1844:The 1581:and 1114:)), 1094:and 1061:(or 1051:and 997:and 965:) = 943:) = 921:) = 812:of) 753:and 639:The 393:The 360:The 214:and 186:and 174:and 147:) ∈ 96:, a 3401:Zbl 3374:doi 3332:doi 3280:doi 2790:in 2536:. 2185:If 2052:or 1704:. 1680:or 1399:on 1315:or 1215:of 1207:of 1122:to 1073:to 1043:to 1015:of 783:x,y 741:a x 710:x,y 702:x,y 695:x,y 689:If 619:= ( 310:of 275:of 251:of 235:of 194:by 155:. 145:z,w 139:or 131:of 88:In 34:or 4413:: 3511:. 3495:, 3489:, 3468:MR 3466:, 3456:, 3433:MR 3431:, 3419:, 3399:. 3380:, 3356:, 3350:MR 3348:, 3338:, 3330:, 3304:, 3298:MR 3296:, 3286:, 3225:, 3219:MR 3217:, 3207:, 3171:, 3077:. 3029:, 2840:). 2472:. 2030:, 1927::= 1860::= 1745::= 1334:/( 1323:. 1177:. 1141:'( 1102:= 1035:∘ 1031:∘ 989:→ 985:: 829:), 821:= 769:/( 765:∈ 743:+ 739:+ 735:= 700:{( 650:/( 627:. 617:CP 608:= 378:⊆ 267:∈ 202:. 182:, 137:√z 68:, 4172:e 4165:t 4158:v 4078:k 4076:A 3543:e 3536:t 3529:v 3407:. 3393:* 3376:: 3334:: 3324:: 3282:: 3190:. 3091:. 3062:. 2901:. 2863:g 2859:g 2838:z 2770:, 2765:n 2761:z 2754:z 2702:C 2669:, 2659:C 2648:C 2605:6 2599:g 2596:6 2576:2 2570:g 2547:X 2516:X 2488:X 2407:. 2395:0 2389:) 2383:( 2379:m 2376:I 2354:C 2327:) 2320:Z 2316:+ 2312:Z 2308:( 2304:/ 2299:C 2287:; 2274:Z 2269:/ 2264:C 2239:C 2214:C 2193:X 2165:) 2161:C 2157:( 2152:1 2147:P 2110:) 2106:C 2102:( 2097:1 2092:P 2061:D 2039:C 2018:) 2014:C 2010:( 2005:1 2000:P 1982:. 1970:} 1967:0 1961:) 1958:z 1955:( 1951:m 1948:I 1944:: 1940:C 1933:z 1930:{ 1923:H 1899:} 1896:1 1889:| 1885:z 1881:| 1877:: 1873:C 1866:z 1863:{ 1856:D 1841:; 1828:C 1816:; 1803:) 1799:C 1795:( 1790:1 1785:P 1762:} 1756:{ 1749:C 1735:C 1688:1 1668:0 1665:, 1662:1 1631:X 1608:τ 1604:E 1602:( 1600:j 1593:τ 1590:E 1586:3 1583:g 1579:2 1576:g 1559:, 1554:3 1550:g 1543:) 1540:z 1537:( 1529:2 1525:g 1516:3 1512:] 1508:) 1505:z 1502:( 1496:[ 1493:4 1490:= 1485:2 1481:] 1477:) 1474:z 1471:( 1460:[ 1447:T 1430:) 1427:z 1424:( 1401:T 1393:Z 1390:τ 1386:Z 1372:) 1369:z 1366:( 1343:Z 1340:τ 1336:Z 1332:C 1328:T 1265:n 1260:P 1257:C 1221:t 1219:( 1217:C 1209:X 1201:C 1186:C 1182:X 1171:C 1159:h 1155:α 1151:α 1143:z 1139:h 1132:z 1124:R 1120:R 1116:h 1112:z 1110:( 1108:g 1106:( 1104:f 1100:h 1096:g 1092:f 1075:N 1071:M 1053:N 1049:M 1045:C 1041:C 1037:g 1033:f 1029:h 1025:N 1021:h 1017:M 1009:g 999:N 995:M 991:N 987:M 983:f 967:z 963:z 961:( 959:f 945:z 941:z 939:( 937:f 923:z 919:z 917:( 915:f 901:z 897:z 895:( 893:f 879:z 875:z 873:( 871:f 856:. 854:g 850:g 842:g 834:Q 827:x 825:( 823:Q 819:y 804:g 797:. 791:z 787:z 779:Z 775:τ 771:Z 767:C 763:z 759:τ 755:b 751:a 745:b 737:x 733:y 726:. 714:C 708:( 706:P 693:( 691:P 677:. 670:. 664:τ 660:Z 656:τ 652:Z 648:C 644:T 625:C 621:C 610:C 606:S 602:S 581:. 576:1 569:z 556:z 527:C 506:C 478:. 474:C 449:2 445:S 421:C 398:S 380:C 376:U 365:C 348:X 336:X 316:X 312:X 308:x 291:. 277:x 269:X 265:x 241:X 226:X 149:C 82:z 80:( 78:f 74:z 70:y 66:x 62:z 58:z 56:( 54:f 45:. 38:. 20:)

Index

Conformally invariant
Riemannian surface
Riemannian manifold
Zariski–Riemann space

mathematics
complex analysis
complex manifold
Bernhard Riemann
complex plane
topology
sphere
torus
graphs
multivalued functions
surface
manifold
complex structure
orientable
metrizable
Möbius strip
Klein bottle
real projective plane
complex algebraic curve
Chow's theorem
Riemann–Roch theorem
Complex manifold
Conformal geometry
connected
complex manifold

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑