Knowledge (XXG)

Cosmic wind

Source 📝

745: 709: 733: 721: 155:
of ultraviolet star forming galaxies, the outflow velocity and mass loading factor of the wind, scale with the star formation rate (SFR) and stellar mass of the galaxy. The surface area of these winds can be estimated by finding the radius, in the case of a spherically symmetric thin shell, the
138:
to observe this galaxy, and they noticed that the light surrounding the accretion disk was rotating at similar speeds, proving that accretion disks do release winds. The investigation of the origin and regulating mechanisms of the wind is an active research topic.
38:. Although it easily pushes low density gas and dust clouds, it cannot easily push high density clouds. As the cosmic winds start to push the clouds, they start to separate and start looking like taffy being pulled apart. It has a primary composition of 130:. Before 2007, this was only theorized to occur but several physicists including an astrophysicist named Andrew Robinson analyzed the accretion disk of galaxy that is about 3 billion light years away from the 264: 90:
which is also further increased by cosmic rays. It is a combination of these hot and cooling flows that cause cosmic wind. In smaller stars, such as the Sun, the wind comes from the Sun's
58:. Because new stars and planets form from gases, the cosmic winds that push the gases away are preventing new stars from forming and are ultimately playing a role in galaxy evolution. 625: 333: 297: 387: 360: 407: 82:, which shoot out and help push gas out of the halo and disk of its galaxy. In these supernovae, these winds are a result of the conversion of the supernova's 780: 537: 479: 159: 601: 699: 765: 775: 135: 505: 119: 106:
The presence of cosmic wind in the vicinity of a black hole can be noted through the meticulous inspection of
560: 444: 785: 770: 665: 749: 439: 35: 737: 655: 619: 449: 419: 31: 683: 607: 597: 513: 302: 269: 713: 673: 27: 365: 338: 392: 107: 669: 434: 111: 91: 87: 83: 43: 538:"New Hubble image shows cosmic wind creating "Pillars of Destruction" | Astronomy.com" 759: 148: 67: 725: 424: 71: 480:"Dust pillars of destruction reveal impact of cosmic wind on galaxy evolution" 429: 95: 79: 55: 687: 678: 643: 611: 517: 565: 454: 131: 47: 152: 114:
surrounding said black hole. These features are commonly seen through
591: 123: 75: 51: 39: 23: 720: 660: 127: 115: 259:{\displaystyle M_{wind}=4{\pi }r_{wind}^{2}f_{cov}N_{H}m_{H}\mu } 50:. It can be caused by orbital motion of gas in the cluster of a 644:"Accelerating galaxy winds during the big bang of starbursts" 147:
A method used to calculate these winds is done by using the
697: 395: 368: 341: 305: 272: 162: 401: 381: 354: 327: 291: 258: 648:Monthly Notices of the Royal Astronomical Society 66:These winds come from the thermal expansion of 506:"Blowhard Galaxies and the Great Cosmic Wind" 8: 624:: CS1 maint: multiple names: authors list ( 362: the column density of Hydrogen atoms, 561:"Black Holes Launch Powerful Cosmic Winds" 389: the mass of the hydrogen atoms, and 677: 659: 394: 373: 367: 346: 340: 310: 304: 277: 271: 247: 237: 221: 211: 197: 188: 167: 161: 704: 467: 42:ejected from large stars and sometimes 617: 473: 471: 637: 635: 585: 583: 555: 553: 7: 409: is the mean molecular weight. 78:stars and are further increased by 16:Cosmic stream of charged particles 14: 781:Free-floating substellar objects 743: 731: 719: 707: 642:Hayes, Matthew J. (2023-02-01). 593:Cosmic winds and the heliosphere 590:Hrsg., Jokipii, Jack R. (1997). 299: is the covering fraction, 110:features in the spectra of the 478:Shelton, Jim (July 27, 2015). 1: 54:, or can be ejected from a 802: 596:. Univ. of Arizona Press. 136:William Herschel Telescope 120:Chandra X-ray Observatory 328:{\displaystyle r_{wind}} 156:formula to find this is 32:interstellar dust clouds 292:{\displaystyle f_{cov}} 118:telescopes such as the 679:10.1093/mnrasl/slac135 403: 383: 356: 329: 293: 260: 94:and is referred to as 445:Colliding-wind binary 404: 384: 382:{\displaystyle m_{H}} 357: 355:{\displaystyle N_{H}} 330: 294: 261: 402:{\displaystyle \mu } 393: 366: 339: 303: 270: 160: 34:of low density into 766:Astronomical events 670:2023MNRAS.519L..26H 440:Stellar-wind bubble 216: 36:intergalactic space 776:Interstellar media 450:Pulsar wind nebula 420:Galactic superwind 399: 379: 352: 335: the radius, 325: 289: 256: 193: 569:. 5 November 2007 28:charged particles 793: 748: 747: 746: 736: 735: 734: 724: 723: 712: 711: 710: 703: 692: 691: 681: 663: 639: 630: 629: 623: 615: 587: 578: 577: 575: 574: 557: 548: 547: 545: 544: 534: 528: 527: 525: 524: 501: 495: 494: 492: 490: 475: 408: 406: 405: 400: 388: 386: 385: 380: 378: 377: 361: 359: 358: 353: 351: 350: 334: 332: 331: 326: 324: 323: 298: 296: 295: 290: 288: 287: 265: 263: 262: 257: 252: 251: 242: 241: 232: 231: 215: 210: 192: 181: 180: 149:absorption lines 134:. They used the 801: 800: 796: 795: 794: 792: 791: 790: 756: 755: 754: 744: 742: 732: 730: 718: 708: 706: 698: 696: 695: 641: 640: 633: 616: 604: 589: 588: 581: 572: 570: 559: 558: 551: 542: 540: 536: 535: 531: 522: 520: 503: 502: 498: 488: 486: 477: 476: 469: 464: 459: 415: 391: 390: 369: 364: 363: 342: 337: 336: 306: 301: 300: 273: 268: 267: 243: 233: 217: 163: 158: 157: 145: 108:absorption line 104: 64: 48:exploding stars 17: 12: 11: 5: 799: 797: 789: 788: 783: 778: 773: 768: 758: 757: 753: 752: 740: 728: 716: 694: 693: 654:(1): L26–L31. 631: 602: 579: 549: 529: 504:Cray, Daniel. 496: 466: 465: 463: 460: 458: 457: 452: 447: 442: 437: 435:Planetary wind 432: 427: 422: 416: 414: 411: 398: 376: 372: 349: 345: 322: 319: 316: 313: 309: 286: 283: 280: 276: 266: , where 255: 250: 246: 240: 236: 230: 227: 224: 220: 214: 209: 206: 203: 200: 196: 191: 187: 184: 179: 176: 173: 170: 166: 144: 141: 112:accretion disk 103: 100: 88:kinetic energy 84:thermal energy 68:galactic halos 63: 60: 44:thermal energy 30:that can push 22:is a powerful 15: 13: 10: 9: 6: 4: 3: 2: 798: 787: 784: 782: 779: 777: 774: 772: 769: 767: 764: 763: 761: 751: 741: 739: 729: 727: 722: 717: 715: 705: 701: 689: 685: 680: 675: 671: 667: 662: 657: 653: 649: 645: 638: 636: 632: 627: 621: 613: 609: 605: 603:0-8165-1825-4 599: 595: 594: 586: 584: 580: 568: 567: 562: 556: 554: 550: 539: 533: 530: 519: 515: 511: 507: 500: 497: 485: 481: 474: 472: 468: 461: 456: 453: 451: 448: 446: 443: 441: 438: 436: 433: 431: 428: 426: 423: 421: 418: 417: 412: 410: 396: 374: 370: 347: 343: 320: 317: 314: 311: 307: 284: 281: 278: 274: 253: 248: 244: 238: 234: 228: 225: 222: 218: 212: 207: 204: 201: 198: 194: 189: 185: 182: 177: 174: 171: 168: 164: 154: 150: 142: 140: 137: 133: 129: 125: 121: 117: 113: 109: 101: 99: 97: 93: 89: 85: 81: 77: 73: 69: 61: 59: 57: 53: 49: 45: 41: 37: 33: 29: 25: 21: 750:Solar System 651: 647: 592: 571:. Retrieved 564: 541:. Retrieved 532: 521:. Retrieved 509: 499: 489:December 31, 487:. Retrieved 483: 425:Stellar wind 146: 143:Calculations 105: 65: 19: 18: 786:Black holes 771:Cosmic dust 738:Outer space 102:Observation 80:cosmic rays 62:Description 20:Cosmic wind 760:Categories 661:2210.11495 573:2016-09-28 543:2016-09-28 523:2016-09-28 462:References 430:Solar wind 96:solar wind 56:black hole 26:stream of 714:Astronomy 688:0035-8711 620:cite book 612:246985772 566:Space.com 518:0040-781X 455:Superwind 397:μ 254:μ 190:π 153:redshifts 151:. At low 132:Milky Way 484:YaleNews 413:See also 700:Portals 666:Bibcode 40:photons 686:  610:  600:  516:  126:, and 124:NuSTAR 92:corona 52:galaxy 24:cosmic 726:Stars 656:arXiv 128:NICER 116:X-ray 86:into 46:from 684:ISSN 626:link 608:OCLC 598:ISBN 514:ISSN 510:Time 491:2017 74:and 674:doi 652:519 70:in 762:: 682:. 672:. 664:. 650:. 646:. 634:^ 622:}} 618:{{ 606:. 582:^ 563:. 552:^ 512:. 508:. 482:. 470:^ 122:, 98:. 702:: 690:. 676:: 668:: 658:: 628:) 614:. 576:. 546:. 526:. 493:. 375:H 371:m 348:H 344:N 321:d 318:n 315:i 312:w 308:r 285:v 282:o 279:c 275:f 249:H 245:m 239:H 235:N 229:v 226:o 223:c 219:f 213:2 208:d 205:n 202:i 199:w 195:r 186:4 183:= 178:d 175:n 172:i 169:w 165:M 76:B 72:O

Index

cosmic
charged particles
interstellar dust clouds
intergalactic space
photons
thermal energy
exploding stars
galaxy
black hole
galactic halos
O
B
cosmic rays
thermal energy
kinetic energy
corona
solar wind
absorption line
accretion disk
X-ray
Chandra X-ray Observatory
NuSTAR
NICER
Milky Way
William Herschel Telescope
absorption lines
redshifts
Galactic superwind
Stellar wind
Solar wind

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.