Knowledge (XXG)

Line graph

Source 📝

326: 361: 345: 311: 1216: 1965: 1356: 830: 731: 1340: 1865:, coincides with the line graph for planar graphs with maximum degree three, but is always planar. It has the same vertices as the line graph, but potentially fewer edges: two vertices of the medial graph are adjacent if and only if the corresponding two edges are consecutive on some face of the planar embedding. The medial graph of the 303:
The following figures show a graph (left, with blue vertices) and its line graph (right, with green vertices). Each vertex of the line graph is shown labeled with the pair of endpoints of the corresponding edge in the original graph. For instance, the green vertex on the right labeled 1,3 corresponds
1932:
is a multigraph. In this case, the characterizations of these graphs can be simplified: the characterization in terms of clique partitions no longer needs to prevent two vertices from belonging to the same to cliques, and the characterization by forbidden graphs has seven forbidden graphs instead of
1346:
In this example, the edges going upward, to the left, and to the right from the central degree-four vertex do not have any cliques in common. Therefore, any partition of the graph's edges into cliques would have to have at least one clique for each of these three edges, and these three cliques would
813:
has eight. In the illustration of the diamond graph shown, rotating the graph by 90 degrees is not a symmetry of the graph, but is a symmetry of its line graph. However, all such exceptional cases have at most four vertices. A strengthened version of the Whitney isomorphism theorem states that, for
1387:), shown on the top left of the illustration of forbidden subgraphs. Therefore, by Beineke's characterization, this example cannot be a line graph. For graphs with minimum degree at least 5, only the six subgraphs in the left and right columns of the figure are needed in the characterization. 1431:
uses only Whitney's isomorphism theorem. It is complicated by the need to recognize deletions that cause the remaining graph to become a line graph, but when specialized to the static recognition problem only insertions need to be performed, and the algorithm performs the following steps:
1876:
or simple polyhedra, the medial graph operation can be represented geometrically by the operation of cutting off each vertex of the polyhedron by a plane through the midpoints of all its incident edges. This operation is known variously as the second truncation, degenerate truncation, or
187:
can be recovered completely from its line graph. Many other properties of line graphs follow by translating the properties of the underlying graph from vertices into edges, and by Whitney's theorem the same translation can also be done in the other direction. Line graphs are
304:
to the edge on the left between the blue vertices 1 and 3. Green vertex 1,3 is adjacent to three other green vertices: 1,4 and 1,2 (corresponding to edges sharing the endpoint 1 in the blue graph) and 4,3 (corresponding to an edge sharing the endpoint 3 in the blue graph).
1414:
described an efficient data structure for maintaining a dynamic graph, subject to vertex insertions and deletions, and maintaining a representation of the input as a line graph (when it exists) in time proportional to the number of changed edges at each step.
988:. Like the line graphs of complete graphs, they can be characterized with one exception by their numbers of vertices, numbers of edges, and number of shared neighbors for adjacent and non-adjacent points. The one exceptional case is 1426:
are based on characterizations of line graphs involving odd triangles (triangles in the line graph with the property that there exists another vertex adjacent to an odd number of triangle vertices). However, the algorithm of
2848:, Theorem 8.7, p. 79. Harary credits this characterization of line graphs of complete bipartite graphs to Moon and Hoffman. The case of equal numbers of vertices on both sides had previously been proven by Shrikhande. 581:. Since maximum matchings may be found in polynomial time, so may the maximum independent sets of line graphs, despite the hardness of the maximum independent set problem for more general families of graphs. Similarly, a 1489:
has four or fewer vertices, it might be the case that the line graph representation is not unique. But in this case, the augmented graph is small enough that a representation of it as a line graph can be found by a
1359:
The nine minimal non-line graphs, from Beineke's forbidden-subgraph characterization of line graphs. A graph is a line graph if and only if it does not contain one of these nine graphs as an induced subgraph.
833:
A line perfect graph. The edges in each biconnected component are colored black if the component is bipartite, blue if the component is a tetrahedron, and red if the component is a book of triangles.
1677: 976:), but need not be bipartite as the example of the claw graph shows. The line graphs of bipartite graphs form one of the key building blocks of perfect graphs, used in the proof of the 1375:. That is, a graph is a line graph if and only if no subset of its vertices induces one of these nine graphs. In the example above, the four topmost vertices induce a claw (that is, a 1299:
belongs to exactly two of the cliques. It is the line graph of a graph (rather than a multigraph) if this set of cliques satisfies the additional condition that no two vertices of
1178: 2187:
faithfully but it does not guarantee that dynamics on these two graphs have a simple relationship. One solution is to construct a weighted line graph, that is, a line graph with
788:, there are some other exceptional small graphs with the property that their line graph has a higher degree of symmetry than the graph itself. For instance, the 814:
connected graphs with more than four vertices, there is a one-to-one correspondence between isomorphisms of the graphs and isomorphisms of their line graphs.
3630: 1936:
However, for multigraphs, there are larger numbers of pairs of non-isomorphic graphs that have the same line graphs. For instance a complete bipartite graph
1440:
by adding vertices one at a time, at each step choosing a vertex to add that is adjacent to at least one previously-added vertex. While adding vertices to
1347:
all intersect in that central vertex, violating the requirement that each vertex appear in exactly two cliques. Thus, the graph shown is not a line graph.
1371:). He showed that there are nine minimal graphs that are not line graphs, such that any graph that is not a line graph has one of these nine graphs as an 1908:, and has an edge between two elements whenever they are either incident or adjacent. The total graph may also be obtained by subdividing each edge of 1796:
For connected graphs that are not paths, all sufficiently high numbers of iteration of the line graph operation produce graphs that are Hamiltonian.
2903:, Theorem 8.4, p. 74, gives three equivalent characterizations of line graphs: the partition of the edges into cliques, the property of being 4356: 2183:. Put another way, the Whitney graph isomorphism theorem guarantees that the line graph almost always encodes the topology of the original graph 721:
observe that any method for finding vertex clusters in a complex network can be applied to the line graph and used to cluster its edges instead.
325: 687:. However, not all Hamiltonian cycles in line graphs come from Euler cycles in this way; for instance, the line graph of a Hamiltonian graph 973: 709:
In the context of complex network theory, the line graph of a random network preserves many of the properties of the network such as the
211:
Various extensions of the concept of a line graph have been studied, including line graphs of line graphs, line graphs of multigraphs,
3861: 1557:. Thus, the total time for the whole algorithm is proportional to the sum of the numbers of neighbors of all vertices, which (by the 3453: 3233: 3208: 2598: 2567: 2508: 201: 3673: 1841:. However, there exist planar graphs with higher degree whose line graphs are nonplanar. These include, for example, the 5-star 3813: 3405: 559: 2799:
Roussel, F.; Rusu, I.; Thuillier, H. (2009), "The strong perfect graph conjecture: 40 years of attempts, and its resolution",
2677: 4078: 3993: 3115: 2801: 2745: 536: 420: 1956:
with the same number of edges. Nevertheless, analogues to Whitney's isomorphism theorem can still be derived in this case.
2515:
Clearly, there is a one-to-one correspondence between the matchings of a graph and the independent sets of its line graph.
1578: 3006: 2753: 2749: 2728: 977: 360: 344: 3547: 1287:
is the line graph of some other graph or multigraph if and only if it is possible to find a collection of cliques in
4277:
Zverovich, I. È. (1997), "An analogue of the Whitney theorem for edge graphs of multigraphs, and edge multigraphs",
3934: 3700:
Hemminger, R. L.; Beineke, L. W. (1978), "Line graphs and line digraphs", in Beineke, L. W.; Wilson, R. J. (eds.),
2299: 2285: 212: 4022:
Ryjáček, Zdeněk; Vrána, Petr (2011), "Line graphs of multigraphs and Hamilton-connectedness of claw-free graphs",
4361: 863: 1276:
belongs to exactly two of them (the two cliques corresponding to the two endpoints of the corresponding edge in
1006:. When both sides of the bipartition have the same number of vertices, these graphs are again strongly regular. 653:
is an edge-transitive graph that has at least five vertices, is not bipartite, and has odd vertex degrees, then
1878: 1376: 985: 2593:, London Mathematical Society Student Texts, vol. 54, Cambridge: Cambridge University Press, p. 44, 2134:. If we now perform the same type of random walk on the vertices of the line graph, the frequency with which 1774:
then each subsequent graph in the sequence is a shorter path until eventually the sequence terminates with an
2257:. It is straightforward to extend this definition of a weighted line graph to cases where the original graph 468:
that has some isolated vertices, and is therefore disconnected, may nevertheless have a connected line graph.
4351: 638: 616: 582: 551: 401: 276: 1136: 310: 2526:
The need to consider isolated vertices when considering the connectivity of line graphs is pointed out by
902: 3594:
Greenwell, D. L.; Hemminger, Robert L. (1972), "Forbidden subgraphs for graphs with planar line graphs",
3440:, London Mathematical Society Lecture Note Series, vol. 314, Cambridge: Cambridge University Press, 1549:
Each step either takes constant time, or involves finding a vertex cover of constant size within a graph
1061:(a book of one or more triangles all sharing a common edge). Every line perfect graph is itself perfect. 3712: 2762: 2394: 1823: 1240: 1108: 1037: 882: 634: 608: 521: 476: 243: 4076:
Sysło, Maciej M. (1982), "A labeling algorithm to recognize a line digraph and output its root graph",
3770:
Lehot, Philippe G. H. (1974), "An optimal algorithm to detect a line graph and output its root graph",
1541:) that connects these two vertices. If there is only one vertex in the cover, then add a new vertex to 1533:
consisting of one vertex or two non-adjacent vertices. If there are two vertices in the cover, augment
1402:
described linear time algorithms for recognizing line graphs and reconstructing their original graphs.
3393:
Beineke, L. W. (1968), "Derived graphs of digraphs", in Sachs, H.; Voss, H.-J.; Walter, H.-J. (eds.),
2727:, Theorem 8.6, p. 79. Harary credits this result to independent papers by L. C. Chang (1959) and 1077:
in the form of a three-leaf tree. As with claw-free graphs more generally, every connected line graph
3892: 3566: 3517: 3157: 1334:
For example, this characterization can be used to show that the following graph is not a line graph:
1033: 1283:
The existence of such a partition into cliques can be used to characterize the line graphs: A graph
746:
are isomorphic, then the underlying graphs are isomorphic, except in the case of the triangle graph
3545:
Evans, T.S.; Lambiotte, R. (2010), "Line Graphs of Weighted Networks for Overlapping Communities",
2242:(provided neither end is connected to a vertex of degree 1) will have strength 2 in the line graph 1781:
In all remaining cases, the sizes of the graphs in this sequence eventually increase without bound.
1100: 1036:
of odd length greater than three. Equivalently, a graph is line perfect if and only if each of its
756: 714: 710: 439: 72: 3471:
Degiorgi, Daniele Giorgio; Simon, Klaus (1995), "A dynamic algorithm for line graph recognition",
4294: 4211: 4169: 4132: 4047: 3963: 3916: 3882: 3799: 3772: 3737: 3657: 3582: 3556: 3507: 3371: 3181: 2956: 2938: 2828: 2789: 2771: 2707: 2303: 1953: 1491: 1014: 801: 472: 288: 1202:
of a system of vectors: all graphs with this property have been called generalized line graphs.
3496:
Evans, T.S.; Lambiotte, R. (2009), "Line graphs, link partitions and overlapping communities",
1851: 4324: 3908: 3845: 3533: 3498: 3449: 3363: 3250: 3229: 3204: 2594: 2563: 2557: 2504: 2498: 1873: 1855: 1714: 1558: 1215: 699: 684: 30:
This article is about the mathematical concept. For the statistical presentations method, see
3154:
Combinatorial Mathematics: Proceedings of the Third International Conference (New York, 1985)
2588: 2531: 4286: 4257: 4201: 4193: 4153: 4116: 4087: 4031: 4002: 3953: 3943: 3900: 3857: 3822: 3781: 3721: 3647: 3639: 3603: 3574: 3525: 3476: 3441: 3414: 3355: 3165: 3156:, Ann. New York Acad. Sci., vol. 555, New York: New York Acad. Sci., pp. 310–315, 3124: 3022: 2930: 2810: 2781: 2741: 2689: 2379: 1372: 1123: 1112: 1089: 1074: 1003: 738:(left) and its more-symmetric line graph (right), an exception to the strong Whitney theorem 597: 574: 389:
that depend only on adjacency between edges may be translated into equivalent properties in
57: 4271: 4236: 4165: 4128: 4099: 4068: 4043: 4014: 3836: 3795: 3762: 3733: 3617: 3488: 3463: 3428: 3177: 3138: 2972: 2950: 2824: 2703: 2608: 4267: 4232: 4181: 4161: 4124: 4095: 4064: 4039: 4010: 3832: 3791: 3758: 3729: 3613: 3484: 3459: 3424: 3173: 3134: 2968: 2946: 2904: 2820: 2757: 2699: 2604: 2039: 1969: 1964: 1687: 1355: 1070: 965: 743: 431: 193: 189: 181: 173: 2042:
may be formed by repeating this process of forming directed line graphs, starting from a
981: 3896: 3570: 3521: 3161: 2500:
Combinatorial Optimization and Theoretical Computer Science: Interfaces and Perspectives
408:
is a set of edges no two of which are adjacent, and corresponds to a set of vertices in
17: 3475:, Lecture Notes in Computer Science, vol. 1017, Berlin: Springer, pp. 37–48, 3169: 3110: 3081: 3010: 2989: 2295: 2261:
was directed or even weighted. The principle in all cases is to ensure the line graph
2188: 2043: 1407: 1303:
are both in the same two cliques. Given such a family of cliques, the underlying graph
1199: 1111:, of constructing a graph with a given number of edges and vertices whose largest tree 642: 3749:
Krausz, J. (1943), "Démonstration nouvelle d'un théorème de Whitney sur les réseaux",
3419: 2694: 4345: 4298: 4091: 4006: 3967: 3827: 3741: 3682: 3661: 3608: 3586: 3375: 3129: 3027: 3002: 2908: 2793: 2084:
edges in the line graph. For many types of analysis this means high-degree nodes in
1029: 969: 849: 817:
Analogues of the Whitney isomorphism theorem have been proven for the line graphs of
789: 735: 279:
if and only if their corresponding edges share a common endpoint ("are incident") in
197: 4173: 4136: 3920: 3803: 3185: 2832: 2711: 679:
is connected and has an even number of edges at each vertex, then the line graph of
103:
that have a vertex in common, make an edge between their corresponding vertices in
4051: 3929: 3669: 3625: 3253: 1949: 1862: 1816: 1810: 1530: 940: 867: 646: 130:
used the construction before this. Other terms used for the line graph include the
49: 1327:. By the strong version of Whitney's isomorphism theorem, if the underlying graph 829: 730: 713:(the existence of short paths between all pairs of vertices) and the shape of its 3870: 3578: 1291:(allowing some of the cliques to be single vertices) that partition the edges of 2100: 1913: 1775: 1699: 1339: 1104: 672: 205: 45: 4327: 3904: 3529: 2815: 2785: 1854:
formed by adding two non-crossing diagonals within a regular pentagon, and all
1096:
has an even number of edges, its edges can be partitioned into two-edge paths.
4313: 4206: 3958: 3652: 2480:, Theorem 8.3, p. 72. Harary gives a simplified proof of this theorem by 2356:
have a vertex in common, make an edge between their corresponding vertices in
2291: 1869:
of a plane graph is the same as the medial graph of the original plane graph.
1866: 1789:
is not connected, this classification applies separately to each component of
1771: 1119: 818: 38: 31: 4290: 3480: 3445: 3367: 2574: 925:. The three strongly regular graphs with the same parameters and spectrum as 4332: 4246:Аналог теоремы Уитни для реберных графов мультиграфов и реберные мультиграфы 3258: 944: 3912: 3537: 1331:
has more than four vertices, there can be only one partition of this type.
3786: 3710:
Jung, H. A. (1966), "Zu einem Isomorphiesatz von H. Whitney für Graphen",
3359: 3346:
Meshulam, Roy (2001-01-01). "The Clique Complex and Hypergraph Matching".
641:. This property can be used to generate families of graphs that (like the 3887: 3862:
10.1002/(SICI)1097-0118(199708)25:4<243::AID-JGT1>3.0.CO;2-K
4215: 4157: 4120: 3948: 3725: 3643: 2942: 2562:, Graduate Texts in Mathematics, vol. 173, Springer, p. 112, 1032:. The line perfect graphs are exactly the graphs that do not contain a 767:, which have isomorphic line graphs but are not themselves isomorphic. 4035: 4317: 4061:
Theory of Graphs and its Applications (Proc. Sympos. Smolenice, 1963)
2776: 1976:
It is also possible to generalize line graphs to directed graphs. If
706:
provides a converse to this for all but one pair of connected graphs.
4223:
Zhang, Fu Ji; Lin, Guo Ning (1987), "On the de Bruijn–Good graphs",
4197: 3152:
McKee, T. A. (1989), "Graph-theoretic model of geographic duality",
2934: 2272:
reflects the dynamics as well as the topology of the original graph
2191:. There are several natural ways to do this. For instance if edges 4262: 3561: 3512: 1467:, then the input is not a line graph and the algorithm terminates. 1323:
with its endpoints being the two cliques containing the vertex in
729: 4063:, Publ. House Czechoslovak Acad. Sci., Prague, pp. 145–150, 2433: 2431: 442:
connecting any two of its edges, which translates into a path in
3681:, Massachusetts: Addison-Wesley, pp. 71–83, archived from 1826:
three, its line graph is planar, and every planar embedding of
4059:
Sedláček, J. (1964), "Some properties of interchange graphs",
3403:
Beineke, L. W. (1970), "Characterizations of derived graphs",
892:. They may also be characterized (again with the exception of 3436:
Cvetković, Dragoš; Rowlinson, Peter; Simić, Slobodan (2004),
2633: 1129:
of a line graph are at least −2. The reason for this is that
3811:
Maffray, Frédéric (1992), "Kernels in perfect line-graphs",
3628:; Norman, R. Z. (1960), "Some properties of line digraphs", 4184:(1932), "Congruent graphs and the connectivity of graphs", 3473:
Graph-theoretic concepts in computer science (Aachen, 1995)
1463:; if the algorithm ever fails to find an appropriate graph 1311:
is the line graph can be recovered by making one vertex in
1184:
is the signless incidence matrix of the pre-line graph and
400:
that depend on adjacency between vertices. For instance, a
180:) proved that with one exceptional case the structure of a 3848:(1997), "On line graphs of linear 3-uniform hypergraphs", 3080:, Theorem 8.11, p. 81. Harary credits this result to 2612:. Lauri and Scapellato credit this result to Mark Watkins. 295:, representing each edge by the set of its two endpoints. 1553:
whose size is proportional to the number of neighbors of
3113:(1992), "The medial graph and voltage-current duality", 2988:, Theorem 8.5, p. 78. Harary credits the result to 2333:, is constructed in the following way: for each edge in 1904:
has as its vertices the elements (vertices or edges) of
1763:
and all subsequent graphs in the sequence are triangles.
1517:
formed by the edges that correspond to the neighbors of
1254:. The cliques formed in this way partition the edges of 1092:; equivalently, this means that if the underlying graph 3871:"Generating correlated networks from uncorrelated ones" 3041: 2527: 1721:
itself. These are the only connected graphs for which
3869:
Ramezanpour, A.; Karimipour, V.; Mashaghi, A. (2003),
2961:
Cahiers du Centre d'Études de Recherche Opérationnelle
1690:, only four behaviors are possible for this sequence: 1363:
Another characterization of line graphs was proven in
87:
is constructed in the following way: for each edge in
1581: 1139: 1107:. These graphs have been used to solve a problem in 3932:(1965), "The interchange graph of a finite graph", 2253:corresponding to the two ends that the edge has in 1672:{\displaystyle G,L(G),L(L(G)),L(L(L(G))),\dots .\ } 4107:Trotter, L. E. Jr. (1977), "Line perfect graphs", 3097: 3053: 2921:Sumner, David P. (1974), "Graphs with 1-factors", 1671: 1172: 2923:Proceedings of the American Mathematical Society 2911:-free, and the nine forbidden graphs of Beineke. 2678:"Which graphs are determined by their spectrum?" 2590:Topics in graph automorphisms and reconstruction 2437: 1992:. Two vertices representing directed edges from 1561:) is proportional to the number of input edges. 881:. Triangular graphs are characterized by their 703: 702:then their line graphs are also isomorphic. The 494:edges, the number of vertices of the line graph 4144:de Werra, D. (1978), "On line perfect graphs", 3226:Space Structures—their Harmony and Counterpoint 2715:. See in particular Proposition 8, p. 262. 1713:and each subsequent graph in this sequence are 3333: 3321: 2676:van Dam, Edwin R.; Haemers, Willem H. (2003), 718: 2649: 2634:Ramezanpour, Karimipour & Mashaghi (2003) 1569: 1428: 1411: 691:is itself Hamiltonian, regardless of whether 381:Translated properties of the underlying graph 8: 4318:Information System on Graph Class Inclusions 3631:Rendiconti del Circolo Matematico di Palermo 3297: 3285: 2138:is visited can be completely different from 2030:. That is, each edge in the line digraph of 1928:may naturally be extended to the case where 1505:that equals the line graph of another graph 1419: 1395: 119: 3013:(1986), "Maximum induced trees in graphs", 2587:Lauri, Josef; Scapellato, Raffaele (2003), 2929:(1), American Mathematical Society: 8–12, 2896: 2894: 479:for which neither endpoint has degree one. 475:if and only if the underlying graph has a 419:no two of which are adjacent, that is, an 4261: 4205: 3957: 3947: 3886: 3826: 3785: 3651: 3607: 3560: 3511: 3418: 3128: 3026: 3015:Journal of Combinatorial Theory, Series B 2959:(1975), "A note on matchings in graphs", 2814: 2775: 2693: 2664: 2492: 2490: 2465: 2463: 2034:represents a length-two directed path in 1580: 1151: 1150: 1138: 980:. A special case of these graphs are the 821:, but are more complicated in this case. 800:(two triangles sharing an edge) has four 27:Graph representing edges of another graph 3309: 3093: 2861: 2450: 2448: 2446: 1963: 1354: 1214: 828: 825:Strongly regular and perfect line graphs 664:is a vertex-transitive non-Cayley graph. 200:. Line graphs are characterized by nine 71:that represents the adjacencies between 3704:, Academic Press Inc., pp. 271–305 3438:Spectral generalizations of line graphs 3042:Cvetković, Rowlinson & Simić (2004) 2885: 2873: 2857: 2577:, Chapter 5 ("Colouring"), p. 118. 2528:Cvetković, Rowlinson & Simić (2004) 2469: 2427: 2088:are over-represented in the line graph 1368: 1367:(and reported earlier without proof by 1364: 1002:, which shares its parameters with the 306: 177: 123: 3983:} algorithm for determining the graph 3273: 3077: 3065: 2985: 2900: 2845: 2724: 2660: 2658: 2621: 2543: 2503:, John Wiley & Sons, p. 394, 2477: 2473: 2454: 2103:on the vertices of the original graph 1858:with a vertex of degree four or more. 1219:Partition of a line graph into cliques 1152: 520:is half the sum of the squares of the 453:containing any two of the vertices of 215:, and line graphs of weighted graphs. 127: 4279:Discrete Mathematics and Applications 2408:corresponds to an independent set in 2222:the edge connecting the two vertices 1423: 1403: 1399: 1173:{\displaystyle A=J^{\mathsf {T}}J-2I} 837:The line graph of the complete graph 7: 3975:Roussopoulos, N. D. (1973), "A max { 2645: 2481: 1537:by adding an edge (corresponding to 645:) are vertex-transitive but are not 3064:This result is also Theorem 8.2 of 2682:Linear Algebra and Its Applications 1830:can be extended to an embedding of 1088:with an even number of edges has a 1040:is either bipartite or of the form 3397:, Leipzig: Teubner, pp. 17–33 3203:, University of California Press, 3170:10.1111/j.1749-6632.1989.tb22465.x 2758:"The strong perfect graph theorem" 2172:more frequently in the line graph 2119:is mapped to a unique vertex, say 2107:. This will pass along some edge 1805:Medial graphs and convex polyhedra 25: 2150:was connected to nodes of degree 1924:The concept of the line graph of 1861:An alternative construction, the 1565:Iterating the line graph operator 704:Whitney graph isomorphism theorem 3098:Greenwell & Hemminger (1972) 3054:Metelsky & Tyshkevich (1997) 1988:has one vertex for each edge of 1572:consider the sequence of graphs 1338: 1315:for each clique, and an edge in 1206:Characterization and recognition 1188:is the identity. In particular, 359: 343: 324: 309: 4186:American Journal of Mathematics 3814:Journal of Combinatorial Theory 3702:Selected Topics in Graph Theory 3406:Journal of Combinatorial Theory 2115:. On the other hand, this edge 1948:has the same line graph as the 1235:, the set of edges incident to 4357:Intersection classes of graphs 4079:Information Processing Letters 3994:Information Processing Letters 2497:Paschos, Vangelis Th. (2010), 2438:Hemminger & Beineke (1978) 2012:are connected by an edge from 1654: 1651: 1648: 1642: 1636: 1630: 1621: 1618: 1612: 1606: 1597: 1591: 1: 4275:. Translated into English as 3420:10.1016/S0021-9800(70)80019-9 2695:10.1016/S0024-3795(03)00483-X 2306:of the sets from the family. 2238:. In this way every edge in 1406:generalized these methods to 509:, and the number of edges of 4092:10.1016/0020-0190(82)90080-1 4007:10.1016/0020-0190(73)90029-X 3828:10.1016/0095-8956(92)90028-V 3609:10.1016/0012-365X(72)90058-1 3334:Evans & Lambiotte (2010) 3322:Evans & Lambiotte (2009) 3228:(5th ed.), Birkhäuser, 3201:Polyhedra: A Visual Approach 3130:10.1016/0012-365X(92)90328-D 3028:10.1016/0095-8956(86)90028-6 2099:. For instance, consider a 1065:Other related graph families 978:strong perfect graph theorem 719:Evans & Lambiotte (2009) 438:is connected, it contains a 335:) constructed from edges in 3548:European Physical Journal B 3395:Beiträge zur Graphentheorie 2650:Degiorgi & Simon (1995) 1570:van Rooij & Wilf (1965) 1429:Degiorgi & Simon (1995) 1412:Degiorgi & Simon (1995) 1295:, such that each vertex of 943:, which may be obtained by 726:Whitney isomorphism theorem 4378: 3935:Acta Mathematica Hungarica 3905:10.1103/physreve.67.046107 3672:(1972), "8. Line Graphs", 3579:10.1140/epjb/e2010-00261-8 3530:10.1103/PhysRevE.80.016105 3298:Harary & Norman (1960) 3286:Ryjáček & Vrána (2011) 2816:10.1016/j.disc.2009.05.024 2786:10.4007/annals.2006.164.51 2624:, Theorem 8.8, p. 80. 2556:Diestel, Reinhard (2006), 2546:, Theorem 8.1, p. 72. 2300:line graph of a hypergraph 2286:Line graph of a hypergraph 2283: 2280:Line graphs of hypergraphs 1808: 1545:, adjacent to this vertex. 1436:Construct the input graph 1227:, and an arbitrary vertex 1103:are exactly the claw-free 742:If the line graphs of two 213:line graphs of hypergraphs 120:Harary & Norman (1960) 36: 29: 4244:Зверович, И. Э. (1997), 3224:Loeb, Arthur Lee (1991), 2348:; for every two edges in 2211:, then in the line graph 2203:are incident at a vertex 2020:in the line digraph when 1980:is a directed graph, its 1972:as iterated line digraphs 1916:of the subdivided graph. 1115:is as small as possible. 986:complete bipartite graphs 698:If two simple graphs are 204:and can be recognized in 192:, and the line graphs of 99:; for every two edges in 4291:10.1515/dma.1997.7.3.287 4245: 4146:Mathematical Programming 4109:Mathematical Programming 3481:10.1007/3-540-60618-1_64 3446:10.1017/CBO9780511751752 2065:, each vertex of degree 1377:complete bipartite graph 1009:More generally, a graph 37:Not to be confused with 18:Conjugate (graph theory) 4024:Journal of Graph Theory 3850:Journal of Graph Theory 2161:, it will be traversed 2044:complete directed graph 1223:For an arbitrary graph 903:strongly regular graphs 617:vertex chromatic number 583:rainbow-independent set 560:maximum independent set 4250:Diskretnaya Matematika 3310:Zhang & Lin (1987) 3199:Pugh, Anthony (1976), 2294:may form an arbitrary 2069:in the original graph 1973: 1673: 1360: 1220: 1174: 1038:biconnected components 834: 739: 385:Properties of a graph 257:represents an edge of 118:comes from a paper by 3928:van Rooij, A. C. M.; 3787:10.1145/321850.321853 3713:Mathematische Annalen 3360:10.1007/s004930170006 2763:Annals of Mathematics 1967: 1682:They show that, when 1674: 1497:When adding a vertex 1470:When adding a vertex 1358: 1218: 1175: 1113:induced as a subgraph 1109:extremal graph theory 1049:(the tetrahedron) or 844:is also known as the 832: 733: 635:edge-transitive graph 633:The line graph of an 609:edge chromatic number 238:is a graph such that 3987:from its line graph 3596:Discrete Mathematics 3116:Discrete Mathematics 2802:Discrete Mathematics 2230:can be given weight 2123:, in the line graph 2111:with some frequency 2050:Weighted line graphs 1968:Construction of the 1912:and then taking the 1579: 1137: 1073:, graphs without an 1069:All line graphs are 964:The line graph of a 711:small-world property 471:A line graph has an 430:The line graph of a 148:representative graph 91:, make a vertex in 3897:2003PhRvE..67d6107R 3571:2010EPJB...77..265E 3522:2009PhRvE..80a6105E 3162:1989NYASA.555..310M 2575:free online edition 2337:, make a vertex in 2302:is the same as the 1982:directed line graph 1513:be the subgraph of 1444:, maintain a graph 1420:Roussopoulos (1973) 1396:Roussopoulos (1973) 1351:Forbidden subgraphs 1319:for each vertex in 1099:The line graphs of 804:but its line graph 802:graph automorphisms 715:degree distribution 558:. In particular, a 524:of the vertices in 464:. However, a graph 287:That is, it is the 202:forbidden subgraphs 174:Hassler Whitney 140:edge-to-vertex dual 4325:Weisstein, Eric W. 4207:10338.dmlcz/101067 4158:10.1007/BF01609025 4121:10.1007/BF01593791 3959:10338.dmlcz/140421 3949:10.1007/BF01904834 3846:Tyshkevich, Regina 3773:Journal of the ACM 3726:10.1007/BF01360250 3653:10338.dmlcz/128114 3644:10.1007/BF02854581 3251:Weisstein, Eric W. 2967:(2–3–4): 257–260, 2419:, and vice versa. 2367:. In other words, 2316:disjointness graph 2310:Disjointness graph 2304:intersection graph 1974: 1954:Shannon multigraph 1669: 1501:to a larger graph 1492:brute force search 1418:The algorithms of 1361: 1243:in the line graph 1221: 1170: 1133:can be written as 1015:line perfect graph 835: 740: 619:of its line graph 473:articulation point 289:intersection graph 63:is another graph 4225:Acta Math. Sinica 4036:10.1002/jgt.20498 3499:Physical Review E 2809:(20): 6092–6113, 2742:Chudnovsky, Maria 1874:regular polyhedra 1732:is isomorphic to 1668: 1559:handshaking lemma 1494:in constant time. 1265:. Each vertex of 1239:corresponds to a 984:, line graphs of 695:is also Eulerian. 639:vertex-transitive 596:corresponds to a 550:corresponds to a 434:is connected. If 366:The line graph L( 350:Added edges in L( 227:, its line graph 219:Formal definition 160:interchange graph 154:, as well as the 16:(Redirected from 4369: 4362:Graph operations 4338: 4337: 4301: 4274: 4265: 4239: 4218: 4209: 4176: 4139: 4102: 4071: 4054: 4017: 3970: 3961: 3951: 3942:(3–4): 263–269, 3923: 3890: 3888:cond-mat/0212469 3864: 3844:Metelsky, Yury; 3839: 3830: 3806: 3789: 3765: 3744: 3705: 3695: 3694: 3693: 3687: 3680: 3664: 3655: 3620: 3611: 3589: 3564: 3540: 3515: 3491: 3466: 3431: 3422: 3398: 3380: 3379: 3343: 3337: 3331: 3325: 3319: 3313: 3307: 3301: 3295: 3289: 3283: 3277: 3271: 3265: 3264: 3263: 3246: 3240: 3238: 3221: 3215: 3213: 3196: 3190: 3188: 3149: 3143: 3141: 3132: 3107: 3101: 3091: 3085: 3075: 3069: 3062: 3056: 3051: 3045: 3039: 3033: 3031: 3030: 2999: 2993: 2983: 2977: 2975: 2953: 2918: 2912: 2898: 2889: 2883: 2877: 2871: 2865: 2855: 2849: 2843: 2837: 2835: 2818: 2796: 2779: 2738: 2732: 2722: 2716: 2714: 2697: 2673: 2667: 2665:Zverovich (1997) 2662: 2653: 2643: 2637: 2631: 2625: 2619: 2613: 2611: 2584: 2578: 2572: 2553: 2547: 2541: 2535: 2524: 2518: 2517: 2494: 2485: 2467: 2458: 2452: 2441: 2435: 2418: 2407: 2392: 2380:complement graph 2377: 2366: 2351: 2347: 2336: 2332: 2321: 2275: 2271: 2260: 2256: 2252: 2241: 2237: 2229: 2225: 2221: 2210: 2206: 2202: 2198: 2194: 2186: 2182: 2171: 2160: 2149: 2145: 2137: 2133: 2122: 2118: 2114: 2110: 2106: 2098: 2087: 2083: 2072: 2068: 2064: 2054:In a line graph 2040:de Bruijn graphs 2037: 2033: 2029: 2019: 2015: 2011: 2007: 2003: 1999: 1995: 1991: 1979: 1970:de Bruijn graphs 1947: 1931: 1927: 1911: 1907: 1903: 1899: 1889:The total graph 1856:convex polyhedra 1849: 1840: 1829: 1821: 1792: 1788: 1769: 1762: 1751: 1742: 1735: 1731: 1720: 1712: 1697: 1685: 1678: 1676: 1675: 1670: 1666: 1556: 1552: 1544: 1540: 1536: 1528: 1524: 1520: 1516: 1512: 1508: 1504: 1500: 1488: 1484: 1473: 1466: 1462: 1447: 1443: 1439: 1386: 1373:induced subgraph 1342: 1330: 1326: 1322: 1318: 1314: 1310: 1306: 1302: 1298: 1294: 1290: 1286: 1279: 1275: 1264: 1253: 1238: 1234: 1230: 1226: 1211:Clique partition 1197: 1187: 1183: 1179: 1177: 1176: 1171: 1157: 1156: 1155: 1132: 1128: 1124:adjacency matrix 1095: 1090:perfect matching 1087: 1075:induced subgraph 1071:claw-free graphs 1060: 1048: 1027: 1013:is said to be a 1012: 1004:Shrikhande graph 1001: 960: 938: 924: 905:with parameters 900: 891: 880: 861: 846:triangular graph 843: 812: 799: 787: 778: 766: 754: 744:connected graphs 694: 690: 682: 678: 670: 663: 652: 629: 615:is equal to the 614: 603: 598:rainbow matching 595: 580: 575:maximum matching 572: 557: 549: 531: 527: 519: 508: 504: 493: 489: 485: 467: 463: 452: 437: 418: 407: 399: 388: 363: 347: 328: 313: 294: 291:of the edges of 282: 274: 264:two vertices of 260: 256: 237: 226: 194:bipartite graphs 186: 110: 102: 98: 90: 86: 78: 70: 62: 58:undirected graph 21: 4377: 4376: 4372: 4371: 4370: 4368: 4367: 4366: 4342: 4341: 4323: 4322: 4310: 4305: 4276: 4247: 4243: 4222: 4198:10.2307/2371086 4180: 4143: 4106: 4075: 4058: 4021: 3974: 3927: 3868: 3843: 3810: 3769: 3751:Mat. Fiz. Lapok 3748: 3709: 3699: 3691: 3689: 3685: 3678: 3668: 3624: 3593: 3544: 3495: 3470: 3456: 3435: 3402: 3392: 3388: 3383: 3345: 3344: 3340: 3332: 3328: 3320: 3316: 3308: 3304: 3296: 3292: 3284: 3280: 3272: 3268: 3254:"Rectification" 3249: 3248: 3247: 3243: 3236: 3223: 3222: 3218: 3211: 3198: 3197: 3193: 3151: 3150: 3146: 3111:Archdeacon, Dan 3109: 3108: 3104: 3094:Sedláček (1964) 3092: 3088: 3076: 3072: 3063: 3059: 3052: 3048: 3040: 3036: 3001: 3000: 2996: 2984: 2980: 2957:Las Vergnas, M. 2955: 2935:10.2307/2039666 2920: 2919: 2915: 2899: 2892: 2884: 2880: 2872: 2868: 2862:de Werra (1978) 2856: 2852: 2844: 2840: 2798: 2746:Robertson, Neil 2740: 2739: 2735: 2723: 2719: 2675: 2674: 2670: 2663: 2656: 2644: 2640: 2632: 2628: 2620: 2616: 2601: 2586: 2585: 2581: 2570: 2555: 2554: 2550: 2542: 2538: 2525: 2521: 2511: 2496: 2495: 2488: 2468: 2461: 2453: 2444: 2436: 2429: 2425: 2409: 2398: 2383: 2368: 2357: 2349: 2338: 2334: 2323: 2319: 2312: 2290:The edges of a 2288: 2282: 2273: 2262: 2258: 2254: 2243: 2239: 2231: 2227: 2223: 2212: 2208: 2204: 2200: 2196: 2192: 2184: 2173: 2162: 2151: 2147: 2143: 2142:. If our edge 2135: 2124: 2120: 2116: 2112: 2108: 2104: 2089: 2085: 2074: 2070: 2066: 2055: 2052: 2035: 2031: 2021: 2017: 2013: 2009: 2005: 2001: 1997: 1993: 1989: 1977: 1962: 1946: 1937: 1929: 1925: 1922: 1909: 1905: 1901: 1890: 1887: 1848: 1842: 1831: 1827: 1819: 1813: 1807: 1802: 1800:Generalizations 1790: 1786: 1767: 1753: 1750: 1744: 1740: 1733: 1722: 1718: 1703: 1695: 1688:connected graph 1683: 1577: 1576: 1567: 1554: 1550: 1542: 1538: 1534: 1526: 1522: 1518: 1514: 1510: 1506: 1502: 1498: 1486: 1475: 1471: 1464: 1449: 1445: 1441: 1437: 1408:directed graphs 1393: 1385: 1379: 1353: 1328: 1324: 1320: 1316: 1312: 1308: 1304: 1300: 1296: 1292: 1288: 1284: 1277: 1266: 1255: 1244: 1236: 1232: 1228: 1224: 1213: 1208: 1189: 1185: 1181: 1146: 1135: 1134: 1130: 1126: 1093: 1078: 1067: 1059: 1050: 1047: 1041: 1018: 1010: 999: 989: 974:Kőnig's theorem 966:bipartite graph 958: 948: 945:graph switching 936: 926: 906: 899: 893: 886: 879: 870: 852: 842: 838: 827: 811: 805: 798: 792: 786: 780: 777: 771: 765: 759: 753: 747: 728: 692: 688: 680: 676: 668: 654: 650: 620: 612: 601: 586: 578: 573:corresponds to 563: 555: 540: 537:independent set 529: 525: 510: 506: 495: 491: 487: 483: 465: 454: 443: 435: 432:connected graph 421:independent set 409: 405: 390: 386: 383: 378: 371: 364: 355: 348: 339: 329: 320: 314: 301: 292: 280: 265: 258: 247: 228: 224: 221: 184: 182:connected graph 104: 100: 92: 88: 80: 76: 64: 60: 42: 35: 28: 23: 22: 15: 12: 11: 5: 4375: 4373: 4365: 4364: 4359: 4354: 4352:Graph families 4344: 4343: 4340: 4339: 4320: 4309: 4308:External links 4306: 4304: 4303: 4285:(3): 287–294, 4252:(in Russian), 4241: 4231:(2): 195–205, 4220: 4192:(1): 150–168, 4178: 4152:(2): 236–238, 4141: 4115:(2): 255–259, 4104: 4073: 4056: 4030:(2): 152–173, 4019: 4001:(4): 108–112, 3972: 3925: 3866: 3856:(4): 243–251, 3841: 3808: 3780:(4): 569–575, 3767: 3746: 3720:(3): 270–271, 3707: 3697: 3666: 3638:(2): 161–169, 3622: 3591: 3555:(2): 265–272, 3542: 3493: 3468: 3454: 3433: 3413:(2): 129–135, 3400: 3389: 3387: 3384: 3382: 3381: 3338: 3326: 3314: 3302: 3290: 3278: 3266: 3241: 3234: 3216: 3209: 3191: 3144: 3123:(2): 111–141, 3102: 3086: 3082:Gary Chartrand 3070: 3057: 3046: 3034: 2994: 2990:Gary Chartrand 2978: 2913: 2890: 2886:Trotter (1977) 2878: 2874:Maffray (1992) 2866: 2858:Trotter (1977) 2850: 2838: 2733: 2717: 2668: 2654: 2638: 2626: 2614: 2599: 2579: 2568: 2548: 2536: 2519: 2509: 2486: 2470:Whitney (1932) 2459: 2442: 2440:, p. 273. 2426: 2424: 2421: 2311: 2308: 2296:family of sets 2284:Main article: 2281: 2278: 2189:weighted edges 2051: 2048: 1961: 1958: 1941: 1921: 1918: 1886: 1883: 1846: 1809:Main article: 1806: 1803: 1801: 1798: 1783: 1782: 1779: 1764: 1748: 1737: 1680: 1679: 1665: 1662: 1659: 1656: 1653: 1650: 1647: 1644: 1641: 1638: 1635: 1632: 1629: 1626: 1623: 1620: 1617: 1614: 1611: 1608: 1605: 1602: 1599: 1596: 1593: 1590: 1587: 1584: 1566: 1563: 1547: 1546: 1495: 1468: 1392: 1389: 1383: 1369:Beineke (1968) 1365:Beineke (1970) 1352: 1349: 1344: 1343: 1212: 1209: 1207: 1204: 1200:Gramian matrix 1169: 1166: 1163: 1160: 1154: 1149: 1145: 1142: 1066: 1063: 1054: 1045: 997: 956: 934: 897: 874: 840: 826: 823: 809: 796: 784: 775: 763: 751: 727: 724: 723: 722: 707: 696: 675:, that is, if 665: 643:Petersen graph 631: 605: 533: 480: 469: 382: 379: 377: 374: 373: 372: 365: 358: 356: 349: 342: 340: 331:Vertices in L( 330: 323: 321: 315: 308: 300: 297: 285: 284: 262: 223:Given a graph 220: 217: 132:covering graph 124:Whitney (1932) 122:although both 48:discipline of 26: 24: 14: 13: 10: 9: 6: 4: 3: 2: 4374: 4363: 4360: 4358: 4355: 4353: 4350: 4349: 4347: 4335: 4334: 4329: 4326: 4321: 4319: 4315: 4312: 4311: 4307: 4300: 4296: 4292: 4288: 4284: 4280: 4273: 4269: 4264: 4263:10.4213/dm478 4259: 4256:(2): 98–105, 4255: 4251: 4242: 4238: 4234: 4230: 4226: 4221: 4217: 4213: 4208: 4203: 4199: 4195: 4191: 4187: 4183: 4179: 4175: 4171: 4167: 4163: 4159: 4155: 4151: 4147: 4142: 4138: 4134: 4130: 4126: 4122: 4118: 4114: 4110: 4105: 4101: 4097: 4093: 4089: 4085: 4081: 4080: 4074: 4070: 4066: 4062: 4057: 4053: 4049: 4045: 4041: 4037: 4033: 4029: 4025: 4020: 4016: 4012: 4008: 4004: 4000: 3996: 3995: 3990: 3986: 3982: 3978: 3973: 3969: 3965: 3960: 3955: 3950: 3945: 3941: 3937: 3936: 3931: 3926: 3922: 3918: 3914: 3910: 3906: 3902: 3898: 3894: 3889: 3884: 3881:(4): 046107, 3880: 3876: 3872: 3867: 3863: 3859: 3855: 3851: 3847: 3842: 3838: 3834: 3829: 3824: 3820: 3816: 3815: 3809: 3805: 3801: 3797: 3793: 3788: 3783: 3779: 3775: 3774: 3768: 3764: 3760: 3756: 3752: 3747: 3743: 3739: 3735: 3731: 3727: 3723: 3719: 3716:(in German), 3715: 3714: 3708: 3703: 3698: 3688:on 2017-02-07 3684: 3677: 3676: 3671: 3667: 3663: 3659: 3654: 3649: 3645: 3641: 3637: 3633: 3632: 3627: 3623: 3619: 3615: 3610: 3605: 3601: 3597: 3592: 3588: 3584: 3580: 3576: 3572: 3568: 3563: 3558: 3554: 3550: 3549: 3543: 3539: 3535: 3531: 3527: 3523: 3519: 3514: 3509: 3506:(1): 016105, 3505: 3501: 3500: 3494: 3490: 3486: 3482: 3478: 3474: 3469: 3465: 3461: 3457: 3455:0-521-83663-8 3451: 3447: 3443: 3439: 3434: 3430: 3426: 3421: 3416: 3412: 3408: 3407: 3401: 3396: 3391: 3390: 3385: 3377: 3373: 3369: 3365: 3361: 3357: 3353: 3349: 3348:Combinatorica 3342: 3339: 3335: 3330: 3327: 3323: 3318: 3315: 3311: 3306: 3303: 3299: 3294: 3291: 3287: 3282: 3279: 3276:, p. 82. 3275: 3274:Harary (1972) 3270: 3267: 3261: 3260: 3255: 3252: 3245: 3242: 3237: 3235:9783764335885 3231: 3227: 3220: 3217: 3212: 3210:9780520030565 3206: 3202: 3195: 3192: 3187: 3183: 3179: 3175: 3171: 3167: 3163: 3159: 3155: 3148: 3145: 3140: 3136: 3131: 3126: 3122: 3118: 3117: 3112: 3106: 3103: 3099: 3095: 3090: 3087: 3083: 3079: 3078:Harary (1972) 3074: 3071: 3067: 3066:Harary (1972) 3061: 3058: 3055: 3050: 3047: 3043: 3038: 3035: 3029: 3024: 3020: 3016: 3012: 3008: 3007:Saks, Michael 3004: 2998: 2995: 2991: 2987: 2986:Harary (1972) 2982: 2979: 2974: 2970: 2966: 2962: 2958: 2952: 2948: 2944: 2940: 2936: 2932: 2928: 2924: 2917: 2914: 2910: 2906: 2902: 2901:Harary (1972) 2897: 2895: 2891: 2887: 2882: 2879: 2875: 2870: 2867: 2863: 2859: 2854: 2851: 2847: 2846:Harary (1972) 2842: 2839: 2834: 2830: 2826: 2822: 2817: 2812: 2808: 2804: 2803: 2795: 2791: 2787: 2783: 2778: 2773: 2770:(1): 51–229, 2769: 2765: 2764: 2759: 2755: 2754:Thomas, Robin 2751: 2750:Seymour, Paul 2747: 2743: 2737: 2734: 2730: 2729:A. J. Hoffman 2726: 2725:Harary (1972) 2721: 2718: 2713: 2709: 2705: 2701: 2696: 2691: 2687: 2683: 2679: 2672: 2669: 2666: 2661: 2659: 2655: 2651: 2647: 2642: 2639: 2635: 2630: 2627: 2623: 2622:Harary (1972) 2618: 2615: 2610: 2606: 2602: 2600:0-521-82151-7 2596: 2592: 2591: 2583: 2580: 2576: 2571: 2569:9783540261834 2565: 2561: 2560: 2552: 2549: 2545: 2544:Harary (1972) 2540: 2537: 2533: 2529: 2523: 2520: 2516: 2512: 2510:9780470393673 2506: 2502: 2501: 2493: 2491: 2487: 2483: 2479: 2478:Harary (1972) 2475: 2474:Krausz (1943) 2471: 2466: 2464: 2460: 2456: 2455:Harary (1972) 2451: 2449: 2447: 2443: 2439: 2434: 2432: 2428: 2422: 2420: 2416: 2412: 2405: 2401: 2396: 2390: 2386: 2381: 2375: 2371: 2364: 2360: 2355: 2345: 2341: 2330: 2326: 2317: 2309: 2307: 2305: 2301: 2297: 2293: 2287: 2279: 2277: 2269: 2265: 2250: 2246: 2235: 2219: 2215: 2199:in the graph 2190: 2180: 2176: 2169: 2165: 2158: 2154: 2141: 2131: 2127: 2102: 2096: 2092: 2081: 2077: 2062: 2058: 2049: 2047: 2045: 2041: 2028: 2024: 1987: 1983: 1971: 1966: 1960:Line digraphs 1959: 1957: 1955: 1951: 1945: 1940: 1934: 1919: 1917: 1915: 1897: 1893: 1884: 1882: 1880: 1879:rectification 1875: 1870: 1868: 1864: 1859: 1857: 1853: 1845: 1838: 1834: 1825: 1824:vertex degree 1818: 1812: 1804: 1799: 1797: 1794: 1780: 1777: 1773: 1765: 1760: 1756: 1747: 1738: 1729: 1725: 1716: 1710: 1706: 1701: 1693: 1692: 1691: 1689: 1663: 1660: 1657: 1645: 1639: 1633: 1627: 1624: 1615: 1609: 1603: 1600: 1594: 1588: 1585: 1582: 1575: 1574: 1573: 1571: 1564: 1562: 1560: 1532: 1525:. Check that 1496: 1493: 1482: 1478: 1469: 1460: 1456: 1452: 1435: 1434: 1433: 1430: 1425: 1421: 1416: 1413: 1409: 1405: 1401: 1397: 1390: 1388: 1382: 1378: 1374: 1370: 1366: 1357: 1350: 1348: 1341: 1337: 1336: 1335: 1332: 1281: 1273: 1269: 1262: 1258: 1251: 1247: 1242: 1217: 1210: 1205: 1203: 1201: 1196: 1192: 1167: 1164: 1161: 1158: 1147: 1143: 1140: 1125: 1121: 1116: 1114: 1110: 1106: 1102: 1097: 1091: 1085: 1081: 1076: 1072: 1064: 1062: 1058: 1053: 1044: 1039: 1035: 1031: 1030:perfect graph 1025: 1021: 1016: 1007: 1005: 996: 992: 987: 983: 982:rook's graphs 979: 975: 971: 967: 962: 955: 951: 946: 942: 933: 929: 922: 918: 914: 910: 904: 896: 889: 885:, except for 884: 877: 873: 869: 865: 859: 855: 851: 850:Johnson graph 847: 831: 824: 822: 820: 815: 808: 803: 795: 791: 790:diamond graph 783: 774: 768: 762: 758: 750: 745: 737: 736:diamond graph 732: 725: 720: 716: 712: 708: 705: 701: 697: 686: 674: 666: 661: 657: 648: 647:Cayley graphs 644: 640: 636: 632: 627: 623: 618: 610: 606: 599: 593: 589: 584: 576: 570: 566: 561: 553: 547: 543: 538: 534: 523: 517: 513: 502: 498: 490:vertices and 481: 478: 474: 470: 461: 457: 450: 446: 441: 433: 429: 428: 427: 424: 422: 416: 412: 403: 397: 393: 380: 375: 369: 362: 357: 353: 346: 341: 338: 334: 327: 322: 319: 312: 307: 305: 298: 296: 290: 278: 272: 268: 263: 254: 250: 245: 241: 240: 239: 235: 231: 218: 216: 214: 209: 207: 203: 199: 195: 191: 183: 179: 175: 171: 169: 168:derived graph 165: 164:adjoint graph 161: 157: 153: 149: 145: 141: 137: 133: 129: 128:Krausz (1943) 125: 121: 117: 112: 108: 96: 84: 74: 68: 59: 55: 51: 47: 40: 33: 19: 4331: 4328:"Line Graph" 4282: 4278: 4253: 4249: 4228: 4224: 4189: 4185: 4149: 4145: 4112: 4108: 4086:(1): 28–30, 4083: 4077: 4060: 4027: 4023: 3998: 3992: 3988: 3984: 3980: 3976: 3939: 3933: 3878: 3875:Phys. Rev. E 3874: 3853: 3849: 3818: 3817:, Series B, 3812: 3777: 3771: 3754: 3750: 3717: 3711: 3701: 3690:, retrieved 3683:the original 3675:Graph Theory 3674: 3635: 3629: 3599: 3595: 3552: 3546: 3503: 3497: 3472: 3437: 3410: 3404: 3394: 3354:(1): 89–94. 3351: 3347: 3341: 3329: 3317: 3305: 3293: 3281: 3269: 3257: 3244: 3225: 3219: 3200: 3194: 3153: 3147: 3120: 3114: 3105: 3089: 3073: 3060: 3049: 3037: 3021:(1): 61–79, 3018: 3014: 3011:Sós, Vera T. 2997: 2981: 2964: 2960: 2926: 2922: 2916: 2881: 2869: 2853: 2841: 2806: 2800: 2777:math/0212070 2767: 2761: 2736: 2720: 2685: 2681: 2671: 2641: 2629: 2617: 2589: 2582: 2559:Graph Theory 2558: 2551: 2539: 2522: 2514: 2499: 2414: 2410: 2403: 2399: 2388: 2384: 2373: 2369: 2362: 2358: 2353: 2343: 2339: 2328: 2324: 2315: 2313: 2289: 2267: 2263: 2248: 2244: 2233: 2217: 2213: 2207:with degree 2178: 2174: 2167: 2163: 2156: 2152: 2139: 2129: 2125: 2094: 2090: 2079: 2075: 2060: 2056: 2053: 2026: 2022: 1986:line digraph 1985: 1981: 1975: 1950:dipole graph 1943: 1938: 1935: 1923: 1895: 1891: 1888: 1885:Total graphs 1871: 1863:medial graph 1860: 1843: 1836: 1832: 1822:has maximum 1817:planar graph 1814: 1811:Medial graph 1795: 1784: 1758: 1754: 1745: 1727: 1723: 1708: 1704: 1686:is a finite 1681: 1568: 1548: 1531:vertex cover 1480: 1476: 1458: 1454: 1450: 1424:Lehot (1974) 1417: 1404:Sysło (1982) 1400:Lehot (1974) 1394: 1380: 1362: 1345: 1333: 1282: 1271: 1267: 1260: 1256: 1249: 1245: 1222: 1194: 1190: 1117: 1105:block graphs 1098: 1083: 1079: 1068: 1056: 1051: 1042: 1034:simple cycle 1023: 1019: 1008: 994: 990: 963: 953: 949: 941:Chang graphs 931: 927: 920: 916: 912: 908: 894: 887: 875: 871: 868:Kneser graph 857: 853: 845: 836: 816: 806: 793: 781: 772: 769: 760: 748: 741: 659: 655: 625: 621: 591: 587: 568: 564: 545: 541: 515: 511: 500: 496: 482:For a graph 459: 455: 448: 444: 425: 414: 410: 395: 391: 384: 367: 351: 336: 332: 317: 302: 286: 270: 266: 252: 248: 233: 229: 222: 210: 172: 167: 163: 159: 155: 151: 147: 143: 139: 135: 131: 115: 113: 106: 94: 82: 66: 53: 50:graph theory 46:mathematical 43: 4314:Line graphs 4182:Whitney, H. 3930:Wilf, H. S. 3003:Erdős, Paul 2797:. See also 2688:: 241–272, 2646:Jung (1966) 2482:Jung (1966) 2101:random walk 1920:Multigraphs 1900:of a graph 1776:empty graph 1700:cycle graph 1474:to a graph 1120:eigenvalues 819:multigraphs 770:As well as 685:Hamiltonian 673:Euler cycle 667:If a graph 611:of a graph 206:linear time 4346:Categories 3821:(1): 1–8, 3692:2013-11-08 3670:Harary, F. 3626:Harary, F. 3386:References 2573:. Also in 2532:p. 32 2322:, denoted 2292:hypergraph 1867:dual graph 1772:path graph 1743:is a claw 1715:isomorphic 1485:for which 1448:for which 1391:Algorithms 1307:for which 915:– 1)/2, 2( 864:complement 700:isomorphic 376:Properties 166:, and the 156:edge graph 150:, and the 136:derivative 116:line graph 54:line graph 39:path graph 32:line chart 4333:MathWorld 4299:120525090 3968:122866512 3757:: 75–85, 3742:119898359 3662:122473974 3602:: 31–34, 3587:119504507 3562:0912.4389 3513:0903.2181 3376:207006642 3368:1439-6912 3259:MathWorld 2905:claw-free 2794:119151552 2298:, so the 2000:and from 1852:gem graph 1661:… 1162:− 901:) as the 862:, or the 190:claw-free 152:θ-obrazom 144:conjugate 114:The name 4174:37062237 4137:38906333 3921:33054818 3913:12786436 3804:15036484 3538:19658772 3186:86300941 2907:and odd 2833:16049392 2756:(2006), 2712:32070167 2457:, p. 71. 2352:that do 2073:creates 1180:, where 939:are the 755:and the 552:matching 528:, minus 402:matching 277:adjacent 4272:1468075 4237:0891925 4216:2371086 4166:0509968 4129:0457293 4100:0678028 4069:0173255 4052:8880045 4044:2778727 4015:0424435 3893:Bibcode 3837:1159851 3796:0347690 3763:0018403 3734:0197353 3618:0297604 3567:Bibcode 3518:Bibcode 3489:1400011 3464:2120511 3429:0262097 3178:1018637 3158:Bibcode 3139:1172842 2973:0412042 2951:0323648 2943:2039666 2909:diamond 2825:2552645 2731:(1960). 2704:2022290 2609:1971819 2378:is the 2038:. The 1815:When a 1752:, then 1198:is the 1122:of the 970:perfect 923:– 2, 4) 883:spectra 866:of the 671:has an 522:degrees 299:Example 198:perfect 176: ( 44:In the 4297:  4270:  4235:  4214:  4172:  4164:  4135:  4127:  4098:  4067:  4050:  4042:  4013:  3966:  3919:  3911:  3835:  3802:  3794:  3761:  3740:  3732:  3660:  3616:  3585:  3536:  3487:  3462:  3452:  3427:  3374:  3366:  3232:  3207:  3184:  3176:  3137:  2971:  2949:  2941:  2831:  2823:  2792:  2710:  2702:  2607:  2597:  2566:  2507:  2395:clique 2082:− 1)/2 1933:nine. 1914:square 1850:, the 1667:  1529:has a 1509:, let 1241:clique 919:– 2), 848:, the 477:bridge 426:Thus, 316:Graph 244:vertex 162:, the 158:, the 146:, the 142:, the 138:, the 134:, the 56:of an 52:, the 4295:S2CID 4212:JSTOR 4170:S2CID 4133:S2CID 4048:S2CID 3964:S2CID 3917:S2CID 3883:arXiv 3800:S2CID 3738:S2CID 3686:(PDF) 3679:(PDF) 3658:S2CID 3583:S2CID 3557:arXiv 3508:arXiv 3372:S2CID 3182:S2CID 2939:JSTOR 2829:S2CID 2790:S2CID 2772:arXiv 2708:S2CID 2423:Notes 1770:is a 1702:then 1698:is a 1101:trees 1028:is a 972:(see 947:from 810:1,2,2 797:1,1,2 649:: if 486:with 261:; and 242:each 73:edges 3909:PMID 3534:PMID 3450:ISBN 3364:ISSN 3230:ISBN 3205:ISBN 2595:ISBN 2564:ISBN 2505:ISBN 2393:. A 2314:The 2236:− 1) 2226:and 2195:and 1952:and 1872:For 1422:and 1398:and 1118:All 1055:1,1, 907:srg( 860:, 2) 779:and 757:claw 734:The 607:The 440:path 275:are 196:are 178:1932 126:and 4287:doi 4258:doi 4202:hdl 4194:doi 4154:doi 4117:doi 4088:doi 4032:doi 4003:doi 3991:", 3954:hdl 3944:doi 3901:doi 3858:doi 3823:doi 3782:doi 3722:doi 3718:164 3648:hdl 3640:doi 3604:doi 3575:doi 3526:doi 3477:doi 3442:doi 3415:doi 3356:doi 3166:doi 3125:doi 3121:104 3023:doi 2931:doi 2811:doi 2807:309 2782:doi 2768:164 2690:doi 2686:373 2397:in 2382:of 2354:not 2318:of 2232:1/( 2146:in 2016:to 2008:in 2004:to 1996:to 1984:or 1847:1,5 1785:If 1766:If 1749:1,3 1739:If 1717:to 1694:If 1521:in 1384:1,3 1280:). 1231:in 1193:+ 2 1017:if 998:4,4 968:is 890:= 8 785:1,3 764:1,3 683:is 637:is 600:in 585:in 577:in 562:in 554:in 539:in 535:An 505:is 404:in 246:of 79:. 75:of 4348:: 4330:. 4316:, 4293:, 4281:, 4268:MR 4266:, 4248:, 4233:MR 4229:30 4227:, 4210:, 4200:, 4190:54 4188:, 4168:, 4162:MR 4160:, 4150:15 4148:, 4131:, 4125:MR 4123:, 4113:12 4111:, 4096:MR 4094:, 4084:15 4082:, 4065:MR 4046:, 4040:MR 4038:, 4028:66 4026:, 4011:MR 4009:, 3997:, 3962:, 3952:, 3940:16 3938:, 3915:, 3907:, 3899:, 3891:, 3879:67 3877:, 3873:, 3854:25 3852:, 3833:MR 3831:, 3819:55 3798:, 3792:MR 3790:, 3778:21 3776:, 3759:MR 3755:50 3753:, 3736:, 3730:MR 3728:, 3656:, 3646:, 3634:, 3614:MR 3612:, 3598:, 3581:, 3573:, 3565:, 3553:77 3551:, 3532:, 3524:, 3516:, 3504:80 3502:, 3485:MR 3483:, 3460:MR 3458:, 3448:, 3425:MR 3423:, 3409:, 3370:. 3362:. 3352:21 3350:. 3256:. 3180:, 3174:MR 3172:, 3164:, 3135:MR 3133:, 3119:, 3096:; 3019:41 3017:, 3009:; 3005:; 2969:MR 2965:17 2963:, 2954:. 2947:MR 2945:, 2937:, 2927:42 2925:, 2893:^ 2860:; 2827:, 2821:MR 2819:, 2805:, 2788:, 2780:, 2766:, 2760:, 2752:; 2748:; 2744:; 2706:, 2700:MR 2698:, 2684:, 2680:, 2657:^ 2648:; 2605:MR 2603:, 2530:, 2513:, 2489:^ 2476:; 2472:; 2462:^ 2445:^ 2430:^ 2276:. 2046:. 2025:= 2018:wx 2014:uv 1942:1, 1881:. 1793:. 1453:= 1410:. 961:. 878:,2 872:KG 717:. 423:. 208:. 170:. 111:. 105:L( 93:L( 81:L( 65:L( 4336:. 4302:. 4289:: 4283:7 4260:: 4254:9 4240:. 4219:. 4204:: 4196:: 4177:. 4156:: 4140:. 4119:: 4103:. 4090:: 4072:. 4055:. 4034:: 4018:. 4005:: 3999:2 3989:G 3985:H 3981:n 3979:, 3977:m 3971:. 3956:: 3946:: 3924:. 3903:: 3895:: 3885:: 3865:. 3860:: 3840:. 3825:: 3807:. 3784:: 3766:. 3745:. 3724:: 3706:. 3696:. 3665:. 3650:: 3642:: 3636:9 3621:. 3606:: 3600:2 3590:. 3577:: 3569:: 3559:: 3541:. 3528:: 3520:: 3510:: 3492:. 3479:: 3467:. 3444:: 3432:. 3417:: 3411:9 3399:. 3378:. 3358:: 3336:. 3324:. 3312:. 3300:. 3288:. 3262:. 3239:. 3214:. 3189:. 3168:: 3160:: 3142:. 3127:: 3100:. 3084:. 3068:. 3044:. 3032:. 3025:: 2992:. 2976:. 2933:: 2888:. 2876:. 2864:. 2836:. 2813:: 2784:: 2774:: 2692:: 2652:. 2636:. 2534:. 2484:. 2417:) 2415:G 2413:( 2411:L 2406:) 2404:G 2402:( 2400:D 2391:) 2389:G 2387:( 2385:L 2376:) 2374:G 2372:( 2370:D 2365:) 2363:G 2361:( 2359:D 2350:G 2346:) 2344:G 2342:( 2340:D 2335:G 2331:) 2329:G 2327:( 2325:D 2320:G 2274:G 2270:) 2268:G 2266:( 2264:L 2259:G 2255:G 2251:) 2249:G 2247:( 2245:L 2240:G 2234:k 2228:e 2224:d 2220:) 2218:G 2216:( 2214:L 2209:k 2205:v 2201:G 2197:e 2193:d 2185:G 2181:) 2179:G 2177:( 2175:L 2170:) 2168:k 2166:( 2164:O 2159:) 2157:k 2155:( 2153:O 2148:G 2144:e 2140:f 2136:v 2132:) 2130:G 2128:( 2126:L 2121:v 2117:e 2113:f 2109:e 2105:G 2097:) 2095:G 2093:( 2091:L 2086:G 2080:k 2078:( 2076:k 2071:G 2067:k 2063:) 2061:G 2059:( 2057:L 2036:G 2032:G 2027:w 2023:v 2010:G 2006:x 2002:w 1998:v 1994:u 1990:G 1978:G 1944:n 1939:K 1930:G 1926:G 1910:G 1906:G 1902:G 1898:) 1896:G 1894:( 1892:T 1844:K 1839:) 1837:G 1835:( 1833:L 1828:G 1820:G 1791:G 1787:G 1778:. 1768:G 1761:) 1759:G 1757:( 1755:L 1746:K 1741:G 1736:. 1734:G 1730:) 1728:G 1726:( 1724:L 1719:G 1711:) 1709:G 1707:( 1705:L 1696:G 1684:G 1664:. 1658:, 1655:) 1652:) 1649:) 1646:G 1643:( 1640:L 1637:( 1634:L 1631:( 1628:L 1625:, 1622:) 1619:) 1616:G 1613:( 1610:L 1607:( 1604:L 1601:, 1598:) 1595:G 1592:( 1589:L 1586:, 1583:G 1555:v 1551:S 1543:G 1539:v 1535:G 1527:S 1523:L 1519:v 1515:G 1511:S 1507:G 1503:L 1499:v 1487:G 1483:) 1481:G 1479:( 1477:L 1472:v 1465:G 1461:) 1459:G 1457:( 1455:L 1451:L 1446:G 1442:L 1438:L 1381:K 1329:G 1325:L 1321:L 1317:G 1313:G 1309:L 1305:G 1301:L 1297:L 1293:L 1289:L 1285:L 1278:G 1274:) 1272:G 1270:( 1268:L 1263:) 1261:G 1259:( 1257:L 1252:) 1250:G 1248:( 1246:L 1237:v 1233:G 1229:v 1225:G 1195:I 1191:A 1186:I 1182:J 1168:I 1165:2 1159:J 1153:T 1148:J 1144:= 1141:A 1131:A 1127:A 1094:G 1086:) 1084:G 1082:( 1080:L 1057:n 1052:K 1046:4 1043:K 1026:) 1024:G 1022:( 1020:L 1011:G 1000:) 995:K 993:( 991:L 959:) 957:8 954:K 952:( 950:L 937:) 935:8 932:K 930:( 928:L 921:n 917:n 913:n 911:( 909:n 898:8 895:K 888:n 876:n 858:n 856:( 854:J 841:n 839:K 807:K 794:K 782:K 776:3 773:K 761:K 752:3 749:K 693:G 689:G 681:G 677:G 669:G 662:) 660:G 658:( 656:L 651:G 630:. 628:) 626:G 624:( 622:L 613:G 604:. 602:G 594:) 592:G 590:( 588:L 579:G 571:) 569:G 567:( 565:L 556:G 548:) 546:G 544:( 542:L 532:. 530:m 526:G 518:) 516:G 514:( 512:L 507:m 503:) 501:G 499:( 497:L 492:m 488:n 484:G 466:G 462:) 460:G 458:( 456:L 451:) 449:G 447:( 445:L 436:G 417:) 415:G 413:( 411:L 406:G 398:) 396:G 394:( 392:L 387:G 370:) 368:G 354:) 352:G 337:G 333:G 318:G 293:G 283:. 281:G 273:) 271:G 269:( 267:L 259:G 255:) 253:G 251:( 249:L 236:) 234:G 232:( 230:L 225:G 185:G 109:) 107:G 101:G 97:) 95:G 89:G 85:) 83:G 77:G 69:) 67:G 61:G 41:. 34:. 20:)

Index

Conjugate (graph theory)
line chart
path graph
mathematical
graph theory
undirected graph
edges
Harary & Norman (1960)
Whitney (1932)
Krausz (1943)
Hassler Whitney
1932
connected graph
claw-free
bipartite graphs
perfect
forbidden subgraphs
linear time
line graphs of hypergraphs
vertex
adjacent
intersection graph
Graph G
Vertices in L(G) constructed from edges in G
Added edges in L(G)
The line graph L(G)
matching
independent set
connected graph
path

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.