Knowledge (XXG)

Copeland–Erdős constant

Source 📝

270: 733: 147: 655: 516: 399: 51: 587: 457: 426: 340: 837: 607: 560: 536: 299: 39: 674: 880: 657:
satisfies these conditions, so the constant 0.003712192634435363748597110122136... is normal in base 10, and 0.003101525354661104...
940: 265:{\displaystyle \displaystyle \sum _{n=1}^{\infty }p_{n}10^{-\left(n+\sum _{k=1}^{n}\lfloor \log _{10}{p_{k}}\rfloor \right)}} 765: 930: 612: 828: 538:
is any natural number greater than or equal to 2, then the constant obtained by concatenating "0." with the
131: 55: 935: 925: 73: 771: 466: 349: 63: 294: 898: 876: 59: 47: 901: 846: 565: 435: 404: 318: 791:
Copeland and Erdős considered 1 a prime, and they defined the constant as 0.12357111317...
72:
By a similar argument, any constant created by concatenating "0." with all primes in an
69:
is a sum of at most six primes. It also follows directly from its normality (see below).
592: 545: 521: 460: 315:
Copeland and Erdős's proof that their constant is normal relies only on the fact that
919: 869: 832: 135: 127: 851: 864: 287: 123:, so the concatenated primes contain arbitrarily long sequences of the digit zero. 25: 768:: the truncated value of this constant multiplied by the appropriate power of 10. 860: 539: 906: 28:
in order. Its value, using the modern definition of prime, is approximately
343: 88: 66: 21: 103: + 1. By Dirichlet's theorem, the arithmetic progression 728:{\displaystyle \displaystyle \sum _{n=1}^{\infty }b^{-p_{n}},\,} 95:
and to 10, will be irrational; for example, primes of the form 4
303: 34: 774:: concatenating all natural numbers, not just primes. 678: 677: 615: 595: 568: 548: 524: 469: 438: 407: 352: 321: 151: 150: 868: 727: 649: 601: 581: 554: 530: 510: 451: 420: 393: 334: 264: 52:Dirichlet's theorem on arithmetic progressions 838:Bulletin of the American Mathematical Society 800: 650:{\displaystyle \lfloor n(\log n)^{2}\rfloor } 8: 644: 616: 251: 223: 811: 138:in 1946 (hence the name of the constant). 875:(5th ed.), Oxford University Press, 850: 723: 712: 704: 694: 683: 676: 638: 614: 594: 573: 567: 547: 523: 487: 474: 468: 443: 437: 412: 406: 370: 357: 351: 326: 320: 244: 239: 230: 217: 206: 187: 177: 167: 156: 149: 871:An Introduction to the Theory of Numbers 32:0.235711131719232931374143... (sequence 784: 459:is any strictly increasing sequence of 20:is the concatenation of "0." with the 7: 835:(1946), "Note on Normal Numbers", 695: 168: 14: 432:prime number. More generally, if 511:{\displaystyle s_{n}=n^{1+o(1)}} 394:{\displaystyle p_{n}=n^{1+o(1)}} 852:10.1090/S0002-9904-1946-08657-7 115:, and those primes are also in 635: 622: 503: 497: 386: 380: 126:In base 10, the constant is a 58:(Hardy and Wright, p. 113) or 1: 752:th digit is 1 if and only if 738:which can be written in base 609:. For example, the sequence 742:as 0.0110101000101000101... 957: 766:Smarandache–Wellin numbers 50:; this can be proven with 902:"Copeland-Erdos Constant" 801:Copeland & Erdős 1946 756:is prime, is irrational. 141:The constant is given by 111:contains primes for all 812:Hardy & Wright 1979 562:representations of the 132:Arthur Herbert Copeland 107: · 10 +  24:representations of the 18:Copeland–Erdős constant 941:Mathematical constants 729: 699: 651: 603: 583: 556: 532: 512: 453: 422: 395: 336: 266: 222: 172: 74:arithmetic progression 772:Champernowne constant 730: 679: 661:is normal in base 7. 652: 604: 589:'s is normal in base 584: 582:{\displaystyle s_{n}} 557: 533: 513: 454: 452:{\displaystyle s_{n}} 423: 421:{\displaystyle p_{n}} 396: 337: 335:{\displaystyle p_{n}} 267: 202: 152: 675: 613: 593: 566: 546: 522: 467: 436: 405: 350: 319: 148: 56:Bertrand's postulate 344:strictly increasing 130:, a fact proven by 99: + 1 or 8 931:Irrational numbers 899:Weisstein, Eric W. 725: 724: 664:In any given base 647: 599: 579: 552: 528: 508: 449: 418: 391: 332: 295:continued fraction 262: 261: 602:{\displaystyle b} 555:{\displaystyle b} 531:{\displaystyle b} 311:Related constants 948: 912: 911: 885: 874: 855: 854: 815: 809: 803: 798: 792: 789: 734: 732: 731: 726: 719: 718: 717: 716: 698: 693: 656: 654: 653: 648: 643: 642: 608: 606: 605: 600: 588: 586: 585: 580: 578: 577: 561: 559: 558: 553: 537: 535: 534: 529: 517: 515: 514: 509: 507: 506: 479: 478: 458: 456: 455: 450: 448: 447: 427: 425: 424: 419: 417: 416: 400: 398: 397: 392: 390: 389: 362: 361: 341: 339: 338: 333: 331: 330: 306: 271: 269: 268: 263: 260: 259: 258: 254: 250: 249: 248: 235: 234: 221: 216: 182: 181: 171: 166: 60:Ramare's theorem 46:The constant is 37: 956: 955: 951: 950: 949: 947: 946: 945: 916: 915: 897: 896: 893: 883: 859: 845:(10): 857–860, 829:Copeland, A. H. 827: 824: 819: 818: 810: 806: 799: 795: 790: 786: 781: 762: 747: 708: 700: 673: 672: 660: 634: 611: 610: 591: 590: 569: 564: 563: 544: 543: 520: 519: 483: 470: 465: 464: 461:natural numbers 439: 434: 433: 408: 403: 402: 366: 353: 348: 347: 322: 317: 316: 313: 298: 280: 240: 226: 195: 191: 183: 173: 146: 145: 33: 12: 11: 5: 954: 952: 944: 943: 938: 933: 928: 918: 917: 914: 913: 892: 891:External links 889: 888: 887: 881: 857: 823: 820: 817: 816: 804: 793: 783: 782: 780: 777: 776: 775: 769: 761: 758: 743: 736: 735: 722: 715: 711: 707: 703: 697: 692: 689: 686: 682: 658: 646: 641: 637: 633: 630: 627: 624: 621: 618: 598: 576: 572: 551: 527: 505: 502: 499: 496: 493: 490: 486: 482: 477: 473: 446: 442: 415: 411: 388: 385: 382: 379: 376: 373: 369: 365: 360: 356: 329: 325: 312: 309: 278: 273: 272: 257: 253: 247: 243: 238: 233: 229: 225: 220: 215: 212: 209: 205: 201: 198: 194: 190: 186: 180: 176: 170: 165: 162: 159: 155: 44: 43: 13: 10: 9: 6: 4: 3: 2: 953: 942: 939: 937: 936:Prime numbers 934: 932: 929: 927: 924: 923: 921: 909: 908: 903: 900: 895: 894: 890: 884: 882:0-19-853171-0 878: 873: 872: 866: 865:Wright, E. M. 862: 858: 853: 848: 844: 840: 839: 834: 830: 826: 825: 821: 814:, p. 112 813: 808: 805: 802: 797: 794: 788: 785: 778: 773: 770: 767: 764: 763: 759: 757: 755: 751: 746: 741: 720: 713: 709: 705: 701: 690: 687: 684: 680: 671: 670: 669: 667: 662: 639: 631: 628: 625: 619: 596: 574: 570: 549: 541: 525: 500: 494: 491: 488: 484: 480: 475: 471: 462: 444: 440: 431: 413: 409: 383: 377: 374: 371: 367: 363: 358: 354: 345: 327: 323: 310: 308: 305: 301: 296: 291: 289: 285: 281: 255: 245: 241: 236: 231: 227: 218: 213: 210: 207: 203: 199: 196: 192: 188: 184: 178: 174: 163: 160: 157: 153: 144: 143: 142: 139: 137: 133: 129: 128:normal number 124: 122: 119: +  118: 114: 110: 106: 102: 98: 94: 90: 86: 82: 79: +  78: 75: 70: 68: 65: 61: 57: 53: 49: 41: 36: 31: 30: 29: 27: 26:prime numbers 23: 19: 905: 870: 861:Hardy, G. H. 842: 836: 807: 796: 787: 753: 749: 744: 739: 737: 665: 663: 429: 314: 292: 288:prime number 283: 276: 274: 140: 125: 120: 116: 112: 108: 104: 100: 96: 92: 84: 80: 76: 71: 45: 17: 15: 668:the number 62:that every 926:Paul Erdős 920:Categories 779:References 748:where the 463:such that 136:Paul Erdős 48:irrational 907:MathWorld 867:(1979) , 833:Erdős, P. 706:− 696:∞ 681:∑ 645:⌋ 629:⁡ 617:⌊ 252:⌋ 237:⁡ 224:⌊ 204:∑ 189:− 169:∞ 154:∑ 760:See also 401:, where 83:, where 822:Sources 428:is the 304:A030168 302::  282:is the 89:coprime 67:integer 38:in the 35:A033308 22:base 10 879:  275:where 297:is ( 877:ISBN 540:base 518:and 346:and 300:OEIS 293:Its 134:and 64:even 40:OEIS 16:The 847:doi 626:log 342:is 307:). 286:th 228:log 91:to 87:is 54:or 922:: 904:. 863:; 843:52 841:, 831:; 290:. 232:10 185:10 117:cd 105:dn 77:dn 42:). 910:. 886:. 856:. 849:: 754:n 750:n 745:b 740:b 721:, 714:n 710:p 702:b 691:1 688:= 685:n 666:b 659:7 640:2 636:) 632:n 623:( 620:n 597:b 575:n 571:s 550:b 542:- 526:b 504:) 501:1 498:( 495:o 492:+ 489:1 485:n 481:= 476:n 472:s 445:n 441:s 430:n 414:n 410:p 387:) 384:1 381:( 378:o 375:+ 372:1 368:n 364:= 359:n 355:p 328:n 324:p 284:n 279:n 277:p 256:) 246:k 242:p 219:n 214:1 211:= 208:k 200:+ 197:n 193:( 179:n 175:p 164:1 161:= 158:n 121:a 113:m 109:a 101:n 97:n 93:d 85:a 81:a

Index

base 10
prime numbers
A033308
OEIS
irrational
Dirichlet's theorem on arithmetic progressions
Bertrand's postulate
Ramare's theorem
even
integer
arithmetic progression
coprime
normal number
Arthur Herbert Copeland
Paul Erdős
prime number
continued fraction
OEIS
A030168
strictly increasing
natural numbers
base
Smarandache–Wellin numbers
Champernowne constant
Copeland & Erdős 1946
Hardy & Wright 1979
Copeland, A. H.
Erdős, P.
Bulletin of the American Mathematical Society
doi

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.