Knowledge (XXG)

Corey–House synthesis

Source 📝

209:; X = Cl is marginal) will undergo coupling as the nucleophilic and electrophilic coupling partners, respectively. The reaction usually takes place at room temperature or below in an ethereal solvent. Due to the wide range of applicable coupling partners, functional group tolerance, and operational simplicity, the Corey–House synthesis is a powerful and practical tool for the synthesis of complex organic molecules. However, as limitations, hindered (2° or 3°) alkyl halides are generally unsuccessful or low-yielding substrates for the Corey-House synthesis. Furthermore, alkynylcuprates are generally inert under usual coupling conditions. The forging of aryl-aryl bonds is also inefficient and much more effectively achieved using 336: 304: 311:
be used successfully.) On the other hand, sterically hindered organocopper reagents, including 3° and other branched alkyl reagents, are generally tolerated. However, aryl bromides, iodides and sulfonates, which do not ordinarily undergo nucleophilic substitution in the absence of a transition metal, can be used successfully as coupling partners.
291:
When R and R' are different, only the cross product R–R' is obtained; R–R or R'–R' are not formed in significant amounts. The Corey–House reaction is therefore an example of a cross-coupling reaction. The Corey–House synthesis is, in fact, one of the earliest transition metal-mediated (or catalyzed,
310:
For this reaction to work successfully, the alkyl (pseudo)halide coupling partner should be methyl, benzylic, allylic, 1° alkyl, or 2° cycloalkyl. In most cases, 3° and acyclic 2° electrophiles give unsatisfactory results. (However, see below for recent modifications that allow 2° electrophiles to
346:
as the ligand for copper and lithium methoxide as a base additive, it is now possible to couple 1°, 2°, and 3° Grignard reagents with 1° and 2° alkyl bromides and tosylates in high yields with nearly exclusive stereoinversion. Even β-branched 2° alkyl tosylates react to give coupling product in
275:
From the stoichiometry, it is apparent that one equivalent of the R group is wasted as an ill-characterized alkylcopper species (likely polymeric; usually converted to RH upon aqueous workup) in the most common form of the Corey–House synthesis. To avoid this for cases where R is a precious or
299:
2-like mechanism to give a copper(III) species, which undergoes reductive elimination to give the coupling product. When alkyl iodides are used, scrambling of configuration is observed, and cyclization products are observed to form for alkyl iodides with an olefin tether, both of which are
327:
and alkyl bromides could be coupled using a catalytic amount of lithium tetrachlorocuprate(II), a process that was extended to alkyl tosylates by Schlosser and Fouquet. In the catalytic process, the Grignard reagent undergoes transmetalation with the copper salt or complex to generate an
266:
The Corey-House synthesis process is the reaction between the organocopper reagent, usually a lithium dialkylcuprate as prepared above, and a second alkyl (pseudo)halide or an aryl iodide. This results in the formation of a C–C bond between the two organic fragments:
164:
and/or the formation of large amounts of reduction or elimination side-products. As a solution to this problem, the Corey–House reaction constitutes a general and high yielding method for the joining of two alkyl groups or an alkyl group and an aryl group.
159:
can react directly (without copper) with an alkyl halide in a nucleophilic substitution reaction to form a new carbon–carbon bond. However, aside from the use of metal acetylides as nucleophiles, such a process rarely works well in practice due to
712:
Yang, Chu-Ting; Zhang, Zhen-Qi; Liang, Jun; Liu, Jing-Hui; Lu, Xiao-Yu; Chen, Huan-Huan; Liu, Lei (2012-07-11). "Copper-Catalyzed Cross-Coupling of Nonactivated Secondary Alkyl Halides and Tosylates with Secondary Alkyl Grignard Reagents".
598:
In a typical example, lithium dibutylcuprate reacts with 2-bromopentane to give the coupling product in only 12% yield. However, aryl derived cuprate reagents can react successfully. For instance, lithium diphenylcuprate reacts with
355:
While the coupling of organocopper compounds and allyl bromide was reported as early as 1936 by Henry Gilman (Iowa State University), this reaction was fully developed by four organic chemists (two at Harvard and two at MIT):
262:
If the use of alkyllithium reagents is precluded by functional group incompatibility, transmetalation from other metals (e.g., Mg, Zn, Al, B) may be considered as alternatives for the preparation of the organocopper reagent.
221:
The Corey-House synthesis is preceded by two preliminary steps to prepare the requisite Gilman reagent from an alkyl halide. In the first step, the alkyl halide is treated with lithium metal in dry ether to prepare an
3962: 492:
House, Herbert O.; Respess, William L.; Whitesides, George M. (1 October 1966). "The Chemistry of Carbanions. XII. The Role of Copper in the Conjugate Addition of Organometallic Reagents".
564:
Whitesides, George M.; Fischer, William F.; San Filippo, Joseph; Bashe, Robert W.; House, Herbert O. (1969-08-01). "Reaction of lithium dialkyl- and diarylcuprates with organic halides".
295:
In the case of alkyl bromides and tosylates, inversion of configuration is observed when an configurationally pure alkyl electrophile is used. The reaction is believed to proceed via an S
328:
organocuprate as a catalytic intermediate, which then undergoes reaction with the (pseudo)halide electrophile to form the coupling product and release the copper and complete the
125: 82: 3078: 3023: 3791: 3133: 3283: 1917: 4106: 4012: 3786: 2888: 1612: 2658: 809: 3458: 1402: 3553: 1657: 3533: 3028: 2195: 2076: 1632: 3623: 3378: 845: 2210: 465:
Corey, Elias J.; Posner, Gary H. (19 July 1967). "Selective formation of carbon-carbon bonds between unlike groups using organocopper reagents".
3856: 3313: 3806: 3418: 3398: 3358: 2165: 3952: 3877: 3761: 2373: 1777: 1108: 661: 384: 3947: 3776: 3433: 3288: 2918: 226:
reagent, RLi. The starting alkyl halide for the lithiation step can be a primary, secondary or tertiary alkyl chloride, bromide, or iodide:
2763: 2000: 3123: 2613: 2288: 4027: 3811: 2833: 3388: 4022: 3736: 3598: 3353: 545: 449: 3912: 3383: 3298: 3268: 3248: 3113: 3108: 2483: 2408: 2051: 2005: 1872: 1133: 3851: 4017: 3977: 3927: 3403: 3153: 3083: 1572: 3613: 3218: 2111: 1832: 3603: 1143: 3771: 3528: 3478: 2268: 2200: 2091: 1667: 1422: 1347: 1128: 3483: 3293: 2768: 2678: 802: 394: 4057: 3841: 3781: 3183: 3158: 3068: 2648: 2528: 1562: 1058: 3942: 3428: 3223: 1492: 4047: 3633: 3143: 2653: 2598: 2443: 2403: 2235: 1990: 1707: 1557: 4007: 3568: 3523: 3013: 2868: 4042: 3957: 3816: 3731: 3628: 2703: 2358: 2026: 1437: 998: 3932: 3907: 3892: 3588: 3453: 3408: 3173: 2718: 2568: 1782: 1462: 1407: 3937: 3882: 3413: 2828: 2543: 2538: 2031: 1847: 1837: 1552: 1412: 1362: 1357: 1332: 1238: 756:
Gilman, Henry; Straley, James M. (2010). "Relative reactivities of organometallic compounds. XIII. Copper and silver".
3992: 3593: 3513: 3128: 3093: 2938: 2363: 2323: 2220: 1995: 1747: 1692: 1292: 1003: 993: 968: 3967: 3668: 3473: 2908: 2473: 2448: 2388: 1980: 1687: 1337: 1522: 3258: 2793: 2245: 1467: 1432: 1028: 963: 795: 343: 3826: 3448: 2508: 2433: 1957: 1792: 1253: 1213: 958: 4067: 3972: 3706: 3678: 3648: 3563: 3493: 3423: 3343: 3243: 3203: 2898: 2518: 1817: 1812: 1274: 1138: 677:
Fouquet, Gerd; Schlosser, Manfred (1974-01-01). "Improved Carbon-Carbon Linking by Controlled Copper Catalysis".
347:
moderate yield, greatly expanding the scope of the catalytic Corey–House synthesis (Kochi–Schlosser coupling).
4032: 3902: 3766: 3608: 3468: 2988: 1962: 1512: 1472: 1223: 3922: 3518: 3488: 3363: 3318: 3148: 3058: 2873: 2863: 2693: 2250: 2190: 2155: 1942: 1902: 1677: 1547: 1063: 1053: 983: 374: 3498: 2478: 1502: 1048: 928: 3711: 4111: 4002: 3861: 3653: 3578: 3558: 3278: 3228: 3088: 3053: 2993: 2923: 2225: 2205: 1937: 1857: 1752: 1712: 1682: 1617: 1487: 1397: 1387: 1263: 973: 173:
The scope of the Corey-House synthesis is exceptionally broad, and a range of lithium diorganylcuprates (R
3741: 3463: 3213: 3193: 3168: 3118: 3033: 3008: 2963: 2933: 2913: 2883: 2848: 2803: 2778: 2753: 2638: 2563: 2343: 2036: 1972: 1772: 1497: 1417: 1103: 1078: 855: 850: 4077: 2823: 1447: 3663: 3618: 3333: 3303: 3273: 3208: 3188: 3103: 3098: 3063: 3018: 3003: 2998: 2978: 2968: 2903: 2893: 2773: 2293: 2096: 1672: 1627: 1457: 1193: 913: 875: 243: 223: 161: 152: 132: 1123: 1118: 3716: 52: 17: 3846: 3796: 3746: 3726: 3573: 3548: 3263: 3253: 3138: 2953: 2948: 2878: 2663: 2463: 2423: 2353: 2318: 2273: 2240: 2106: 2081: 2061: 1882: 1842: 1802: 1767: 1697: 1452: 1322: 1297: 835: 380: 4062: 4052: 4037: 3683: 3658: 3643: 3638: 3368: 3323: 3308: 3198: 3178: 3073: 2958: 2943: 2788: 2733: 2723: 2713: 2688: 2453: 2328: 2303: 2215: 2071: 2056: 2041: 1897: 1862: 1807: 1577: 1427: 1372: 1243: 1158: 1018: 943: 1088: 3801: 3751: 3721: 3583: 3373: 3163: 3048: 2983: 2973: 2738: 2668: 2633: 2628: 2608: 2603: 2548: 2458: 2308: 2170: 2160: 2066: 1852: 1797: 1727: 1647: 1542: 1442: 1377: 1302: 1148: 1013: 948: 364: 95: 933: 3538: 2858: 2743: 2708: 2673: 2618: 2573: 2533: 2488: 2468: 2418: 2413: 2383: 2368: 2278: 2185: 2121: 2086: 1912: 1787: 1662: 1587: 1567: 1482: 1317: 1312: 1258: 1168: 1073: 1033: 988: 870: 865: 830: 773: 738: 730: 694: 657: 634: 581: 541: 445: 324: 4072: 3917: 3887: 3831: 3756: 3688: 3443: 3393: 3238: 3043: 2818: 2813: 2758: 2748: 2523: 2333: 2313: 2283: 2180: 2116: 2101: 1932: 1887: 1877: 1867: 1762: 1742: 1737: 1722: 1717: 1597: 1592: 1532: 1517: 1507: 1352: 1342: 1208: 1198: 1188: 1098: 1093: 1068: 1008: 860: 819: 765: 722: 686: 626: 573: 501: 474: 437: 390: 251: 156: 39: 3982: 3673: 3508: 3503: 2798: 2783: 2728: 2683: 2643: 2593: 2558: 2553: 2498: 2493: 2428: 2378: 2298: 2126: 2010: 1985: 1947: 1922: 1907: 1892: 1827: 1702: 1652: 1642: 1622: 1582: 1392: 1382: 1367: 1163: 1083: 908: 903: 617:
TAMURA, M.; KOCHI, J. (1971-01-01). "Coupling of Grignard Reagents with Organic Halides".
335: 329: 210: 953: 923: 3987: 3897: 3836: 2928: 2838: 2808: 2583: 2438: 2175: 1952: 1822: 1637: 1607: 1307: 1203: 978: 840: 519: 412: 407: 370: 235: 4100: 3997: 3698: 3543: 3438: 3233: 2623: 2588: 2578: 2513: 2503: 2393: 2230: 2046: 1757: 1732: 1602: 1248: 1233: 1218: 1113: 1043: 1023: 938: 247: 3038: 2398: 2150: 1927: 1527: 1327: 1178: 1173: 1038: 893: 239: 89: 1537: 1183: 1153: 918: 441: 3821: 3348: 2698: 787: 360: 85: 777: 769: 734: 698: 638: 585: 432:
Posner, G. H. (1975). "Substitution Reactions using Organo Copper Reagents".
320: 742: 690: 1228: 898: 630: 206: 202: 194: 577: 505: 478: 303: 888: 198: 186: 46: 43: 726: 607:)-2-phenylbutane (67-68% ee) in 67-87% yield (84-92% stereoinversion). 288:= cyano, alkynyl, 2-thienyl, etc.) can be prepared and used instead. 190: 128: 178: 182: 1272: 791: 387:; later Harvard University), junior colleague of Herbert House 334: 302: 526:
generated organosodium reagent reacts with an alkyl halide.
201:, 1°, or cyclic 2° alkyl, aryl, or alkenyl and X = Br, I, 67: 292:
see below) cross-coupling reactions to be discovered.
536:
Lipshutz, Bruce H. (2002). Schlosser, Manfred (ed.).
98: 55: 3963:
Erlenmeyer–Plöchl azlactone and amino-acid synthesis
3870: 3697: 3332: 2847: 2342: 2259: 2139: 2019: 1971: 1281: 135:species and lithium (pseudo)halide as byproducts. 679:Angewandte Chemie International Edition in English 119: 76: 3024:Divinylcyclopropane-cycloheptadiene rearrangement 151:In principle, a carbanion equivalent such as an 3284:Thermal rearrangement of aromatic hydrocarbons 1918:Thermal rearrangement of aromatic hydrocarbons 656:. New York: Academic Press. pp. 381–386. 393:(Massachusetts Institute of Technology; later 377:), a student of Harvard University at the time 238:, also known as a Gilman reagent (named after 4013:Lectka enantioselective beta-lactam synthesis 803: 8: 3792:Inverse electron-demand Diels–Alder reaction 1613:Heterogeneous metal catalyzed cross-coupling 342:Under recently discovered conditions, using 3134:Lobry de Bruyn–Van Ekenstein transformation 300:indicative of the involvement of radicals. 3694: 1968: 1269: 810: 796: 788: 758:Recueil des Travaux Chimiques des Pays-Bas 284:is an untransferable dummy ligand (e.g., R 3624:Petrenko-Kritschenko piperidone synthesis 3079:Fritsch–Buttenberg–Wiechell rearrangement 108: 99: 97: 66: 61: 56: 54: 3787:Intramolecular Diels–Alder cycloaddition 715:Journal of the American Chemical Society 566:Journal of the American Chemical Society 467:Journal of the American Chemical Society 654:Organometallic Mechanisms and Catalysis 603:)-2-bromobutane (73-78% ee) to afford ( 424: 189:) and organyl (pseudo)halides (RX, R = 3807:Metal-centered cycloaddition reactions 3459:Debus–Radziszewski imidazole synthesis 1403:Bodroux–Chichibabin aldehyde synthesis 538:Organometallics in Synthesis: A Manual 36:Corey–Posner–Whitesides–House reaction 18:Corey–House–Posner–Whitesides reaction 3953:Diazoalkane 1,3-dipolar cycloaddition 3857:Vinylcyclopropane (5+2) cycloaddition 3762:Diazoalkane 1,3-dipolar cycloaddition 3534:Hurd–Mori 1,2,3-thiadiazole synthesis 3029:Dowd–Beckwith ring-expansion reaction 2196:Hurd–Mori 1,2,3-thiadiazole synthesis 1109:LFER solvent coefficients (data page) 385:Massachusetts Institute of Technology 254:(CuI) in a transmetalation reaction: 7: 4107:Carbon-carbon bond forming reactions 2764:Sharpless asymmetric dihydroxylation 2001:Methoxymethylenetriphenylphosphorane 559: 557: 2889:Allen–Millar–Trippett rearrangement 4028:Nitrone-olefin (3+2) cycloaddition 4023:Niementowski quinazoline synthesis 3812:Nitrone-olefin (3+2) cycloaddition 3737:Azide-alkyne Huisgen cycloaddition 3599:Niementowski quinazoline synthesis 3354:Azide-alkyne Huisgen cycloaddition 2659:Meerwein–Ponndorf–Verley reduction 2211:Leimgruber–Batcho indole synthesis 436:. Vol. 22. pp. 253–400. 367:), research advisor of Gary Posner 25: 3852:Trimethylenemethane cycloaddition 3554:Johnson–Corey–Chaykovsky reaction 3419:Cadogan–Sundberg indole synthesis 3399:Bohlmann–Rahtz pyridine synthesis 3359:Baeyer–Emmerling indole synthesis 2166:Cadogan–Sundberg indole synthesis 1658:Johnson–Corey–Chaykovsky reaction 276:complex fragment, a reagent (R)(R 77:{\displaystyle {\ce {R_{2}CuLi}}} 3948:Cook–Heilbron thiazole synthesis 3777:Hexadehydro Diels–Alder reaction 3604:Niementowski quinoline synthesis 3434:Cook–Heilbron thiazole synthesis 3379:Bischler–Möhlau indole synthesis 3289:Tiffeneau–Demjanov rearrangement 2919:Baker–Venkataraman rearrangement 2077:Horner–Wadsworth–Emmons reaction 1748:Mizoroki-Heck vs. Reductive Heck 1633:Horner–Wadsworth–Emmons reaction 1144:Neighbouring group participation 494:The Journal of Organic Chemistry 42:that involves the reaction of a 3484:Fiesselmann thiophene synthesis 3314:Westphalen–Lettré rearrangement 3294:Vinylcyclopropane rearrangement 3124:Kornblum–DeLaMare rearrangement 2769:Epoxidation of allylic alcohols 2679:Noyori asymmetric hydrogenation 2614:Kornblum–DeLaMare rearrangement 2289:Gallagher–Hollander degradation 395:Georgia Institute of Technology 3943:Chichibabin pyridine synthesis 3429:Chichibabin pyridine synthesis 3389:Blum–Ittah aziridine synthesis 3224:Ring expansion and contraction 1493:Cross dehydrogenative coupling 271:Li + R'–X → R–R' + "RCu" + LiX 217:Reaction process and mechanism 38:and other permutations) is an 1: 3913:Bischler–Napieralski reaction 3871:Heterocycle forming reactions 3524:Hemetsberger indole synthesis 3384:Bischler–Napieralski reaction 3299:Wagner–Meerwein rearrangement 3269:Sommelet–Hauser rearrangement 3249:Seyferth–Gilbert homologation 3114:Ireland–Claisen rearrangement 3109:Hofmann–Martius rearrangement 2869:2,3-sigmatropic rearrangement 2484:Corey–Winter olefin synthesis 2409:Barton–McCombie deoxygenation 2052:Corey–Winter olefin synthesis 2006:Seyferth–Gilbert homologation 1873:Seyferth–Gilbert homologation 4018:Lehmstedt–Tanasescu reaction 3978:Gabriel–Colman rearrangement 3933:Bucherer carbazole synthesis 3928:Borsche–Drechsel cyclization 3908:Bernthsen acridine synthesis 3893:Bamberger triazine synthesis 3878:Algar–Flynn–Oyamada reaction 3589:Nazarov cyclization reaction 3454:De Kimpe aziridine synthesis 3409:Bucherer carbazole synthesis 3404:Borsche–Drechsel cyclization 3174:Nazarov cyclization reaction 3154:Meyer–Schuster rearrangement 3084:Gabriel–Colman rearrangement 2834:Wolffenstein–Böters reaction 2719:Reduction of nitro compounds 2569:Grundmann aldehyde synthesis 2374:Algar–Flynn–Oyamada reaction 1783:Olefin conversion technology 1778:Nozaki–Hiyama–Kishi reaction 1573:Gabriel–Colman rearrangement 1463:Claisen-Schmidt condensation 1408:Bouveault aldehyde synthesis 131:, as well as an ill-defined 120:{\displaystyle {\ce {R'-X}}} 3993:Hantzsch pyridine synthesis 3772:Enone–alkene cycloadditions 3594:Nenitzescu indole synthesis 3514:Hantzsch pyridine synthesis 3479:Ferrario–Ackermann reaction 3129:Kowalski ester homologation 3094:Halogen dance rearrangement 2939:Benzilic acid rearrangement 2364:Akabori amino-acid reaction 2324:Von Braun amide degradation 2269:Barbier–Wieland degradation 2221:Nenitzescu indole synthesis 2201:Kharasch–Sosnovsky reaction 2092:Julia–Kocienski olefination 1996:Kowalski ester homologation 1693:Kowalski ester homologation 1668:Julia–Kocienski olefination 1423:Cadiot–Chodkiewicz coupling 1348:Aza-Baylis–Hillman reaction 1293:Acetoacetic ester synthesis 1004:Dynamic binding (chemistry) 994:Conrotatory and disrotatory 969:Charge remote fragmentation 540:. Wiley. pp. 665–815. 442:10.1002/0471264180.or022.02 4128: 4058:Robinson–Gabriel synthesis 4008:Kröhnke pyridine synthesis 3842:Retro-Diels–Alder reaction 3782:Imine Diels–Alder reaction 3569:Kröhnke pyridine synthesis 3184:Newman–Kwart rearrangement 3159:Mislow–Evans rearrangement 3069:Fischer–Hepp rearrangement 3014:Di-π-methane rearrangement 2794:Stephen aldehyde synthesis 2529:Eschweiler–Clarke reaction 2246:Williamson ether synthesis 1563:Fujiwara–Moritani reaction 1468:Combes quinoline synthesis 1433:Carbonyl olefin metathesis 1134:More O'Ferrall–Jencks plot 1059:Grunwald–Winstein equation 1029:Electron-withdrawing group 964:Catalytic resonance theory 4068:Urech hydantoin synthesis 4048:Pomeranz–Fritsch reaction 3973:Fischer oxazole synthesis 3707:1,3-Dipolar cycloaddition 3679:Urech hydantoin synthesis 3649:Reissert indole synthesis 3634:Pomeranz–Fritsch reaction 3564:Knorr quinoline synthesis 3494:Fischer oxazole synthesis 3424:Camps quinoline synthesis 3344:1,3-Dipolar cycloaddition 3244:Semipinacol rearrangement 3219:Ramberg–Bäcklund reaction 3204:Piancatelli rearrangement 3144:McFadyen–Stevens reaction 2899:Alpha-ketol rearrangement 2654:McFadyen–Stevens reaction 2599:Kiliani–Fischer synthesis 2519:Elbs persulfate oxidation 2444:Bouveault–Blanc reduction 2404:Baeyer–Villiger oxidation 2236:Schotten–Baumann reaction 2112:Ramberg–Bäcklund reaction 1991:Kiliani–Fischer synthesis 1833:Ramberg–Bäcklund reaction 1818:Pinacol coupling reaction 1813:Piancatelli rearrangement 1708:Liebeskind–Srogl coupling 1558:Fujimoto–Belleau reaction 1275:List of organic reactions 1139:Negative hyperconjugation 884: 826: 143:–X → R–R 4043:Pictet–Spengler reaction 3958:Einhorn–Brunner reaction 3923:Boger pyridine synthesis 3817:Oxo-Diels–Alder reaction 3732:Aza-Diels–Alder reaction 3629:Pictet–Spengler reaction 3529:Hofmann–Löffler reaction 3519:Hegedus indole synthesis 3489:Fischer indole synthesis 3364:Bartoli indole synthesis 3319:Willgerodt rearrangement 3149:McLafferty rearrangement 3059:Ferrier carbocyclization 2874:2,3-Wittig rearrangement 2864:1,2-Wittig rearrangement 2704:Parikh–Doering oxidation 2694:Oxygen rebound mechanism 2359:Adkins–Peterson reaction 2251:Yamaguchi esterification 2191:Hegedus indole synthesis 2156:Bartoli indole synthesis 2027:Bamford–Stevens reaction 1943:Weinreb ketone synthesis 1903:Stork enamine alkylation 1678:Knoevenagel condensation 1548:Ferrier carbocyclization 1438:Castro–Stephens coupling 1064:Hammett acidity function 1054:Free-energy relationship 999:Curtin–Hammett principle 984:Conformational isomerism 770:10.1002/recl.19360551003 375:Johns Hopkins University 177:CuLi, R = 1°, 2°, or 3° 4003:Knorr pyrrole synthesis 3938:Bucherer–Bergs reaction 3883:Allan–Robinson reaction 3862:Wagner-Jauregg reaction 3654:Ring-closing metathesis 3579:Larock indole synthesis 3559:Knorr pyrrole synthesis 3414:Bucherer–Bergs reaction 3279:Stieglitz rearrangement 3259:Skattebøl rearrangement 3229:Ring-closing metathesis 3089:Group transfer reaction 3054:Favorskii rearrangement 2994:Cornforth rearrangement 2924:Bamberger rearrangement 2829:Wolff–Kishner reduction 2649:Markó–Lam deoxygenation 2544:Fleming–Tamao oxidation 2539:Fischer–Tropsch process 2226:Oxymercuration reaction 2206:Knorr pyrrole synthesis 2032:Barton–Kellogg reaction 1938:Wagner-Jauregg reaction 1858:Ring-closing metathesis 1848:Reimer–Tiemann reaction 1838:Rauhut–Currier reaction 1753:Nef isocyanide reaction 1713:Malonic ester synthesis 1683:Knorr pyrrole synthesis 1618:High dilution principle 1553:Friedel–Crafts reaction 1488:Cross-coupling reaction 1413:Bucherer–Bergs reaction 1398:Blanc chloromethylation 1388:Blaise ketone synthesis 1363:Baylis–Hillman reaction 1358:Barton–Kellogg reaction 1333:Allan–Robinson reaction 1239:Woodward–Hoffmann rules 974:Charge-transfer complex 246:) is prepared from the 230:R–X + 2 Li° → RLi + LiX 3968:Feist–Benary synthesis 3742:Bradsher cycloaddition 3712:4+4 Photocycloaddition 3669:Simmons–Smith reaction 3614:Paternò–Büchi reaction 3474:Feist–Benary synthesis 3464:Dieckmann condensation 3214:Pummerer rearrangement 3194:Oxy-Cope rearrangement 3169:Myers allene synthesis 3119:Jacobsen rearrangement 3034:Electrocyclic reaction 3009:Demjanov rearrangement 2964:Buchner ring expansion 2934:Beckmann rearrangement 2914:Aza-Cope rearrangement 2909:Arndt–Eistert reaction 2884:Alkyne zipper reaction 2804:Transfer hydrogenation 2779:Sharpless oxyamination 2754:Selenoxide elimination 2639:Lombardo methylenation 2564:Griesbaum coozonolysis 2474:Corey–Itsuno reduction 2449:Boyland–Sims oxidation 2389:Angeli–Rimini reaction 2037:Boord olefin synthesis 1981:Arndt–Eistert reaction 1973:Homologation reactions 1773:Nitro-Mannich reaction 1688:Kolbe–Schmitt reaction 1498:Cross-coupling partner 1418:Buchner ring expansion 1338:Arndt–Eistert reaction 1104:Kinetic isotope effect 851:Rearrangement reaction 691:10.1002/anie.197400821 652:Kochi, Jay K. (1978). 339: 307: 258:2 RLi + CuI → Li + LiI 236:lithium dialkylcuprate 234:In the second step, a 162:metal–halogen exchange 121: 78: 3827:Pauson–Khand reaction 3664:Sharpless epoxidation 3619:Pechmann condensation 3499:Friedländer synthesis 3449:Davis–Beirut reaction 3304:Wallach rearrangement 3274:Stevens rearrangement 3209:Pinacol rearrangement 3189:Overman rearrangement 3104:Hofmann rearrangement 3099:Hayashi rearrangement 3064:Ferrier rearrangement 3019:Dimroth rearrangement 3004:Curtius rearrangement 2999:Criegee rearrangement 2979:Claisen rearrangement 2969:Carroll rearrangement 2904:Amadori rearrangement 2894:Allylic rearrangement 2774:Sharpless epoxidation 2509:Dess–Martin oxidation 2434:Bohn–Schmidt reaction 2294:Hofmann rearrangement 2097:Kauffmann olefination 2020:Olefination reactions 1958:Wurtz–Fittig reaction 1793:Palladium–NHC complex 1673:Kauffmann olefination 1628:Homologation reaction 1478:Corey–House synthesis 1458:Claisen rearrangement 1254:Yukawa–Tsuno equation 1214:Swain–Lupton equation 1194:Spherical aromaticity 1129:Möbius–Hückel concept 914:Aromatic ring current 876:Substitution reaction 338: 306: 244:Iowa State University 122: 79: 32:Corey–House synthesis 4033:Paal–Knorr synthesis 3903:Barton–Zard reaction 3847:Staudinger synthesis 3797:Ketene cycloaddition 3767:Diels–Alder reaction 3747:Cheletropic reaction 3727:Alkyne trimerisation 3609:Paal–Knorr synthesis 3574:Kulinkovich reaction 3549:Jacobsen epoxidation 3469:Diels–Alder reaction 3264:Smiles rearrangement 3254:Sigmatropic reaction 3139:Lossen rearrangement 2989:Corey–Fuchs reaction 2954:Boekelheide reaction 2949:Bergmann degradation 2879:Achmatowicz reaction 2664:Methionine sulfoxide 2464:Clemmensen reduction 2424:Bergmann degradation 2354:Acyloin condensation 2319:Strecker degradation 2274:Bergmann degradation 2241:Ullmann condensation 2107:Peterson olefination 2082:Hydrazone iodination 2062:Elimination reaction 1963:Zincke–Suhl reaction 1883:Sonogashira coupling 1843:Reformatsky reaction 1803:Peterson olefination 1768:Nierenstein reaction 1698:Kulinkovich reaction 1513:Diels–Alder reaction 1473:Corey–Fuchs reaction 1453:Claisen condensation 1323:Alkyne trimerisation 1298:Acyloin condensation 1264:Σ-bishomoaromaticity 1224:Thorpe–Ingold effect 836:Elimination reaction 631:10.1055/s-1971-35043 381:George M. Whitesides 147:+ "R–Cu" + LiX 96: 53: 4053:Prilezhaev reaction 4038:Pellizzari reaction 3717:(4+3) cycloaddition 3684:Van Leusen reaction 3659:Robinson annulation 3644:Pschorr cyclization 3639:Prilezhaev reaction 3369:Bergman cyclization 3324:Wolff rearrangement 3309:Weerman degradation 3199:Pericyclic reaction 3179:Neber rearrangement 3074:Fries rearrangement 2959:Brook rearrangement 2944:Bergman cyclization 2789:Staudinger reaction 2734:Rosenmund reduction 2724:Reductive amination 2689:Oppenauer oxidation 2479:Corey–Kim oxidation 2454:Cannizzaro reaction 2329:Weerman degradation 2304:Isosaccharinic acid 2216:Mukaiyama hydration 2072:Hofmann elimination 2057:Dehydrohalogenation 2042:Chugaev elimination 1863:Robinson annulation 1808:Pfitzinger reaction 1578:Gattermann reaction 1523:Wulff–Dötz reaction 1503:Dakin–West reaction 1428:Carbonyl allylation 1373:Bergman cyclization 1159:Kennedy J. P. Orton 1079:Hammond's postulate 1049:Flippin–Lodge angle 1019:Electromeric effect 944:Beta-silicon effect 929:Baker–Nathan effect 721:(27): 11124–11127. 578:10.1021/ja01045a049 522:for cases where an 506:10.1021/jo01348a012 479:10.1021/ja00991a049 211:palladium catalysis 69: 3802:McCormack reaction 3752:Conia-ene reaction 3584:Madelung synthesis 3374:Biginelli reaction 3164:Mumm rearrangement 3049:Favorskii reaction 2984:Cope rearrangement 2974:Chan rearrangement 2739:Rubottom oxidation 2669:Miyaura borylation 2634:Lipid peroxidation 2629:Lindgren oxidation 2609:Kornblum oxidation 2604:Kolbe electrolysis 2549:Fukuyama reduction 2459:Carbonyl reduction 2309:Marker degradation 2171:Diazonium compound 2161:Boudouard reaction 2140:Carbon-heteroatom 2067:Grieco elimination 1853:Rieche formylation 1798:Passerini reaction 1728:Meerwein arylation 1648:Hydroxymethylation 1543:Favorskii reaction 1443:Chan rearrangement 1378:Biginelli reaction 1303:Aldol condensation 1149:2-Norbornyl cation 1124:Möbius aromaticity 1119:Markovnikov's rule 1014:Effective molarity 959:Bürgi–Dunitz angle 949:Bicycloaromaticity 365:Harvard University 340: 308: 250:by treatment with 117: 74: 57: 4094: 4093: 4090: 4089: 4086: 4085: 4078:Wohl–Aue reaction 3722:6+4 Cycloaddition 3539:Iodolactonization 2859:1,2-rearrangement 2824:Wohl–Aue reaction 2744:Sabatier reaction 2709:Pinnick oxidation 2674:Mozingo reduction 2619:Leuckart reaction 2574:Haloform reaction 2489:Criegee oxidation 2469:Collins oxidation 2419:Benkeser reaction 2414:Bechamp reduction 2384:Andrussow process 2369:Alcohol oxidation 2279:Edman degradation 2186:Haloform reaction 2135: 2134: 2122:Takai olefination 2087:Julia olefination 1913:Takai olefination 1788:Olefin metathesis 1663:Julia olefination 1588:Grignard reaction 1568:Fukuyama coupling 1483:Coupling reaction 1448:Chan–Lam coupling 1318:Alkyne metathesis 1313:Alkane metathesis 1169:Phosphaethynolate 1074:George S. Hammond 1034:Electronic effect 989:Conjugated system 871:Stereospecificity 866:Stereoselectivity 831:Addition reaction 820:organic reactions 727:10.1021/ja304848n 663:978-0-12-418250-9 572:(17): 4871–4882. 500:(10): 3128–3141. 473:(15): 3911–3912. 434:Organic Reactions 325:Grignard reagents 315:Catalytic version 115: 103: 72: 60: 34:(also called the 27:Chemical reaction 16:(Redirected from 4119: 4073:Wenker synthesis 4063:Stollé synthesis 3918:Bobbitt reaction 3888:Auwers synthesis 3832:Povarov reaction 3757:Cyclopropanation 3695: 3689:Wenker synthesis 3444:Darzens reaction 3394:Bobbitt reaction 3239:Schmidt reaction 3044:Enyne metathesis 2819:Whiting reaction 2814:Wharton reaction 2759:Shapiro reaction 2749:Sarett oxidation 2714:Prévost reaction 2524:Emde degradation 2334:Wohl degradation 2314:Ruff degradation 2284:Emde degradation 2181:Grignard reagent 2117:Shapiro reaction 2102:McMurry reaction 1969: 1933:Ullmann reaction 1898:Stollé synthesis 1888:Stetter reaction 1878:Shapiro reaction 1868:Sakurai reaction 1763:Negishi coupling 1743:Minisci reaction 1738:Michael reaction 1723:McMurry reaction 1718:Mannich reaction 1598:Hammick reaction 1593:Grignard reagent 1533:Enyne metathesis 1518:Doebner reaction 1508:Darzens reaction 1353:Barbier reaction 1343:Auwers synthesis 1270: 1244:Woodward's rules 1209:Superaromaticity 1199:Spiroaromaticity 1099:Inductive effect 1094:Hyperconjugation 1069:Hammett equation 1009:Edwards equation 861:Regioselectivity 812: 805: 798: 789: 782: 781: 753: 747: 746: 709: 703: 702: 674: 668: 667: 649: 643: 642: 614: 608: 596: 590: 589: 561: 552: 551: 533: 527: 516: 510: 509: 489: 483: 482: 462: 456: 455: 429: 391:Herbert O. House 252:copper(I) iodide 157:Grignard reagent 146: 142: 127:) to form a new 126: 124: 123: 118: 116: 113: 112: 107: 101: 83: 81: 80: 75: 73: 70: 68: 65: 58: 47:diorganylcuprate 40:organic reaction 21: 4127: 4126: 4122: 4121: 4120: 4118: 4117: 4116: 4097: 4096: 4095: 4082: 3983:Gewald reaction 3866: 3693: 3674:Skraup reaction 3509:Graham reaction 3504:Gewald reaction 3335: 3328: 2850: 2843: 2799:Swern oxidation 2784:Stahl oxidation 2729:Riley oxidation 2684:Omega oxidation 2644:Luche reduction 2594:Jones oxidation 2559:Glycol cleavage 2554:Ganem oxidation 2499:Davis oxidation 2494:Dakin oxidation 2429:Birch reduction 2379:Amide reduction 2345: 2338: 2299:Hooker reaction 2261: 2255: 2143: 2141: 2131: 2127:Wittig reaction 2015: 2011:Wittig reaction 1986:Hooker reaction 1967: 1948:Wittig reaction 1923:Thorpe reaction 1908:Suzuki reaction 1893:Stille reaction 1828:Quelet reaction 1703:Kumada coupling 1653:Ivanov reaction 1643:Hydrovinylation 1623:Hiyama coupling 1583:Glaser coupling 1393:Blaise reaction 1383:Bingel reaction 1368:Benary reaction 1285: 1283: 1277: 1268: 1164:Passive binding 1084:Homoaromaticity 934:Baldwin's rules 909:Antiaromaticity 904:Anomeric effect 880: 822: 816: 786: 785: 764:(10): 821–834. 755: 754: 750: 711: 710: 706: 676: 675: 671: 664: 651: 650: 646: 616: 615: 611: 597: 593: 563: 562: 555: 548: 535: 534: 530: 517: 513: 491: 490: 486: 464: 463: 459: 452: 431: 430: 426: 421: 404: 353: 330:catalytic cycle 317: 298: 287: 283: 279: 219: 176: 171: 144: 140: 100: 94: 93: 51: 50: 28: 23: 22: 15: 12: 11: 5: 4125: 4123: 4115: 4114: 4112:Name reactions 4109: 4099: 4098: 4092: 4091: 4088: 4087: 4084: 4083: 4081: 4080: 4075: 4070: 4065: 4060: 4055: 4050: 4045: 4040: 4035: 4030: 4025: 4020: 4015: 4010: 4005: 4000: 3995: 3990: 3988:Hantzsch ester 3985: 3980: 3975: 3970: 3965: 3960: 3955: 3950: 3945: 3940: 3935: 3930: 3925: 3920: 3915: 3910: 3905: 3900: 3898:Banert cascade 3895: 3890: 3885: 3880: 3874: 3872: 3868: 3867: 3865: 3864: 3859: 3854: 3849: 3844: 3839: 3837:Prato reaction 3834: 3829: 3824: 3819: 3814: 3809: 3804: 3799: 3794: 3789: 3784: 3779: 3774: 3769: 3764: 3759: 3754: 3749: 3744: 3739: 3734: 3729: 3724: 3719: 3714: 3709: 3703: 3701: 3692: 3691: 3686: 3681: 3676: 3671: 3666: 3661: 3656: 3651: 3646: 3641: 3636: 3631: 3626: 3621: 3616: 3611: 3606: 3601: 3596: 3591: 3586: 3581: 3576: 3571: 3566: 3561: 3556: 3551: 3546: 3541: 3536: 3531: 3526: 3521: 3516: 3511: 3506: 3501: 3496: 3491: 3486: 3481: 3476: 3471: 3466: 3461: 3456: 3451: 3446: 3441: 3436: 3431: 3426: 3421: 3416: 3411: 3406: 3401: 3396: 3391: 3386: 3381: 3376: 3371: 3366: 3361: 3356: 3351: 3346: 3340: 3338: 3330: 3329: 3327: 3326: 3321: 3316: 3311: 3306: 3301: 3296: 3291: 3286: 3281: 3276: 3271: 3266: 3261: 3256: 3251: 3246: 3241: 3236: 3231: 3226: 3221: 3216: 3211: 3206: 3201: 3196: 3191: 3186: 3181: 3176: 3171: 3166: 3161: 3156: 3151: 3146: 3141: 3136: 3131: 3126: 3121: 3116: 3111: 3106: 3101: 3096: 3091: 3086: 3081: 3076: 3071: 3066: 3061: 3056: 3051: 3046: 3041: 3036: 3031: 3026: 3021: 3016: 3011: 3006: 3001: 2996: 2991: 2986: 2981: 2976: 2971: 2966: 2961: 2956: 2951: 2946: 2941: 2936: 2931: 2929:Banert cascade 2926: 2921: 2916: 2911: 2906: 2901: 2896: 2891: 2886: 2881: 2876: 2871: 2866: 2861: 2855: 2853: 2849:Rearrangement 2845: 2844: 2842: 2841: 2839:Zinin reaction 2836: 2831: 2826: 2821: 2816: 2811: 2809:Wacker process 2806: 2801: 2796: 2791: 2786: 2781: 2776: 2771: 2766: 2761: 2756: 2751: 2746: 2741: 2736: 2731: 2726: 2721: 2716: 2711: 2706: 2701: 2696: 2691: 2686: 2681: 2676: 2671: 2666: 2661: 2656: 2651: 2646: 2641: 2636: 2631: 2626: 2621: 2616: 2611: 2606: 2601: 2596: 2591: 2586: 2584:Hydrogenolysis 2581: 2576: 2571: 2566: 2561: 2556: 2551: 2546: 2541: 2536: 2534:Étard reaction 2531: 2526: 2521: 2516: 2511: 2506: 2501: 2496: 2491: 2486: 2481: 2476: 2471: 2466: 2461: 2456: 2451: 2446: 2441: 2439:Bosch reaction 2436: 2431: 2426: 2421: 2416: 2411: 2406: 2401: 2396: 2391: 2386: 2381: 2376: 2371: 2366: 2361: 2356: 2350: 2348: 2344:Organic redox 2340: 2339: 2337: 2336: 2331: 2326: 2321: 2316: 2311: 2306: 2301: 2296: 2291: 2286: 2281: 2276: 2271: 2265: 2263: 2257: 2256: 2254: 2253: 2248: 2243: 2238: 2233: 2228: 2223: 2218: 2213: 2208: 2203: 2198: 2193: 2188: 2183: 2178: 2176:Esterification 2173: 2168: 2163: 2158: 2153: 2147: 2145: 2137: 2136: 2133: 2132: 2130: 2129: 2124: 2119: 2114: 2109: 2104: 2099: 2094: 2089: 2084: 2079: 2074: 2069: 2064: 2059: 2054: 2049: 2044: 2039: 2034: 2029: 2023: 2021: 2017: 2016: 2014: 2013: 2008: 2003: 1998: 1993: 1988: 1983: 1977: 1975: 1966: 1965: 1960: 1955: 1953:Wurtz reaction 1950: 1945: 1940: 1935: 1930: 1925: 1920: 1915: 1910: 1905: 1900: 1895: 1890: 1885: 1880: 1875: 1870: 1865: 1860: 1855: 1850: 1845: 1840: 1835: 1830: 1825: 1823:Prins reaction 1820: 1815: 1810: 1805: 1800: 1795: 1790: 1785: 1780: 1775: 1770: 1765: 1760: 1755: 1750: 1745: 1740: 1735: 1730: 1725: 1720: 1715: 1710: 1705: 1700: 1695: 1690: 1685: 1680: 1675: 1670: 1665: 1660: 1655: 1650: 1645: 1640: 1638:Hydrocyanation 1635: 1630: 1625: 1620: 1615: 1610: 1608:Henry reaction 1605: 1600: 1595: 1590: 1585: 1580: 1575: 1570: 1565: 1560: 1555: 1550: 1545: 1540: 1535: 1530: 1525: 1520: 1515: 1510: 1505: 1500: 1495: 1490: 1485: 1480: 1475: 1470: 1465: 1460: 1455: 1450: 1445: 1440: 1435: 1430: 1425: 1420: 1415: 1410: 1405: 1400: 1395: 1390: 1385: 1380: 1375: 1370: 1365: 1360: 1355: 1350: 1345: 1340: 1335: 1330: 1325: 1320: 1315: 1310: 1308:Aldol reaction 1305: 1300: 1295: 1289: 1287: 1282:Carbon-carbon 1279: 1278: 1273: 1267: 1266: 1261: 1259:Zaitsev's rule 1256: 1251: 1246: 1241: 1236: 1231: 1226: 1221: 1216: 1211: 1206: 1204:Steric effects 1201: 1196: 1191: 1186: 1181: 1176: 1171: 1166: 1161: 1156: 1151: 1146: 1141: 1136: 1131: 1126: 1121: 1116: 1111: 1106: 1101: 1096: 1091: 1086: 1081: 1076: 1071: 1066: 1061: 1056: 1051: 1046: 1041: 1036: 1031: 1026: 1021: 1016: 1011: 1006: 1001: 996: 991: 986: 981: 976: 971: 966: 961: 956: 951: 946: 941: 936: 931: 926: 921: 916: 911: 906: 901: 896: 891: 885: 882: 881: 879: 878: 873: 868: 863: 858: 856:Redox reaction 853: 848: 843: 841:Polymerization 838: 833: 827: 824: 823: 817: 815: 814: 807: 800: 792: 784: 783: 748: 704: 669: 662: 644: 625:(6): 303–305. 609: 591: 553: 547:978-0471984160 546: 528: 520:Wurtz coupling 511: 484: 457: 451:978-0471264187 450: 423: 422: 420: 417: 416: 415: 413:Wurtz reaction 410: 408:Gilman reagent 403: 400: 399: 398: 388: 378: 371:Gary H. Posner 368: 352: 349: 323:reported that 316: 313: 296: 285: 281: 277: 273: 272: 260: 259: 232: 231: 218: 215: 174: 170: 167: 149: 148: 111: 106: 86:organic halide 64: 26: 24: 14: 13: 10: 9: 6: 4: 3: 2: 4124: 4113: 4110: 4108: 4105: 4104: 4102: 4079: 4076: 4074: 4071: 4069: 4066: 4064: 4061: 4059: 4056: 4054: 4051: 4049: 4046: 4044: 4041: 4039: 4036: 4034: 4031: 4029: 4026: 4024: 4021: 4019: 4016: 4014: 4011: 4009: 4006: 4004: 4001: 3999: 3998:Herz reaction 3996: 3994: 3991: 3989: 3986: 3984: 3981: 3979: 3976: 3974: 3971: 3969: 3966: 3964: 3961: 3959: 3956: 3954: 3951: 3949: 3946: 3944: 3941: 3939: 3936: 3934: 3931: 3929: 3926: 3924: 3921: 3919: 3916: 3914: 3911: 3909: 3906: 3904: 3901: 3899: 3896: 3894: 3891: 3889: 3886: 3884: 3881: 3879: 3876: 3875: 3873: 3869: 3863: 3860: 3858: 3855: 3853: 3850: 3848: 3845: 3843: 3840: 3838: 3835: 3833: 3830: 3828: 3825: 3823: 3820: 3818: 3815: 3813: 3810: 3808: 3805: 3803: 3800: 3798: 3795: 3793: 3790: 3788: 3785: 3783: 3780: 3778: 3775: 3773: 3770: 3768: 3765: 3763: 3760: 3758: 3755: 3753: 3750: 3748: 3745: 3743: 3740: 3738: 3735: 3733: 3730: 3728: 3725: 3723: 3720: 3718: 3715: 3713: 3710: 3708: 3705: 3704: 3702: 3700: 3699:Cycloaddition 3696: 3690: 3687: 3685: 3682: 3680: 3677: 3675: 3672: 3670: 3667: 3665: 3662: 3660: 3657: 3655: 3652: 3650: 3647: 3645: 3642: 3640: 3637: 3635: 3632: 3630: 3627: 3625: 3622: 3620: 3617: 3615: 3612: 3610: 3607: 3605: 3602: 3600: 3597: 3595: 3592: 3590: 3587: 3585: 3582: 3580: 3577: 3575: 3572: 3570: 3567: 3565: 3562: 3560: 3557: 3555: 3552: 3550: 3547: 3545: 3544:Isay reaction 3542: 3540: 3537: 3535: 3532: 3530: 3527: 3525: 3522: 3520: 3517: 3515: 3512: 3510: 3507: 3505: 3502: 3500: 3497: 3495: 3492: 3490: 3487: 3485: 3482: 3480: 3477: 3475: 3472: 3470: 3467: 3465: 3462: 3460: 3457: 3455: 3452: 3450: 3447: 3445: 3442: 3440: 3439:Cycloaddition 3437: 3435: 3432: 3430: 3427: 3425: 3422: 3420: 3417: 3415: 3412: 3410: 3407: 3405: 3402: 3400: 3397: 3395: 3392: 3390: 3387: 3385: 3382: 3380: 3377: 3375: 3372: 3370: 3367: 3365: 3362: 3360: 3357: 3355: 3352: 3350: 3347: 3345: 3342: 3341: 3339: 3337: 3334:Ring forming 3331: 3325: 3322: 3320: 3317: 3315: 3312: 3310: 3307: 3305: 3302: 3300: 3297: 3295: 3292: 3290: 3287: 3285: 3282: 3280: 3277: 3275: 3272: 3270: 3267: 3265: 3262: 3260: 3257: 3255: 3252: 3250: 3247: 3245: 3242: 3240: 3237: 3235: 3234:Rupe reaction 3232: 3230: 3227: 3225: 3222: 3220: 3217: 3215: 3212: 3210: 3207: 3205: 3202: 3200: 3197: 3195: 3192: 3190: 3187: 3185: 3182: 3180: 3177: 3175: 3172: 3170: 3167: 3165: 3162: 3160: 3157: 3155: 3152: 3150: 3147: 3145: 3142: 3140: 3137: 3135: 3132: 3130: 3127: 3125: 3122: 3120: 3117: 3115: 3112: 3110: 3107: 3105: 3102: 3100: 3097: 3095: 3092: 3090: 3087: 3085: 3082: 3080: 3077: 3075: 3072: 3070: 3067: 3065: 3062: 3060: 3057: 3055: 3052: 3050: 3047: 3045: 3042: 3040: 3037: 3035: 3032: 3030: 3027: 3025: 3022: 3020: 3017: 3015: 3012: 3010: 3007: 3005: 3002: 3000: 2997: 2995: 2992: 2990: 2987: 2985: 2982: 2980: 2977: 2975: 2972: 2970: 2967: 2965: 2962: 2960: 2957: 2955: 2952: 2950: 2947: 2945: 2942: 2940: 2937: 2935: 2932: 2930: 2927: 2925: 2922: 2920: 2917: 2915: 2912: 2910: 2907: 2905: 2902: 2900: 2897: 2895: 2892: 2890: 2887: 2885: 2882: 2880: 2877: 2875: 2872: 2870: 2867: 2865: 2862: 2860: 2857: 2856: 2854: 2852: 2846: 2840: 2837: 2835: 2832: 2830: 2827: 2825: 2822: 2820: 2817: 2815: 2812: 2810: 2807: 2805: 2802: 2800: 2797: 2795: 2792: 2790: 2787: 2785: 2782: 2780: 2777: 2775: 2772: 2770: 2767: 2765: 2762: 2760: 2757: 2755: 2752: 2750: 2747: 2745: 2742: 2740: 2737: 2735: 2732: 2730: 2727: 2725: 2722: 2720: 2717: 2715: 2712: 2710: 2707: 2705: 2702: 2700: 2697: 2695: 2692: 2690: 2687: 2685: 2682: 2680: 2677: 2675: 2672: 2670: 2667: 2665: 2662: 2660: 2657: 2655: 2652: 2650: 2647: 2645: 2642: 2640: 2637: 2635: 2632: 2630: 2627: 2625: 2624:Ley oxidation 2622: 2620: 2617: 2615: 2612: 2610: 2607: 2605: 2602: 2600: 2597: 2595: 2592: 2590: 2589:Hydroxylation 2587: 2585: 2582: 2580: 2579:Hydrogenation 2577: 2575: 2572: 2570: 2567: 2565: 2562: 2560: 2557: 2555: 2552: 2550: 2547: 2545: 2542: 2540: 2537: 2535: 2532: 2530: 2527: 2525: 2522: 2520: 2517: 2515: 2514:DNA oxidation 2512: 2510: 2507: 2505: 2504:Deoxygenation 2502: 2500: 2497: 2495: 2492: 2490: 2487: 2485: 2482: 2480: 2477: 2475: 2472: 2470: 2467: 2465: 2462: 2460: 2457: 2455: 2452: 2450: 2447: 2445: 2442: 2440: 2437: 2435: 2432: 2430: 2427: 2425: 2422: 2420: 2417: 2415: 2412: 2410: 2407: 2405: 2402: 2400: 2397: 2395: 2394:Aromatization 2392: 2390: 2387: 2385: 2382: 2380: 2377: 2375: 2372: 2370: 2367: 2365: 2362: 2360: 2357: 2355: 2352: 2351: 2349: 2347: 2341: 2335: 2332: 2330: 2327: 2325: 2322: 2320: 2317: 2315: 2312: 2310: 2307: 2305: 2302: 2300: 2297: 2295: 2292: 2290: 2287: 2285: 2282: 2280: 2277: 2275: 2272: 2270: 2267: 2266: 2264: 2258: 2252: 2249: 2247: 2244: 2242: 2239: 2237: 2234: 2232: 2231:Reed reaction 2229: 2227: 2224: 2222: 2219: 2217: 2214: 2212: 2209: 2207: 2204: 2202: 2199: 2197: 2194: 2192: 2189: 2187: 2184: 2182: 2179: 2177: 2174: 2172: 2169: 2167: 2164: 2162: 2159: 2157: 2154: 2152: 2149: 2148: 2146: 2142:bond forming 2138: 2128: 2125: 2123: 2120: 2118: 2115: 2113: 2110: 2108: 2105: 2103: 2100: 2098: 2095: 2093: 2090: 2088: 2085: 2083: 2080: 2078: 2075: 2073: 2070: 2068: 2065: 2063: 2060: 2058: 2055: 2053: 2050: 2048: 2047:Cope reaction 2045: 2043: 2040: 2038: 2035: 2033: 2030: 2028: 2025: 2024: 2022: 2018: 2012: 2009: 2007: 2004: 2002: 1999: 1997: 1994: 1992: 1989: 1987: 1984: 1982: 1979: 1978: 1976: 1974: 1970: 1964: 1961: 1959: 1956: 1954: 1951: 1949: 1946: 1944: 1941: 1939: 1936: 1934: 1931: 1929: 1926: 1924: 1921: 1919: 1916: 1914: 1911: 1909: 1906: 1904: 1901: 1899: 1896: 1894: 1891: 1889: 1886: 1884: 1881: 1879: 1876: 1874: 1871: 1869: 1866: 1864: 1861: 1859: 1856: 1854: 1851: 1849: 1846: 1844: 1841: 1839: 1836: 1834: 1831: 1829: 1826: 1824: 1821: 1819: 1816: 1814: 1811: 1809: 1806: 1804: 1801: 1799: 1796: 1794: 1791: 1789: 1786: 1784: 1781: 1779: 1776: 1774: 1771: 1769: 1766: 1764: 1761: 1759: 1758:Nef synthesis 1756: 1754: 1751: 1749: 1746: 1744: 1741: 1739: 1736: 1734: 1733:Methylenation 1731: 1729: 1726: 1724: 1721: 1719: 1716: 1714: 1711: 1709: 1706: 1704: 1701: 1699: 1696: 1694: 1691: 1689: 1686: 1684: 1681: 1679: 1676: 1674: 1671: 1669: 1666: 1664: 1661: 1659: 1656: 1654: 1651: 1649: 1646: 1644: 1641: 1639: 1636: 1634: 1631: 1629: 1626: 1624: 1621: 1619: 1616: 1614: 1611: 1609: 1606: 1604: 1603:Heck reaction 1601: 1599: 1596: 1594: 1591: 1589: 1586: 1584: 1581: 1579: 1576: 1574: 1571: 1569: 1566: 1564: 1561: 1559: 1556: 1554: 1551: 1549: 1546: 1544: 1541: 1539: 1536: 1534: 1531: 1529: 1526: 1524: 1521: 1519: 1516: 1514: 1511: 1509: 1506: 1504: 1501: 1499: 1496: 1494: 1491: 1489: 1486: 1484: 1481: 1479: 1476: 1474: 1471: 1469: 1466: 1464: 1461: 1459: 1456: 1454: 1451: 1449: 1446: 1444: 1441: 1439: 1436: 1434: 1431: 1429: 1426: 1424: 1421: 1419: 1416: 1414: 1411: 1409: 1406: 1404: 1401: 1399: 1396: 1394: 1391: 1389: 1386: 1384: 1381: 1379: 1376: 1374: 1371: 1369: 1366: 1364: 1361: 1359: 1356: 1354: 1351: 1349: 1346: 1344: 1341: 1339: 1336: 1334: 1331: 1329: 1326: 1324: 1321: 1319: 1316: 1314: 1311: 1309: 1306: 1304: 1301: 1299: 1296: 1294: 1291: 1290: 1288: 1284:bond forming 1280: 1276: 1271: 1265: 1262: 1260: 1257: 1255: 1252: 1250: 1249:Y-aromaticity 1247: 1245: 1242: 1240: 1237: 1235: 1234:Walsh diagram 1232: 1230: 1227: 1225: 1222: 1220: 1219:Taft equation 1217: 1215: 1212: 1210: 1207: 1205: 1202: 1200: 1197: 1195: 1192: 1190: 1189:Σ-aromaticity 1187: 1185: 1182: 1180: 1177: 1175: 1172: 1170: 1167: 1165: 1162: 1160: 1157: 1155: 1152: 1150: 1147: 1145: 1142: 1140: 1137: 1135: 1132: 1130: 1127: 1125: 1122: 1120: 1117: 1115: 1114:Marcus theory 1112: 1110: 1107: 1105: 1102: 1100: 1097: 1095: 1092: 1090: 1089:Hückel's rule 1087: 1085: 1082: 1080: 1077: 1075: 1072: 1070: 1067: 1065: 1062: 1060: 1057: 1055: 1052: 1050: 1047: 1045: 1044:Evelyn effect 1042: 1040: 1037: 1035: 1032: 1030: 1027: 1025: 1024:Electron-rich 1022: 1020: 1017: 1015: 1012: 1010: 1007: 1005: 1002: 1000: 997: 995: 992: 990: 987: 985: 982: 980: 977: 975: 972: 970: 967: 965: 962: 960: 957: 955: 952: 950: 947: 945: 942: 940: 939:Bema Hapothle 937: 935: 932: 930: 927: 925: 922: 920: 917: 915: 912: 910: 907: 905: 902: 900: 897: 895: 892: 890: 887: 886: 883: 877: 874: 872: 869: 867: 864: 862: 859: 857: 854: 852: 849: 847: 844: 842: 839: 837: 834: 832: 829: 828: 825: 821: 813: 808: 806: 801: 799: 794: 793: 790: 779: 775: 771: 767: 763: 759: 752: 749: 744: 740: 736: 732: 728: 724: 720: 716: 708: 705: 700: 696: 692: 688: 684: 680: 673: 670: 665: 659: 655: 648: 645: 640: 636: 632: 628: 624: 620: 613: 610: 606: 602: 595: 592: 587: 583: 579: 575: 571: 567: 560: 558: 554: 549: 543: 539: 532: 529: 525: 521: 518:However, see 515: 512: 507: 503: 499: 495: 488: 485: 480: 476: 472: 468: 461: 458: 453: 447: 443: 439: 435: 428: 425: 418: 414: 411: 409: 406: 405: 401: 396: 392: 389: 386: 382: 379: 376: 372: 369: 366: 362: 359: 358: 357: 350: 348: 345: 337: 333: 331: 326: 322: 314: 312: 305: 301: 293: 289: 280:)CuM, where R 270: 269: 268: 264: 257: 256: 255: 253: 249: 245: 241: 237: 229: 228: 227: 225: 216: 214: 212: 208: 204: 200: 196: 192: 188: 184: 180: 168: 166: 163: 158: 154: 153:organolithium 138: 137: 136: 134: 130: 109: 104: 91: 87: 62: 48: 45: 41: 37: 33: 19: 3039:Ene reaction 2399:Autoxidation 2260:Degradation 2151:Azo coupling 1928:Ugi reaction 1528:Ene reaction 1477: 1328:Alkynylation 1179:Polyfluorene 1174:Polar effect 1039:Electrophile 954:Bredt's rule 924:Baird's rule 894:Alpha effect 761: 757: 751: 718: 714: 707: 685:(1): 82–83. 682: 678: 672: 653: 647: 622: 618: 612: 604: 600: 594: 569: 565: 537: 531: 523: 514: 497: 493: 487: 470: 466: 460: 433: 427: 354: 341: 318: 309: 294: 290: 274: 265: 261: 248:alkyllithium 240:Henry Gilman 233: 224:alkyllithium 220: 172: 150: 133:organocopper 90:pseudohalide 35: 31: 29: 1538:Ethenolysis 1184:Ring strain 1154:Nucleophile 979:Clar's rule 919:Aromaticity 139:Li + R 4101:Categories 3822:Ozonolysis 3349:Annulation 2699:Ozonolysis 818:Topics in 419:References 361:E.J. Corey 351:Background 84:) with an 3336:reactions 2851:reactions 2346:reactions 2262:reactions 2144:reactions 1286:reactions 778:0165-0513 735:0002-7863 699:1521-3773 639:0039-7881 619:Synthesis 586:0002-7863 321:Jay Kochi 319:In 1971, 110:− 1229:Vinylogy 899:Annulene 846:Reagents 743:22734716 402:See also 195:benzylic 105:′ 889:A value 524:in situ 199:allylic 187:alkenyl 44:lithium 776:  741:  733:  697:  660:  637:  584:  544:  448:  191:methyl 129:alkane 344:TMEDA 205:, or 185:, or 179:alkyl 169:Scope 774:ISSN 739:PMID 731:ISSN 695:ISSN 658:ISBN 635:ISSN 623:1971 582:ISSN 542:ISBN 446:ISBN 183:aryl 71:CuLi 30:The 766:doi 723:doi 719:134 687:doi 627:doi 574:doi 502:doi 475:doi 438:doi 332:. 242:of 207:OTf 203:OTs 155:or 88:or 4103:: 772:. 762:55 760:. 737:. 729:. 717:. 693:. 683:13 681:. 633:. 621:. 580:. 570:91 568:. 556:^ 498:31 496:. 471:89 469:. 444:. 213:. 197:, 193:, 181:, 811:e 804:t 797:v 780:. 768:: 745:. 725:: 701:. 689:: 666:. 641:. 629:: 605:S 601:R 599:( 588:. 576:: 550:. 508:. 504:: 481:. 477:: 454:. 440:: 397:) 383:( 373:( 363:( 297:N 286:U 282:U 278:U 175:2 145:′ 141:′ 114:X 102:R 92:( 63:2 59:R 49:( 20:)

Index

Corey–House–Posner–Whitesides reaction
organic reaction
lithium
diorganylcuprate
organic halide
pseudohalide
alkane
organocopper
organolithium
Grignard reagent
metal–halogen exchange
alkyl
aryl
alkenyl
methyl
benzylic
allylic
OTs
OTf
palladium catalysis
alkyllithium
lithium dialkylcuprate
Henry Gilman
Iowa State University
alkyllithium
copper(I) iodide

Jay Kochi
Grignard reagents
catalytic cycle

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.