Knowledge

Real-time kinematic positioning

Source 📝

31: 186: 112: 193:
In practice, RTK systems use a single base-station receiver and a number of mobile units. The base station re-broadcasts the phase of the carrier that it observes, and the mobile units compare their own phase measurements with the one received from the base station. There are several ways to transmit
124:
contained in the signal to an internally generated pseudorandom binary sequence. Since the satellite signal takes time to reach the receiver, the satellite's sequence is delayed in relation to the receiver's sequence. By increasingly delaying the receiver's sequence, the two sequences are eventually
236:
extend the use of RTK to a larger area containing a network of reference stations. Operational reliability and accuracy depend on the density and capabilities of the reference-station network. With network RTK, accuracy of 8mm + 0.5ppm horizontal and 15mm + 0.5 ppm vertical relative to the nearest
162:
As described in the previous section, the range to a satellite is essentially calculated by multiplying the carrier wavelength times the number of whole cycles between the satellite and the rover and adding the phase difference. Determining the number of cycles is non-trivial, since signals may be
213:
position to within millimeters, although their absolute position is accurate only to the same accuracy as the computed position of the base station. For RTK with a single base station, accuracy of 8mm + 1ppm (parts per million / 1mm per km) horizontal and 15mm + 1ppm vertical relative to the base
244:(CORS) network is a network of RTK base stations that broadcast corrections, usually over an Internet connection. Accuracy is increased in a CORS network, because more than one station helps ensure correct positioning and guards against a false initialization of a single base station. 263:
phase differences (or corrects their raw data) and performs the data processing using the differential corrections. In contrast, GNSS network architectures often make use of multiple reference stations. This approach allows a more precise modeling of distance-dependent
171:
The improvement possible using this technique is potentially very high if one continues to assume a 1% accuracy in locking. For instance, in the case of GPS, the coarse-acquisition (C/A) code, which is broadcast in the L1 signal, changes
176:
at 1.023 MHz, but the L1 carrier itself is 1575.42 MHz, which changes phase over a thousand times more often. A ±1% error in L1 carrier-phase measurement thus corresponds to a ±1.9 mm error in baseline estimation.
217:
Although these parameters limit the usefulness of the RTK technique for general navigation, the technique is perfectly suited to roles like surveying. In this case, the base station is located at a known surveyed location, often a
167:
problem results in centimeter precision. The error can be reduced with sophisticated statistical methods that compare the measurements from the C/A signals and by comparing the resulting ranges between multiple satellites.
128:
The accuracy of the resulting range measurement is essentially a function of the ability of the receiver's electronics to accurately process signals from the satellite, and additional error sources such as non-mitigated
214:
station can be achieved, depending on the device.  For example, with a base station 16 km (slightly less than 10 miles) away, relative horizontal error would be 8mm + 16mm = 24mm (slightly less than an inch).
119:
The distance between a satellite navigation receiver and a satellite can be calculated from the time it takes for a signal to travel from the satellite to the receiver. To calculate the delay, the receiver must align a
237:
station can be achieved, depending on the device. For example, with a base station 16 km (slightly less than 10 miles) away, relative horizontal error would be 8mm + 8mm = 16mm (roughly 5/8 of an inch).
163:
shifted in phase by one or more cycles. This results in an error equal to the error in the estimated number of cycles times the wavelength, which is 19 cm for the L1 signal. Solving this so-called
159:
as its signal, ignoring the information contained within. RTK uses a fixed base station and a rover to reduce the rover's position error. The base station transmits correction data to the rover.
255:(VRS), instead. The concept can help to satisfy this requirement using a network of reference stations. A typical CORS setup consists of a single reference station from which the 61:
in addition to the information content of the signal and relies on a single reference station or interpolated virtual station to provide real-time corrections, providing up to
884: 859: 828: 294: 697: 532: 222:, and the mobile units can then produce a highly accurate map by taking fixes relative to that point. RTK has also found uses in autodrive/autopilot systems, 844: 745: 869: 206:
equipment has a built-in UHF-band radio modem as a standard option. RTK provides accuracy enhancements up to about 20 km from the base station.
503:
RIETDORF, Anette; DAUB, Christopher; LOEF, Peter (2006). "Precise Positioning in Real-Time using Navigation Satellites and Telecommunication".
194:
a correction signal from base station to mobile station. The most popular way to achieve real-time, low-cost signal transmission is to use a
854: 1074: 833: 690: 424: 457: 615: 1069: 849: 730: 280:
errors. More specifically, a GNSS network decreases the dependence of the error budget on the distance of nearest antenna.
1079: 1023: 879: 864: 768: 750: 683: 669: 874: 773: 440:
Weiffenbach, G. C. (1967-12-31), "Tropospheric and Ionospheric Propagation Effects on Satellite Radio-Doppler Geodesy",
121: 106: 30: 760: 472: 34:
A surveyor uses a GNSS receiver with an RTK solution to accurately locate a parking stripe for a topographic survey.
1084: 300: 740: 305: 725: 185: 90: 508: 66: 639: 219: 17: 657: 706: 651: 50: 513: 1048: 265: 86: 347:"Feasibility of Providing High-Precision GNSS Correction Data through Non-Terrestrial Networks" 1033: 820: 783: 778: 453: 420: 368: 223: 134: 445: 358: 289: 150: 70: 202:. In most countries, certain frequencies are allocated specifically for RTK purposes. Most 561: 387: 277: 259:(or corrections) are sent to the rover receiver (i.e., the user). The user then forms the 227: 1038: 992: 260: 1063: 982: 916: 173: 54: 957: 156: 111: 58: 414: 1007: 1002: 997: 962: 799: 273: 195: 102: 1028: 987: 947: 942: 449: 269: 130: 73:). With reference to GPS in particular, the system is commonly referred to as 62: 663: 372: 363: 346: 27:
Satellite navigation technique used to enhance the precision of position data
1043: 967: 952: 900: 505:
PROCEEDINGS OF THE 3rd WORKSHOP ON POSITIONING, NAVIGATION AND COMMUNICATION
203: 138: 82: 46: 654:
Global Map Coverage of Ground Based Augmentation Reference Beacons (GBAS).
251:(VRN) can similarly enhance precision without using a base station, using 972: 838: 807: 479: 256: 199: 977: 735: 675: 310: 155:
RTK follows the same general concept, but uses the satellite signal's
720: 315: 645: 921: 590:
US Department of Commerce, NOAA; US Department of Commerce, NOAA.
325: 320: 184: 110: 29: 660:
User Guidelines for Single Base Real Time GNSS Positioning (NOAA)
591: 679: 648:
Global Network of Continuously Operating Reference Stations.
345:
Boquet, Guillem; Vilajosana, Xavi; Martinez, Borja (2024).
666:
Manual to integrate RTK Receivers into UAVs and Robotics
672:
An article by people involved in the early days of RTK
642:
GNSS, RTK and Satellite Positioning concepts in depth.
473:"Geo-Positioning, GPS, DGPS, and Positioning Accuracy" 533:"Datasheet - Trimble R12 GNSS System - English (US)" 351:
IEEE Transactions on Instrumentation and Measurement
1016: 935: 909: 893: 819: 792: 759: 713: 444:, University of Toronto Press, pp. 339–352, 295:European Geostationary Navigation Overlay Service 691: 8: 698: 684: 676: 592:"National Geodetic Survey - CORS Homepage" 512: 362: 209:This allows the units to calculate their 242:Continuously Operating Reference Station 49:to correct for common errors in current 18:Continuously operating reference station 337: 623:Colorado Department of Transportation 53:systems. It uses measurements of the 7: 526: 524: 442:Electromagnetic Distance Measurement 562:"RTK Networks – What, Why, Where?" 25: 137:, multipath, satellite clock and 39:Real-time kinematic positioning 1: 1024:Geographic information system 769:Personal navigation assistant 531:Trimble Inc. (October 2020). 419:. Artech House. p. 102. 388:"Introduction to Network RTK" 774:Automotive navigation system 122:pseudorandom binary sequence 107:GNSS positioning calculation 51:satellite navigation (GNSS) 1101: 571:. USSLS/CGSIC Meeting 2009 301:Galileo positioning system 253:virtual reference stations 151:GPS carrier-phase tracking 148: 100: 1075:Global Positioning System 450:10.3138/9781442631823-030 394:. IAG Working Group 4.5.1 306:Global Positioning System 249:Virtual Reference Network 81:. It has applications in 75:carrier-phase enhancement 413:Mannings, Robin (2008). 364:10.1109/TIM.2024.3453319 181:Practical considerations 165:integer ambiguity search 45:) is the application of 228:machine control systems 91:unmanned aerial vehicle 416:Ubiquitous Positioning 268:principally caused by 190: 145:Carrier-phase tracking 116: 87:hydrographic surveying 35: 1070:Geomatics engineering 640:RTK Detailed Concepts 188: 114: 33: 1080:Real-time technology 707:Satellite navigation 616:"CDOT Survey Manual" 485:on November 22, 2009 386:Wanninger, Lambert. 1049:GPS animal tracking 936:Geographic services 230:and similar roles. 198:, typically in the 135:tropospheric delays 560:Gakstatter, Eric. 191: 117: 36: 1085:Wireless locating 1057: 1056: 821:GNSS augmentation 276:refractions, and 266:systematic errors 224:precision farming 16:(Redirected from 1092: 865:QZSS / Michibiki 700: 693: 686: 677: 627: 626: 620: 612: 606: 605: 603: 602: 596:www.ngs.noaa.gov 587: 581: 580: 578: 576: 566: 557: 551: 550: 548: 546: 537: 528: 519: 518: 516: 500: 494: 493: 491: 490: 484: 478:. Archived from 477: 469: 463: 462: 437: 431: 430: 410: 404: 403: 401: 399: 383: 377: 376: 366: 342: 290:Differential GPS 57:of the signal's 21: 1100: 1099: 1095: 1094: 1093: 1091: 1090: 1089: 1060: 1059: 1058: 1053: 1012: 931: 905: 889: 815: 812:CellGuide ACLYS 788: 755: 709: 704: 664:RTK Integration 636: 631: 630: 618: 614: 613: 609: 600: 598: 589: 588: 584: 574: 572: 564: 559: 558: 554: 544: 542: 535: 530: 529: 522: 514:10.1.1.581.2400 502: 501: 497: 488: 486: 482: 475: 471: 470: 466: 460: 439: 438: 434: 427: 412: 411: 407: 397: 395: 385: 384: 380: 344: 343: 339: 334: 286: 278:satellite orbit 183: 153: 147: 109: 99: 28: 23: 22: 15: 12: 11: 5: 1098: 1096: 1088: 1087: 1082: 1077: 1072: 1062: 1061: 1055: 1054: 1052: 1051: 1046: 1041: 1039:Geoinformatics 1036: 1031: 1026: 1020: 1018: 1017:Related topics 1014: 1013: 1011: 1010: 1005: 1000: 995: 993:NASA WorldWind 990: 985: 980: 975: 970: 965: 960: 955: 950: 945: 939: 937: 933: 932: 930: 929: 924: 919: 913: 911: 907: 906: 904: 903: 897: 895: 891: 890: 888: 887: 882: 877: 872: 867: 862: 857: 852: 847: 842: 836: 831: 825: 823: 817: 816: 814: 813: 810: 805: 802: 796: 794: 790: 789: 787: 786: 781: 776: 771: 765: 763: 757: 756: 754: 753: 748: 743: 738: 733: 728: 723: 717: 715: 711: 710: 705: 703: 702: 695: 688: 680: 674: 673: 670:History of RTK 667: 661: 655: 649: 643: 635: 634:External links 632: 629: 628: 607: 582: 552: 520: 495: 464: 458: 432: 426:978-1596931046 425: 405: 378: 336: 335: 333: 330: 329: 328: 323: 318: 313: 308: 303: 298: 292: 285: 282: 182: 179: 146: 143: 98: 95: 83:land surveying 26: 24: 14: 13: 10: 9: 6: 4: 3: 2: 1097: 1086: 1083: 1081: 1078: 1076: 1073: 1071: 1068: 1067: 1065: 1050: 1047: 1045: 1042: 1040: 1037: 1035: 1032: 1030: 1027: 1025: 1022: 1021: 1019: 1015: 1009: 1006: 1004: 1001: 999: 996: 994: 991: 989: 986: 984: 983:OpenStreetMap 981: 979: 976: 974: 971: 969: 966: 964: 961: 959: 956: 954: 951: 949: 946: 944: 941: 940: 938: 934: 928: 925: 923: 920: 918: 915: 914: 912: 908: 902: 899: 898: 896: 892: 886: 883: 881: 878: 876: 873: 871: 868: 866: 863: 861: 858: 856: 853: 851: 848: 846: 843: 840: 837: 835: 832: 830: 827: 826: 824: 822: 818: 811: 809: 806: 803: 801: 798: 797: 795: 791: 785: 782: 780: 777: 775: 772: 770: 767: 766: 764: 762: 758: 752: 749: 747: 746:IRNSS / NAVIC 744: 742: 739: 737: 734: 732: 729: 727: 724: 722: 719: 718: 716: 712: 708: 701: 696: 694: 689: 687: 682: 681: 678: 671: 668: 665: 662: 659: 656: 653: 650: 647: 644: 641: 638: 637: 633: 624: 617: 611: 608: 597: 593: 586: 583: 570: 563: 556: 553: 541: 534: 527: 525: 521: 515: 510: 506: 499: 496: 481: 474: 468: 465: 461: 459:9781442631823 455: 451: 447: 443: 436: 433: 428: 422: 418: 417: 409: 406: 393: 392:www.wasoft.de 389: 382: 379: 374: 370: 365: 360: 356: 352: 348: 341: 338: 331: 327: 324: 322: 319: 317: 314: 312: 309: 307: 304: 302: 299: 296: 293: 291: 288: 287: 283: 281: 279: 275: 271: 267: 262: 258: 254: 250: 245: 243: 238: 235: 231: 229: 225: 221: 215: 212: 207: 205: 201: 197: 187: 180: 178: 175: 169: 166: 160: 158: 152: 144: 142: 140: 136: 132: 126: 123: 113: 108: 104: 96: 94: 92: 88: 84: 80: 76: 72: 68: 64: 60: 56: 52: 48: 44: 40: 32: 19: 958:Google Earth 926: 622: 610: 599:. Retrieved 595: 585: 573:. Retrieved 568: 555: 543:. Retrieved 539: 504: 498: 487:. Retrieved 480:the original 467: 441: 435: 415: 408: 396:. Retrieved 391: 381: 354: 350: 340: 274:tropospheric 252: 248: 246: 241: 239: 233: 232: 216: 210: 208: 192: 170: 164: 161: 157:carrier wave 154: 127: 118: 93:navigation. 78: 74: 59:carrier wave 42: 38: 37: 1008:Yandex Maps 1003:Yahoo! Maps 998:ViaMichelin 963:Google Maps 804:SiRFatlasIV 800:SiRFstarIII 779:GPS tracker 575:14 February 569:www.gps.gov 398:14 February 270:ionospheric 234:Network RTK 204:land-survey 196:radio modem 131:ionospheric 115:RTK concept 103:GPS signals 1064:Categories 1029:Geocaching 988:Petal Maps 948:Baidu Maps 943:Apple Maps 910:Technology 784:GPS logger 658:Guidelines 601:2018-12-11 489:2006-06-20 332:References 149:See also: 101:See also: 97:Background 63:centimetre 1044:Geomatics 1034:Geocoding 968:Here WeGo 953:Bing Maps 894:Protocols 841:(retired) 509:CiteSeerX 373:0018-9456 220:benchmark 189:RTK setup 139:ephemeris 125:aligned. 89:, and in 47:surveying 973:MapQuest 875:StarFire 870:SouthPAN 793:Chipsets 652:GBAS Map 646:CORS Map 545:March 3, 357:: 1–15. 284:See also 257:raw data 211:relative 200:UHF Band 141:errors. 67:accuracy 978:OpenCPN 761:Devices 736:GLONASS 731:Galileo 714:Systems 625:. 2021. 540:Trimble 311:GLONASS 297:(EGNOS) 261:carrier 65:-level 721:BeiDou 511:  456:  423:  371:  316:BeiDou 922:S-GPS 917:A-GPS 860:NTRIP 845:JPALS 839:GPS·C 834:GAGAN 829:EGNOS 726:DORIS 619:(PDF) 565:(PDF) 536:(PDF) 483:(PDF) 476:(PDF) 326:NTRIP 321:NavIC 174:phase 79:CPGPS 77:, or 69:(see 55:phase 901:NMEA 885:SDCM 880:WAAS 855:MSAS 850:LAAS 751:QZSS 577:2018 547:2024 454:ISBN 421:ISBN 400:2018 369:ISSN 272:and 133:and 105:and 71:DGPS 927:RTK 808:MTK 741:GPS 446:doi 359:doi 43:RTK 1066:: 621:. 594:. 567:. 538:. 523:^ 507:. 452:, 390:. 367:. 355:73 353:. 349:. 247:A 240:A 226:, 85:, 699:e 692:t 685:v 604:. 579:. 549:. 517:. 492:. 448:: 429:. 402:. 375:. 361:: 41:( 20:)

Index

Continuously operating reference station

surveying
satellite navigation (GNSS)
phase
carrier wave
centimetre
accuracy
DGPS
land surveying
hydrographic surveying
unmanned aerial vehicle
GPS signals
GNSS positioning calculation

pseudorandom binary sequence
ionospheric
tropospheric delays
ephemeris
GPS carrier-phase tracking
carrier wave
phase

radio modem
UHF Band
land-survey
benchmark
precision farming
machine control systems
raw data

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.