Knowledge (XXG)

Countably compact space

Source 📝

349: 639: 723: 828: 1015: 674: 532: 135: 868: 574: 259: 776: 165: 987: 199: 961: 930: 903: 492: 461: 430: 403: 376: 226: 743: 1117: 1583: 1551: 1588: 1515: 1489: 585: 86: 1084: 280: 1534: 1220: 1080: 591: 1034: 681: 1137:, countable compactness, sequential compactness, limit point compactness and compactness are all equivalent. 642: 67: 1529: 785: 1201: 1145: 1123: 1126:, countable compactness and sequential compactness are equivalent. More generally, the same holds for 1000: 1119:
with the product topology is compact and hence countably compact; but it is not sequentially compact.
588:
of the sequence. Otherwise, every value in the sequence occurs only finitely many times and the set
1230: 1066: 659: 517: 120: 1566: 1539: 833: 539: 231: 1149: 748: 1547: 1525: 1511: 1485: 1477: 1235: 1180: 1176: 1153: 1141: 1059: 21: 150: 1322: 1134: 1127: 966: 178: 939: 908: 881: 470: 439: 408: 381: 354: 204: 1543: 1190: 1187: 1172:
In a countably compact space, every locally finite family of nonempty subsets is finite.
993:
is not an accumulation point of the sequence after all. This contradiction proves (1).
1038: 728: 1090: 1577: 1507: 1499: 1225: 1194: 1166: 1052: 1451:"Is the Product of a Compact Space and a Countably Compact Space Countably Compact?" 1207:
The product of a compact space and a countably compact space is countably compact.
1264: 1083:
is countably compact. The converse does not hold. For example, the product of
17: 1019:
Conditions (1) and (4) are easily seen to be equivalent by taking complements.
1265:"General topology - Does sequential compactness imply countable compactness?" 100:
with an empty intersection has a finite subfamily with an empty intersection.
1450: 1420: 1373: 1210:
The product of two countably compact spaces need not be countably compact.
1073: 1326: 1162:
The continuous image of a countably compact space is countably compact.
652:
is then an accumulation point of the sequence, as is easily checked.
1159:
Closed subspaces of a countably compact space are countably compact.
725:
is a countable open cover without a finite subcover. Then for each
1076:, countable compactness and limit point compactness are equivalent. 1041:) is an example of a countably compact space that is not compact. 44:
if it satisfies any of the following equivalent conditions:
1058:
A countably compact space is compact if and only if it is
1179:
is compact. More generally, every countably compact
1093: 1003: 969: 942: 911: 884: 836: 788: 751: 731: 684: 662: 594: 542: 520: 473: 442: 411: 384: 357: 283: 234: 207: 181: 153: 123: 28:
if every countable open cover has a finite subcover.
1140:
The example of the set of all real numbers with the
584:
that occurs infinitely many times, that value is an
1111: 1009: 981: 955: 924: 897: 862: 822: 770: 737: 717: 668: 633: 568: 526: 486: 455: 424: 397: 370: 344:{\displaystyle O_{F}=\cup \{O_{x}:O_{x}\cap A=F\}} 343: 253: 220: 193: 159: 129: 1421:"Prove that a countably compact, first countable 269:an ω-accumulation point. For every finite subset 1374:"Countably compact paracompact space is compact" 96:(4) Every countable family of closed subsets of 436:. Since there are countably many of them, the 1542:reprint of 1978 ed.). Berlin, New York: 1368: 1366: 634:{\displaystyle A=\{x_{n}:n\in \mathbb {N} \}} 8: 1277: 712: 685: 628: 601: 338: 300: 167:-accumulation point. By taking a subset of 718:{\displaystyle \{O_{n}:n\in \mathbb {N} \}} 1321:(Thesis), University of British Columbia, 104: 1569:reprint of 1970 ed.), Addison-Wesley 1398: 1386: 1357: 1092: 1002: 968: 947: 941: 916: 910: 889: 883: 854: 844: 835: 814: 804: 793: 787: 756: 750: 730: 708: 707: 692: 683: 661: 624: 623: 608: 593: 560: 550: 541: 519: 502:), so finitely many of them cannot cover 478: 472: 447: 441: 416: 410: 389: 383: 362: 356: 320: 307: 288: 282: 239: 233: 212: 206: 180: 152: 122: 1298:Steen & Seebach, Example 105, p, 125 1200:Every normal countably compact space is 1247: 7: 1410:Steen & Seebach, Figure 7, p. 25 823:{\displaystyle \cup _{i=1}^{n}O_{i}} 510:. This contradiction proves (2). 261:is finite (possibly empty), since 48:(1) Every countable open cover of 14: 1165:Every countably compact space is 1065:Every countably compact space is 936:that does not contain any of the 171:if necessary, we can assume that 1584:Properties of topological spaces 1317:Kremsater, Terry Philip (1972), 1010:{\displaystyle \Leftrightarrow } 580:. If the sequence has a value 463:form a countable open cover of 1106: 1094: 1004: 851: 837: 663: 557: 543: 521: 124: 1: 1484:. Heldermann Verlag, Berlin. 1440:Willard, problem 17F, p. 125 1348:Willard, problem 17F, p. 125 1339:Willard, problem 17F, p. 125 1307:Willard, problem 17G, p. 125 1156:imply countable compactness. 669:{\displaystyle \Rightarrow } 527:{\displaystyle \Rightarrow } 130:{\displaystyle \Rightarrow } 1535:Counterexamples in Topology 863:{\displaystyle (x_{n})_{n}} 569:{\displaystyle (x_{n})_{n}} 536:Suppose (2) holds, and let 498:in a finite subset (namely 254:{\displaystyle O_{x}\cap A} 1605: 1561:Willard, Stephen (2004) , 1463:Engelking, example 3.10.19 1289:Steen & Seebach, p. 20 1254:Steen & Seebach, p. 19 1221:Sequentially compact space 1081:sequentially compact space 870:has an accumulation point 771:{\displaystyle x_{n}\in X} 641:is infinite and so has an 378:is a subset of one of the 201:has an open neighbourhood 1589:Compactness (mathematics) 1035:first uncountable ordinal 143:is an infinite subset of 1319:Sequential space methods 1278:Steen & Seebach 1995 1186:Every countably compact 1175:Every countably compact 1087:-many closed intervals 160:{\displaystyle \omega } 1530:Seebach, J. Arthur Jr. 1124:first-countable spaces 1113: 1011: 983: 982:{\displaystyle n>k} 957: 926: 899: 864: 824: 772: 745:we can choose a point 739: 719: 678:Suppose (3) holds and 670: 635: 570: 528: 488: 457: 426: 399: 372: 345: 255: 222: 195: 194:{\displaystyle x\in X} 161: 139:Suppose (1) holds and 131: 52:has a finite subcover. 32:Equivalent definitions 1360:, Theorem 3.10.3(ii). 1202:collectionwise normal 1114: 1055:is countably compact. 1012: 984: 958: 956:{\displaystyle x_{n}} 932:is a neighborhood of 927: 925:{\displaystyle O_{k}} 900: 898:{\displaystyle O_{k}} 865: 825: 773: 740: 720: 671: 636: 571: 529: 489: 487:{\displaystyle O_{F}} 458: 456:{\displaystyle O_{F}} 427: 425:{\displaystyle O_{F}} 400: 398:{\displaystyle O_{F}} 373: 371:{\displaystyle O_{x}} 346: 256: 223: 221:{\displaystyle O_{x}} 196: 162: 132: 1280:, example 42, p. 68. 1091: 1001: 967: 940: 909: 882: 834: 786: 749: 729: 682: 660: 643:ω-accumulation point 592: 540: 518: 471: 440: 409: 382: 355: 281: 232: 205: 179: 175:is countable. Every 151: 121: 109:Proof of equivalence 68:ω-accumulation point 36:A topological space 1231:Limit point compact 1144:shows that neither 1067:limit point compact 809: 55:(2) Every infinite 1526:Steen, Lynn Arthur 1478:Engelking, Ryszard 1327:10.14288/1.0080490 1109: 1007: 979: 953: 922: 895: 860: 820: 789: 768: 735: 715: 666: 631: 586:accumulation point 566: 524: 484: 453: 422: 395: 368: 341: 251: 218: 191: 157: 127: 87:accumulation point 1553:978-0-486-68735-3 1428:space is regular" 1389:, Theorem 5.1.20. 1181:metacompact space 1177:paracompact space 1146:local compactness 1142:standard topology 1135:metrizable spaces 1128:sequential spaces 1024: 1023: 738:{\displaystyle n} 576:be a sequence in 42:countably compact 26:countably compact 22:topological space 1596: 1570: 1563:General Topology 1557: 1521: 1506:(2nd ed.). 1495: 1482:General Topology 1464: 1461: 1455: 1454: 1447: 1441: 1438: 1432: 1431: 1417: 1411: 1408: 1402: 1401:, Theorem 5.3.2. 1396: 1390: 1384: 1378: 1377: 1370: 1361: 1355: 1349: 1346: 1340: 1337: 1331: 1329: 1314: 1308: 1305: 1299: 1296: 1290: 1287: 1281: 1275: 1269: 1268: 1261: 1255: 1252: 1118: 1116: 1115: 1112:{\displaystyle } 1110: 1016: 1014: 1013: 1008: 988: 986: 985: 980: 962: 960: 959: 954: 952: 951: 931: 929: 928: 923: 921: 920: 904: 902: 901: 896: 894: 893: 869: 867: 866: 861: 859: 858: 849: 848: 830:. The sequence 829: 827: 826: 821: 819: 818: 808: 803: 777: 775: 774: 769: 761: 760: 744: 742: 741: 736: 724: 722: 721: 716: 711: 697: 696: 675: 673: 672: 667: 640: 638: 637: 632: 627: 613: 612: 575: 573: 572: 567: 565: 564: 555: 554: 533: 531: 530: 525: 493: 491: 490: 485: 483: 482: 462: 460: 459: 454: 452: 451: 431: 429: 428: 423: 421: 420: 404: 402: 401: 396: 394: 393: 377: 375: 374: 369: 367: 366: 350: 348: 347: 342: 325: 324: 312: 311: 293: 292: 260: 258: 257: 252: 244: 243: 227: 225: 224: 219: 217: 216: 200: 198: 197: 192: 166: 164: 163: 158: 136: 134: 133: 128: 105: 1604: 1603: 1599: 1598: 1597: 1595: 1594: 1593: 1574: 1573: 1560: 1554: 1544:Springer-Verlag 1524: 1518: 1498: 1492: 1476: 1473: 1468: 1467: 1462: 1458: 1449: 1448: 1444: 1439: 1435: 1427: 1419: 1418: 1414: 1409: 1405: 1397: 1393: 1385: 1381: 1372: 1371: 1364: 1356: 1352: 1347: 1343: 1338: 1334: 1316: 1315: 1311: 1306: 1302: 1297: 1293: 1288: 1284: 1276: 1272: 1263: 1262: 1258: 1253: 1249: 1244: 1217: 1191:first-countable 1154:paracompactness 1089: 1088: 1048: 1030: 1025: 999: 998: 965: 964: 943: 938: 937: 912: 907: 906: 885: 880: 879: 850: 840: 832: 831: 810: 784: 783: 752: 747: 746: 727: 726: 688: 680: 679: 658: 657: 604: 590: 589: 556: 546: 538: 537: 516: 515: 474: 469: 468: 443: 438: 437: 412: 407: 406: 385: 380: 379: 358: 353: 352: 316: 303: 284: 279: 278: 235: 230: 229: 208: 203: 202: 177: 176: 149: 148: 119: 118: 110: 34: 12: 11: 5: 1602: 1600: 1592: 1591: 1586: 1576: 1575: 1572: 1571: 1558: 1552: 1522: 1516: 1496: 1490: 1472: 1469: 1466: 1465: 1456: 1442: 1433: 1425: 1412: 1403: 1399:Engelking 1989 1391: 1387:Engelking 1989 1379: 1362: 1358:Engelking 1989 1350: 1341: 1332: 1330:, Theorem 1.20 1309: 1300: 1291: 1282: 1270: 1256: 1246: 1245: 1243: 1240: 1239: 1238: 1236:Lindelöf space 1233: 1228: 1223: 1216: 1213: 1212: 1211: 1208: 1205: 1198: 1184: 1173: 1170: 1163: 1160: 1157: 1138: 1131: 1120: 1108: 1105: 1102: 1099: 1096: 1077: 1070: 1063: 1056: 1047: 1044: 1043: 1042: 1039:order topology 1029: 1026: 1022: 1021: 1006: 978: 975: 972: 950: 946: 919: 915: 892: 888: 857: 853: 847: 843: 839: 817: 813: 807: 802: 799: 796: 792: 767: 764: 759: 755: 734: 714: 710: 706: 703: 700: 695: 691: 687: 665: 630: 626: 622: 619: 616: 611: 607: 603: 600: 597: 563: 559: 553: 549: 545: 523: 481: 477: 450: 446: 419: 415: 392: 388: 365: 361: 340: 337: 334: 331: 328: 323: 319: 315: 310: 306: 302: 299: 296: 291: 287: 250: 247: 242: 238: 215: 211: 190: 187: 184: 156: 126: 112: 111: 108: 103: 102: 101: 94: 75: 53: 33: 30: 13: 10: 9: 6: 4: 3: 2: 1601: 1590: 1587: 1585: 1582: 1581: 1579: 1568: 1564: 1559: 1555: 1549: 1545: 1541: 1537: 1536: 1531: 1527: 1523: 1519: 1517:0-13-181629-2 1513: 1509: 1508:Prentice Hall 1505: 1501: 1500:James Munkres 1497: 1493: 1491:3-88538-006-4 1487: 1483: 1479: 1475: 1474: 1470: 1460: 1457: 1452: 1446: 1443: 1437: 1434: 1429: 1424: 1416: 1413: 1407: 1404: 1400: 1395: 1392: 1388: 1383: 1380: 1375: 1369: 1367: 1363: 1359: 1354: 1351: 1345: 1342: 1336: 1333: 1328: 1324: 1320: 1313: 1310: 1304: 1301: 1295: 1292: 1286: 1283: 1279: 1274: 1271: 1266: 1260: 1257: 1251: 1248: 1241: 1237: 1234: 1232: 1229: 1227: 1226:Compact space 1224: 1222: 1219: 1218: 1214: 1209: 1206: 1203: 1199: 1196: 1192: 1189: 1185: 1182: 1178: 1174: 1171: 1168: 1167:pseudocompact 1164: 1161: 1158: 1155: 1151: 1150:σ-compactness 1147: 1143: 1139: 1136: 1132: 1129: 1125: 1121: 1103: 1100: 1097: 1086: 1082: 1078: 1075: 1071: 1068: 1064: 1061: 1057: 1054: 1053:compact space 1050: 1049: 1045: 1040: 1036: 1032: 1031: 1027: 1020: 1018: 994: 992: 976: 973: 970: 948: 944: 935: 917: 913: 890: 886: 877: 873: 855: 845: 841: 815: 811: 805: 800: 797: 794: 790: 781: 765: 762: 757: 753: 732: 704: 701: 698: 693: 689: 677: 653: 651: 647: 644: 620: 617: 614: 609: 605: 598: 595: 587: 583: 579: 561: 551: 547: 535: 511: 509: 505: 501: 497: 479: 475: 467:. But every 466: 448: 444: 435: 417: 413: 390: 386: 363: 359: 335: 332: 329: 326: 321: 317: 313: 308: 304: 297: 294: 289: 285: 276: 272: 268: 264: 248: 245: 240: 236: 213: 209: 188: 185: 182: 174: 170: 154: 146: 142: 138: 114: 113: 107: 106: 99: 95: 92: 88: 84: 80: 76: 73: 69: 65: 61: 58: 54: 51: 47: 46: 45: 43: 39: 31: 29: 27: 23: 19: 1562: 1533: 1503: 1481: 1459: 1445: 1436: 1422: 1415: 1406: 1394: 1382: 1353: 1344: 1335: 1318: 1312: 1303: 1294: 1285: 1273: 1259: 1250: 996: 995: 990: 933: 905:. But then 875: 871: 779: 655: 654: 649: 645: 581: 577: 513: 512: 507: 506:, let alone 503: 499: 495: 464: 433: 274: 270: 266: 262: 172: 168: 144: 140: 116: 115: 97: 90: 82: 78: 71: 63: 59: 56: 49: 41: 37: 35: 25: 15: 1183:is compact. 878:is in some 18:mathematics 1578:Categories 1471:References 1046:Properties 1037:(with the 494:intersect 228:such that 77:(3) Every 40:is called 24:is called 1532:(1995) . 1193:space is 1188:Hausdorff 1085:continuum 1074:T1 spaces 1005:⇔ 874:and that 791:∪ 763:∈ 705:∈ 664:⇒ 621:∈ 522:⇒ 405:, so the 327:∩ 298:∪ 246:∩ 186:∈ 155:ω 125:⇒ 1504:Topology 1502:(1999). 1480:(1989). 1215:See also 1060:Lindelöf 1028:Examples 778:that is 648:. That 351:. Every 147:without 79:sequence 1195:regular 277:define 85:has an 66:has an 1550:  1514:  1488:  1079:Every 1051:Every 432:cover 1567:Dover 1540:Dover 1242:Notes 989:, so 963:with 1548:ISBN 1512:ISBN 1486:ISBN 1152:nor 1148:nor 1133:For 1122:For 1072:For 1033:The 1017:(1): 997:(4) 974:> 676:(1): 656:(3) 534:(3): 514:(2) 137:(2): 117:(1) 1323:doi 782:in 780:not 273:of 267:not 265:is 89:in 81:in 70:in 62:in 57:set 16:In 1580:: 1546:. 1528:; 1510:. 1365:^ 20:a 1565:( 1556:. 1538:( 1520:. 1494:. 1453:. 1430:. 1426:2 1423:T 1376:. 1325:: 1267:. 1204:. 1197:. 1169:. 1130:. 1107:] 1104:1 1101:, 1098:0 1095:[ 1069:. 1062:. 991:x 977:k 971:n 949:n 945:x 934:x 918:k 914:O 891:k 887:O 876:x 872:x 856:n 852:) 846:n 842:x 838:( 816:i 812:O 806:n 801:1 798:= 795:i 766:X 758:n 754:x 733:n 713:} 709:N 702:n 699:: 694:n 690:O 686:{ 650:x 646:x 629:} 625:N 618:n 615:: 610:n 606:x 602:{ 599:= 596:A 582:x 578:X 562:n 558:) 552:n 548:x 544:( 508:X 504:A 500:F 496:A 480:F 476:O 465:X 449:F 445:O 434:X 418:F 414:O 391:F 387:O 364:x 360:O 339:} 336:F 333:= 330:A 322:x 318:O 314:: 309:x 305:O 301:{ 295:= 290:F 286:O 275:A 271:F 263:x 249:A 241:x 237:O 214:x 210:O 189:X 183:x 173:A 169:A 145:X 141:A 98:X 93:. 91:X 83:X 74:. 72:X 64:X 60:A 50:X 38:X

Index

mathematics
topological space
ω-accumulation point
accumulation point
accumulation point
ω-accumulation point
first uncountable ordinal
order topology
compact space
Lindelöf
limit point compact
T1 spaces
sequentially compact space
continuum
first-countable spaces
sequential spaces
metrizable spaces
standard topology
local compactness
σ-compactness
paracompactness
pseudocompact
paracompact space
metacompact space
Hausdorff
first-countable
regular
collectionwise normal
Sequentially compact space
Compact space

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.