Knowledge

Countably compact space

Source 📝

360: 650: 734: 839: 1026: 685: 543: 146: 879: 585: 270: 787: 176: 998: 210: 972: 941: 914: 503: 472: 441: 414: 387: 237: 754: 1128: 1594: 1562: 1599: 1526: 1500: 596: 97: 1095: 291: 1545: 1231: 1091: 602: 1045: 692: 1148:, countable compactness, sequential compactness, limit point compactness and compactness are all equivalent. 653: 78: 1540: 796: 1212: 1156: 1134: 1137:, countable compactness and sequential compactness are equivalent. More generally, the same holds for 1011: 1130:
with the product topology is compact and hence countably compact; but it is not sequentially compact.
599:
of the sequence. Otherwise, every value in the sequence occurs only finitely many times and the set
1241: 1077: 670: 528: 131: 1577: 1550: 844: 550: 242: 1160: 759: 1558: 1536: 1522: 1496: 1488: 1246: 1191: 1187: 1164: 1152: 1070: 32: 161: 1333: 1145: 1138: 977: 189: 950: 919: 892: 481: 450: 419: 392: 365: 215: 1554: 1201: 1198: 1183:
In a countably compact space, every locally finite family of nonempty subsets is finite.
1004:
is not an accumulation point of the sequence after all. This contradiction proves (1).
1049: 739: 1101: 1588: 1518: 1510: 1236: 1205: 1177: 1063: 1462:"Is the Product of a Compact Space and a Countably Compact Space Countably Compact?" 1218:
The product of a compact space and a countably compact space is countably compact.
17: 1275: 1094:
is countably compact. The converse does not hold. For example, the product of
28: 1030:
Conditions (1) and (4) are easily seen to be equivalent by taking complements.
1276:"General topology - Does sequential compactness imply countable compactness?" 111:
with an empty intersection has a finite subfamily with an empty intersection.
1461: 1431: 1384: 1221:
The product of two countably compact spaces need not be countably compact.
1084: 1337: 1173:
The continuous image of a countably compact space is countably compact.
663:
is then an accumulation point of the sequence, as is easily checked.
1170:
Closed subspaces of a countably compact space are countably compact.
736:
is a countable open cover without a finite subcover. Then for each
1087:, countable compactness and limit point compactness are equivalent. 1052:) is an example of a countably compact space that is not compact. 55:
if it satisfies any of the following equivalent conditions:
1069:
A countably compact space is compact if and only if it is
1190:
is compact. More generally, every countably compact
1104: 1014: 980: 953: 922: 895: 847: 799: 762: 742: 695: 673: 605: 553: 531: 484: 453: 422: 395: 368: 294: 245: 218: 192: 164: 134: 39:
if every countable open cover has a finite subcover.
1151:
The example of the set of all real numbers with the
595:
that occurs infinitely many times, that value is an
1122: 1020: 992: 966: 935: 908: 873: 833: 781: 748: 728: 679: 644: 579: 537: 497: 466: 435: 408: 381: 355:{\displaystyle O_{F}=\cup \{O_{x}:O_{x}\cap A=F\}} 354: 264: 231: 204: 170: 140: 1432:"Prove that a countably compact, first countable 280:an ω-accumulation point. For every finite subset 1385:"Countably compact paracompact space is compact" 107:(4) Every countable family of closed subsets of 447:. Since there are countably many of them, the 1553:reprint of 1978 ed.). Berlin, New York: 1379: 1377: 645:{\displaystyle A=\{x_{n}:n\in \mathbb {N} \}} 8: 1288: 723: 696: 639: 612: 349: 311: 178:-accumulation point. By taking a subset of 729:{\displaystyle \{O_{n}:n\in \mathbb {N} \}} 1332:(Thesis), University of British Columbia, 115: 1580:reprint of 1970 ed.), Addison-Wesley 1409: 1397: 1368: 1103: 1013: 979: 958: 952: 927: 921: 900: 894: 865: 855: 846: 825: 815: 804: 798: 767: 761: 741: 719: 718: 703: 694: 672: 635: 634: 619: 604: 571: 561: 552: 530: 513:), so finitely many of them cannot cover 489: 483: 458: 452: 427: 421: 400: 394: 373: 367: 331: 318: 299: 293: 250: 244: 223: 217: 191: 163: 133: 1309:Steen & Seebach, Example 105, p, 125 1211:Every normal countably compact space is 1258: 118: 7: 1421:Steen & Seebach, Figure 7, p. 25 834:{\displaystyle \cup _{i=1}^{n}O_{i}} 521:. This contradiction proves (2). 272:is finite (possibly empty), since 59:(1) Every countable open cover of 25: 1176:Every countably compact space is 1076:Every countably compact space is 947:that does not contain any of the 182:if necessary, we can assume that 1595:Properties of topological spaces 1328:Kremsater, Terry Philip (1972), 1021:{\displaystyle \Leftrightarrow } 591:. If the sequence has a value 474:form a countable open cover of 1117: 1105: 1015: 862: 848: 674: 568: 554: 532: 135: 1: 1495:. Heldermann Verlag, Berlin. 1451:Willard, problem 17F, p. 125 1359:Willard, problem 17F, p. 125 1350:Willard, problem 17F, p. 125 1318:Willard, problem 17G, p. 125 1167:imply countable compactness. 680:{\displaystyle \Rightarrow } 538:{\displaystyle \Rightarrow } 141:{\displaystyle \Rightarrow } 1546:Counterexamples in Topology 874:{\displaystyle (x_{n})_{n}} 580:{\displaystyle (x_{n})_{n}} 547:Suppose (2) holds, and let 509:in a finite subset (namely 265:{\displaystyle O_{x}\cap A} 1616: 1572:Willard, Stephen (2004) , 1474:Engelking, example 3.10.19 1300:Steen & Seebach, p. 20 1265:Steen & Seebach, p. 19 1232:Sequentially compact space 1092:sequentially compact space 881:has an accumulation point 782:{\displaystyle x_{n}\in X} 652:is infinite and so has an 389:is a subset of one of the 212:has an open neighbourhood 1600:Compactness (mathematics) 1046:first uncountable ordinal 154:is an infinite subset of 1330:Sequential space methods 1289:Steen & Seebach 1995 1197:Every countably compact 1186:Every countably compact 1098:-many closed intervals 171:{\displaystyle \omega } 1541:Seebach, J. Arthur Jr. 1135:first-countable spaces 1124: 1022: 994: 993:{\displaystyle n>k} 968: 937: 910: 875: 835: 783: 756:we can choose a point 750: 730: 689:Suppose (3) holds and 681: 646: 581: 539: 499: 468: 437: 410: 383: 356: 266: 233: 206: 205:{\displaystyle x\in X} 172: 150:Suppose (1) holds and 142: 63:has a finite subcover. 43:Equivalent definitions 1371:, Theorem 3.10.3(ii). 1213:collectionwise normal 1125: 1066:is countably compact. 1023: 995: 969: 967:{\displaystyle x_{n}} 943:is a neighborhood of 938: 936:{\displaystyle O_{k}} 911: 909:{\displaystyle O_{k}} 876: 836: 784: 751: 731: 682: 647: 582: 540: 500: 498:{\displaystyle O_{F}} 469: 467:{\displaystyle O_{F}} 438: 436:{\displaystyle O_{F}} 411: 409:{\displaystyle O_{F}} 384: 382:{\displaystyle O_{x}} 357: 267: 234: 232:{\displaystyle O_{x}} 207: 173: 143: 1291:, example 42, p. 68. 1102: 1012: 978: 951: 920: 893: 845: 797: 760: 740: 693: 671: 654:ω-accumulation point 603: 551: 529: 482: 451: 420: 393: 366: 292: 243: 216: 190: 186:is countable. Every 162: 132: 120:Proof of equivalence 79:ω-accumulation point 47:A topological space 1242:Limit point compact 1155:shows that neither 1078:limit point compact 820: 66:(2) Every infinite 1537:Steen, Lynn Arthur 1489:Engelking, Ryszard 1338:10.14288/1.0080490 1120: 1018: 990: 964: 933: 906: 871: 831: 800: 779: 746: 726: 677: 642: 597:accumulation point 577: 535: 495: 464: 433: 406: 379: 352: 262: 229: 202: 168: 138: 98:accumulation point 1564:978-0-486-68735-3 1439:space is regular" 1400:, Theorem 5.1.20. 1192:metacompact space 1188:paracompact space 1157:local compactness 1153:standard topology 1146:metrizable spaces 1139:sequential spaces 1035: 1034: 749:{\displaystyle n} 587:be a sequence in 53:countably compact 37:countably compact 33:topological space 18:Countably compact 16:(Redirected from 1607: 1581: 1574:General Topology 1568: 1532: 1517:(2nd ed.). 1506: 1493:General Topology 1475: 1472: 1466: 1465: 1458: 1452: 1449: 1443: 1442: 1428: 1422: 1419: 1413: 1412:, Theorem 5.3.2. 1407: 1401: 1395: 1389: 1388: 1381: 1372: 1366: 1360: 1357: 1351: 1348: 1342: 1340: 1325: 1319: 1316: 1310: 1307: 1301: 1298: 1292: 1286: 1280: 1279: 1272: 1266: 1263: 1129: 1127: 1126: 1123:{\displaystyle } 1121: 1027: 1025: 1024: 1019: 999: 997: 996: 991: 973: 971: 970: 965: 963: 962: 942: 940: 939: 934: 932: 931: 915: 913: 912: 907: 905: 904: 880: 878: 877: 872: 870: 869: 860: 859: 841:. The sequence 840: 838: 837: 832: 830: 829: 819: 814: 788: 786: 785: 780: 772: 771: 755: 753: 752: 747: 735: 733: 732: 727: 722: 708: 707: 686: 684: 683: 678: 651: 649: 648: 643: 638: 624: 623: 586: 584: 583: 578: 576: 575: 566: 565: 544: 542: 541: 536: 504: 502: 501: 496: 494: 493: 473: 471: 470: 465: 463: 462: 442: 440: 439: 434: 432: 431: 415: 413: 412: 407: 405: 404: 388: 386: 385: 380: 378: 377: 361: 359: 358: 353: 336: 335: 323: 322: 304: 303: 271: 269: 268: 263: 255: 254: 238: 236: 235: 230: 228: 227: 211: 209: 208: 203: 177: 175: 174: 169: 147: 145: 144: 139: 116: 21: 1615: 1614: 1610: 1609: 1608: 1606: 1605: 1604: 1585: 1584: 1571: 1565: 1555:Springer-Verlag 1535: 1529: 1509: 1503: 1487: 1484: 1479: 1478: 1473: 1469: 1460: 1459: 1455: 1450: 1446: 1438: 1430: 1429: 1425: 1420: 1416: 1408: 1404: 1396: 1392: 1383: 1382: 1375: 1367: 1363: 1358: 1354: 1349: 1345: 1327: 1326: 1322: 1317: 1313: 1308: 1304: 1299: 1295: 1287: 1283: 1274: 1273: 1269: 1264: 1260: 1255: 1228: 1202:first-countable 1165:paracompactness 1100: 1099: 1059: 1041: 1036: 1010: 1009: 976: 975: 954: 949: 948: 923: 918: 917: 896: 891: 890: 861: 851: 843: 842: 821: 795: 794: 763: 758: 757: 738: 737: 699: 691: 690: 669: 668: 615: 601: 600: 567: 557: 549: 548: 527: 526: 485: 480: 479: 454: 449: 448: 423: 418: 417: 396: 391: 390: 369: 364: 363: 327: 314: 295: 290: 289: 246: 241: 240: 219: 214: 213: 188: 187: 160: 159: 130: 129: 121: 45: 23: 22: 15: 12: 11: 5: 1613: 1611: 1603: 1602: 1597: 1587: 1586: 1583: 1582: 1569: 1563: 1533: 1527: 1507: 1501: 1483: 1480: 1477: 1476: 1467: 1453: 1444: 1436: 1423: 1414: 1410:Engelking 1989 1402: 1398:Engelking 1989 1390: 1373: 1369:Engelking 1989 1361: 1352: 1343: 1341:, Theorem 1.20 1320: 1311: 1302: 1293: 1281: 1267: 1257: 1256: 1254: 1251: 1250: 1249: 1247:Lindelöf space 1244: 1239: 1234: 1227: 1224: 1223: 1222: 1219: 1216: 1209: 1195: 1184: 1181: 1174: 1171: 1168: 1149: 1142: 1131: 1119: 1116: 1113: 1110: 1107: 1088: 1081: 1074: 1067: 1058: 1055: 1054: 1053: 1050:order topology 1040: 1037: 1033: 1032: 1017: 989: 986: 983: 961: 957: 930: 926: 903: 899: 868: 864: 858: 854: 850: 828: 824: 818: 813: 810: 807: 803: 778: 775: 770: 766: 745: 725: 721: 717: 714: 711: 706: 702: 698: 676: 641: 637: 633: 630: 627: 622: 618: 614: 611: 608: 574: 570: 564: 560: 556: 534: 492: 488: 461: 457: 430: 426: 403: 399: 376: 372: 351: 348: 345: 342: 339: 334: 330: 326: 321: 317: 313: 310: 307: 302: 298: 261: 258: 253: 249: 226: 222: 201: 198: 195: 167: 137: 123: 122: 119: 114: 113: 112: 105: 86: 64: 44: 41: 24: 14: 13: 10: 9: 6: 4: 3: 2: 1612: 1601: 1598: 1596: 1593: 1592: 1590: 1579: 1575: 1570: 1566: 1560: 1556: 1552: 1548: 1547: 1542: 1538: 1534: 1530: 1528:0-13-181629-2 1524: 1520: 1519:Prentice Hall 1516: 1512: 1511:James Munkres 1508: 1504: 1502:3-88538-006-4 1498: 1494: 1490: 1486: 1485: 1481: 1471: 1468: 1463: 1457: 1454: 1448: 1445: 1440: 1435: 1427: 1424: 1418: 1415: 1411: 1406: 1403: 1399: 1394: 1391: 1386: 1380: 1378: 1374: 1370: 1365: 1362: 1356: 1353: 1347: 1344: 1339: 1335: 1331: 1324: 1321: 1315: 1312: 1306: 1303: 1297: 1294: 1290: 1285: 1282: 1277: 1271: 1268: 1262: 1259: 1252: 1248: 1245: 1243: 1240: 1238: 1237:Compact space 1235: 1233: 1230: 1229: 1225: 1220: 1217: 1214: 1210: 1207: 1203: 1200: 1196: 1193: 1189: 1185: 1182: 1179: 1178:pseudocompact 1175: 1172: 1169: 1166: 1162: 1161:σ-compactness 1158: 1154: 1150: 1147: 1143: 1140: 1136: 1132: 1114: 1111: 1108: 1097: 1093: 1089: 1086: 1082: 1079: 1075: 1072: 1068: 1065: 1064:compact space 1061: 1060: 1056: 1051: 1047: 1043: 1042: 1038: 1031: 1029: 1005: 1003: 987: 984: 981: 959: 955: 946: 928: 924: 901: 897: 888: 884: 866: 856: 852: 826: 822: 816: 811: 808: 805: 801: 792: 776: 773: 768: 764: 743: 715: 712: 709: 704: 700: 688: 664: 662: 658: 655: 631: 628: 625: 620: 616: 609: 606: 598: 594: 590: 572: 562: 558: 546: 522: 520: 516: 512: 508: 490: 486: 478:. But every 477: 459: 455: 446: 428: 424: 401: 397: 374: 370: 346: 343: 340: 337: 332: 328: 324: 319: 315: 308: 305: 300: 296: 287: 283: 279: 275: 259: 256: 251: 247: 224: 220: 199: 196: 193: 185: 181: 165: 157: 153: 149: 125: 124: 117: 110: 106: 103: 99: 95: 91: 87: 84: 80: 76: 72: 69: 65: 62: 58: 57: 56: 54: 50: 42: 40: 38: 34: 30: 19: 1573: 1544: 1514: 1492: 1470: 1456: 1447: 1433: 1426: 1417: 1405: 1393: 1364: 1355: 1346: 1329: 1323: 1314: 1305: 1296: 1284: 1270: 1261: 1007: 1006: 1001: 944: 916:. But then 886: 882: 790: 666: 665: 660: 656: 592: 588: 524: 523: 518: 517:, let alone 514: 510: 506: 475: 444: 285: 281: 277: 273: 183: 179: 155: 151: 127: 126: 108: 101: 93: 89: 82: 74: 70: 67: 60: 52: 48: 46: 36: 26: 1194:is compact. 889:is in some 29:mathematics 1589:Categories 1482:References 1057:Properties 1048:(with the 505:intersect 239:such that 88:(3) Every 51:is called 35:is called 1543:(1995) . 1204:space is 1199:Hausdorff 1096:continuum 1085:T1 spaces 1016:⇔ 885:and that 802:∪ 774:∈ 716:∈ 675:⇒ 632:∈ 533:⇒ 416:, so the 338:∩ 309:∪ 257:∩ 197:∈ 166:ω 136:⇒ 1515:Topology 1513:(1999). 1491:(1989). 1226:See also 1071:Lindelöf 1039:Examples 789:that is 659:. That 362:. Every 158:without 90:sequence 1206:regular 288:define 96:has an 77:has an 1561:  1525:  1499:  1090:Every 1062:Every 443:cover 1578:Dover 1551:Dover 1253:Notes 1000:, so 974:with 1559:ISBN 1523:ISBN 1497:ISBN 1163:nor 1159:nor 1144:For 1133:For 1083:For 1044:The 1028:(1): 1008:(4) 985:> 687:(1): 667:(3) 545:(3): 525:(2) 148:(2): 128:(1) 1334:doi 793:in 791:not 284:of 278:not 276:is 100:in 92:in 81:in 73:in 68:set 27:In 1591:: 1557:. 1539:; 1521:. 1376:^ 31:a 1576:( 1567:. 1549:( 1531:. 1505:. 1464:. 1441:. 1437:2 1434:T 1387:. 1336:: 1278:. 1215:. 1208:. 1180:. 1141:. 1118:] 1115:1 1112:, 1109:0 1106:[ 1080:. 1073:. 1002:x 988:k 982:n 960:n 956:x 945:x 929:k 925:O 902:k 898:O 887:x 883:x 867:n 863:) 857:n 853:x 849:( 827:i 823:O 817:n 812:1 809:= 806:i 777:X 769:n 765:x 744:n 724:} 720:N 713:n 710:: 705:n 701:O 697:{ 661:x 657:x 640:} 636:N 629:n 626:: 621:n 617:x 613:{ 610:= 607:A 593:x 589:X 573:n 569:) 563:n 559:x 555:( 519:X 515:A 511:F 507:A 491:F 487:O 476:X 460:F 456:O 445:X 429:F 425:O 402:F 398:O 375:x 371:O 350:} 347:F 344:= 341:A 333:x 329:O 325:: 320:x 316:O 312:{ 306:= 301:F 297:O 286:A 282:F 274:x 260:A 252:x 248:O 225:x 221:O 200:X 194:x 184:A 180:A 156:X 152:A 109:X 104:. 102:X 94:X 85:. 83:X 75:X 71:A 61:X 49:X 20:)

Index

Countably compact
mathematics
topological space
ω-accumulation point
accumulation point
accumulation point
ω-accumulation point
first uncountable ordinal
order topology
compact space
Lindelöf
limit point compact
T1 spaces
sequentially compact space
continuum
first-countable spaces
sequential spaces
metrizable spaces
standard topology
local compactness
σ-compactness
paracompactness
pseudocompact
paracompact space
metacompact space
Hausdorff
first-countable
regular
collectionwise normal
Sequentially compact space

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.