Knowledge (XXG)

Crista

Source 📝

362: 60: 337:– Daems and Wisse (1966) proposed that cristae are connected to the inner boundary membrane via tubular structures characterized by rather small diameters, termed crista junctions (CJs). In the middle of 1990s these structures were rediscovered by EM tomography, leading to the establishment of this currently widely accepted model. 345:
dimers (formerly known as "elementary particles" or "oxysomes") forming at the cristae. These membrane-curving dimers have a bent shape, and may be the first step to cristae formation. They are situated at the base of the crista. A mitochondrial contact site cristae organizing system (MICOS) protein
485:
requires a varying supply of electrons in order to properly function and generate ATP. However, the electrons that have entered the electron transport chain would eventually pile up like cars traveling down a blocked one-way street. Those electrons are finally accepted by
544:
on which the above-mentioned reactions may take place. A widely accepted hypothesis for the function of the cristae is that the high surface area allows an increased capacity for ATP generation. However, the current model is that active
317:(1953), the mitochondrial inner membrane is convoluted in a baffle-like manner with broad openings towards the intra-cristal space. This model entered most textbooks and was widely believed for a long time. 502:
O). By accepting the electrons, oxygen allows the electron transport chain to continue functioning. The chain is organized in the cristae lumen membrane, i.e. the membrane inside the junction.
353:
Crista are traditionally sorted by shapes into lamellar, tubular, and vesicular cristae. They appear in different cell types. It is debated whether these shapes arise by different pathways.
549:
complexes localize preferentially in dimers to the narrow edges of the cristae. Thus, the surface area of mitochondrial membranes allocated to ATP syntheses is actually quite modest.
552:
Mathematical modelling suggested that the optical properties of the cristae in filamentous mitochondria may affect the generation and propagation of light within the tissue.
505:
The electrons from each NADH molecule can form a total of 3 ATP's from ADPs and phosphate groups through the electron transport chain, while each FADH
757:"Linking mitochondrial dynamics, cristae remodeling and supercomplex formation: How mitochondrial structure can regulate bioenergetics" 890: 796:
Hanaki M, Tanaka K, Kashima Y (1985). "Scanning electron icroscopic study on mitochondrial cristae in the rat adrenal cortex".
911: 532:, the efficiency for the electron transport chain is about 65%, as compared to only 3.5% efficiency for glycolysis alone. 417:
in the inner membrane, energy is gradually released and used to pump the hydrogen ions from the splitting of NADH and FADH
306:
research proposed different models for the organization of the mitochondrial inner membrane. Three models proposed were:
541: 347: 251: 126: 71: 406: 399: 916: 482: 433: 426: 414: 374: 470:
from the concentration gradient formed by the amount of H ions. H ions passively pass into the mitochondrial
324: 31: 455: 116: 459: 836: 706: 275: 151: 617:
Sjostrand, F (Jan 3, 1953). "Systems of double membranes in the cytoplasm of certain tissue cells".
525: 443: 422: 91: 634: 599: 314: 266:, and it gives the inner membrane its characteristic wrinkled shape, providing a large amount of 862: 805: 778: 734: 675: 591: 302:
With the discovery of the dual-membrane nature of mitochondria, the pioneers of mitochondrial
271: 176: 888: 852: 844: 768: 724: 714: 695:"Dimers of mitochondrial ATP synthase induce membrane curvature and self-assemble into rows" 665: 626: 581: 528:(from a single electron transport chain). This means that combined with the Krebs Cycle and 471: 467: 438: 213: 361: 894: 463: 81: 879:
Thar, R.and M. Kühl (2004). "Propagation of electromagnetic radiation in mitochondria?".
840: 710: 857: 824: 729: 694: 303: 905: 586: 569: 366: 255: 49: 638: 603: 546: 451: 447: 342: 287: 267: 195: 40: 59: 670: 653: 327:(1953) suggested that sheets of inner membrane are spanned like septa (plural of 517: 848: 823:
Stephan, Till; Roesch, Axel; Riedel, Dietmar; Jakobs, Stefan (27 August 2019).
773: 756: 699:
Proceedings of the National Academy of Sciences of the United States of America
529: 513: 291: 421:
into the space between the inner membrane and the outer membrane (called the
719: 391: 866: 782: 738: 679: 595: 160: 809: 410: 188: 654:"Cristae formation-linking ultrastructure and function of mitochondria" 331:) through the matrix, separating it into several distinct compartments. 283: 17: 630: 487: 395: 328: 279: 383: 495: 360: 693:
Blum TB, Hahn A, Meier T, Davies KM, Kühlbrandt W (March 2019).
387: 379: 755:
Baker, Nicole; Patel, Jeel; Khacho, Mireille (November 2019).
658:
Biochimica et Biophysica Acta (BBA) - Molecular Cell Research
234: 225: 442:) across the inner mitochondrial membrane known as the 540:
The cristae greatly increase the surface area of the
228: 219: 346:
complex occupies the crista junction. Proteins like
231: 222: 825:"Live-cell STED nanoscopy of mitochondrial cristae" 216: 39: 439:potential energy § chemical potential energy 474:by the ATP synthase, and later help to re-form H 652:Zick, M; Rabl, R; Reichert, AS (January 2009). 568:Griparic, L; van der Bliek, AM (August 2003). 524:molecules, can form a total of 34 ATPs during 405:is also oxidized into H ions, electrons, and 27:Fold in the inner membrane of a mitochondrion 8: 570:"The many shapes of mitochondrial membranes" 494:). As a result, they form two molecules of 341:More recent research (2019) finds rows of 856: 772: 728: 718: 669: 585: 509:molecule can produce a total of 2 ATPs. 750: 748: 560: 357:Electron transport chain of the cristae 36: 512:As a result, 10 NADH molecules (from 278:, because the mitochondrion requires 65:Components of a typical mitochondrion 7: 350:are involved in cristae remodeling. 243: 25: 258:. The name is from the Latin for 587:10.1034/j.1600-0854.2001.1r008.x 212: 58: 798:Journal of Electron Microscopy 436:creates potential energy (see 1: 671:10.1016/j.bbamcr.2008.06.013 276:aerobic cellular respiration 413:travel farther through the 282:. Cristae are studded with 933: 849:10.1038/s41598-019-48838-2 774:10.1016/j.mito.2019.06.003 372: 29: 57: 48: 483:electron transport chain 434:electrochemical gradient 427:electrochemical gradient 415:electron transport chain 375:Electron transport chain 720:10.1073/pnas.1816556116 450:occurs, and the enzyme 369:, with labeled cristae. 274:to occur on. This aids 135:Inner boundary membrane 32:Crista (disambiguation) 370: 881:J.Theoretical Biology 466:. This harnesses the 364: 335:Crista junction model 912:Cellular respiration 520:), along with 2 FADH 30:For other uses, see 841:2019NatSR...912419S 711:2019PNAS..116.4250B 526:aerobic respiration 444:proton-motive force 423:intermembrane space 250:) is a fold in the 92:Intermembrane space 893:2013-07-18 at the 829:Scientific Reports 371: 272:chemical reactions 101:Intracristal space 705:(10): 4250–4255. 382:is oxidized into 290:and a variety of 204: 203: 177:Mitochondrial DNA 16:(Redirected from 924: 917:Membrane biology 897: 877: 871: 870: 860: 820: 814: 813: 793: 787: 786: 776: 752: 743: 742: 732: 722: 690: 684: 683: 673: 649: 643: 642: 631:10.1038/171031a0 614: 608: 607: 589: 565: 468:potential energy 245: 241: 240: 237: 236: 233: 230: 227: 224: 221: 218: 168: 142:Cristal membrane 108:Peripheral space 62: 52: 43: 37: 21: 932: 931: 927: 926: 925: 923: 922: 921: 902: 901: 900: 895:Wayback Machine 878: 874: 822: 821: 817: 795: 794: 790: 754: 753: 746: 692: 691: 687: 651: 650: 646: 625:(4340): 31–32. 616: 615: 611: 567: 566: 562: 558: 538: 523: 508: 501: 493: 477: 464:phosphate group 446:. As a result, 425:), creating an 420: 403: 377: 359: 313:– According to 304:ultrastructural 300: 215: 211: 200: 199: 191: 184: 179: 169: 163: 154: 143: 136: 129: 119: 109: 102: 94: 84: 74: 50: 41: 35: 28: 23: 22: 15: 12: 11: 5: 930: 928: 920: 919: 914: 904: 903: 899: 898: 887:(2), 261-270. 872: 815: 804:(4): 373–380. 788: 744: 685: 644: 609: 559: 557: 554: 542:inner membrane 537: 534: 521: 506: 499: 491: 475: 418: 401: 373:Main article: 358: 355: 339: 338: 332: 318: 299: 296: 252:inner membrane 202: 201: 183:Matrix granule 171: 170: 155: 146: 145: 144: 137: 127:Inner membrane 111: 110: 103: 86: 85: 72:Outer membrane 63: 55: 54: 46: 45: 26: 24: 14: 13: 10: 9: 6: 4: 3: 2: 929: 918: 915: 913: 910: 909: 907: 896: 892: 889: 886: 882: 876: 873: 868: 864: 859: 854: 850: 846: 842: 838: 834: 830: 826: 819: 816: 811: 807: 803: 799: 792: 789: 784: 780: 775: 770: 766: 762: 761:Mitochondrion 758: 751: 749: 745: 740: 736: 731: 726: 721: 716: 712: 708: 704: 700: 696: 689: 686: 681: 677: 672: 667: 663: 659: 655: 648: 645: 640: 636: 632: 628: 624: 620: 613: 610: 605: 601: 597: 593: 588: 583: 580:(4): 235–44. 579: 575: 571: 564: 561: 555: 553: 550: 548: 543: 535: 533: 531: 527: 519: 515: 510: 503: 497: 489: 484: 479: 473: 469: 465: 461: 457: 453: 449: 445: 441: 440: 435: 430: 428: 424: 416: 412: 408: 404: 397: 393: 389: 385: 381: 376: 368: 367:mitochondrion 363: 356: 354: 351: 349: 344: 336: 333: 330: 326: 322: 319: 316: 312: 309: 308: 307: 305: 297: 295: 293: 289: 285: 281: 277: 273: 269: 265: 261: 257: 256:mitochondrion 253: 249: 239: 209: 198: 197: 194: 190: 187: 182: 178: 175: 167: 162: 159: 156: 153: 150: 147: 141: 138: 134: 131: 130: 128: 125: 122: 121: 120: 118: 115: 107: 104: 100: 97: 96: 95: 93: 90: 83: 80: 77: 76: 75: 73: 70: 66: 61: 56: 53: 51:mitochondrion 47: 44: 38: 33: 19: 884: 880: 875: 835:(1): 12419. 832: 828: 818: 801: 797: 791: 764: 760: 702: 698: 688: 661: 657: 647: 622: 618: 612: 577: 573: 563: 551: 547:ATP synthase 539: 511: 504: 480: 452:ATP synthase 448:chemiosmosis 437: 431: 378: 352: 343:ATP synthase 340: 334: 320: 311:Baffle model 310: 301: 288:ATP synthase 286:, including 268:surface area 263: 259: 247: 207: 205: 196:ATP synthase 192: 185: 180: 173: 172: 166:You are here 165: 157: 148: 139: 132: 123: 113: 112: 105: 98: 88: 87: 78: 68: 67: 64: 42:Cell biology 767:: 259–268. 664:(1): 5–19. 518:Krebs cycle 478:O (water). 409:. As those 321:Septa model 292:cytochromes 906:Categories 556:References 530:glycolysis 514:glycolysis 298:Background 454:produces 411:electrons 392:electrons 325:Sjöstrand 164:  ◄ 891:Archived 867:31455826 783:31207408 739:30760595 680:18620004 596:11285133 536:Function 516:and the 284:proteins 189:Ribosome 858:6712041 837:Bibcode 810:3837809 730:6410833 707:Bibcode 639:6765607 604:9500863 574:Traffic 248:cristae 117:Lamella 865:  855:  808:  781:  737:  727:  678:  637:  619:Nature 602:  594:  488:oxygen 472:matrix 462:and a 396:enzyme 394:by an 390:, and 329:septum 315:Palade 280:oxygen 208:crista 161:Cristæ 152:Matrix 18:Cristæ 635:S2CID 600:S2CID 496:water 458:from 432:This 264:plume 260:crest 254:of a 82:Porin 863:PMID 806:PMID 779:PMID 735:PMID 676:PMID 662:1793 592:PMID 481:The 400:FADH 388:ions 386:, H 380:NADH 348:OPA1 270:for 140:3.12 133:3.11 885:230 853:PMC 845:doi 769:doi 725:PMC 715:doi 703:116 666:doi 627:doi 623:171 582:doi 460:ADP 456:ATP 407:FAD 384:NAD 262:or 244:pl. 158:3.3 149:3.2 124:3.1 106:2.2 99:2.1 79:1.1 908:: 883:, 861:. 851:. 843:. 831:. 827:. 802:34 800:. 777:. 765:49 763:. 759:. 747:^ 733:. 723:. 713:. 701:. 697:. 674:. 660:. 656:. 633:. 621:. 598:. 590:. 576:. 572:. 498:(H 490:(O 429:. 398:. 365:A 323:– 294:. 246:: 242:; 206:A 869:. 847:: 839:: 833:9 812:. 785:. 771:: 741:. 717:: 709:: 682:. 668:: 641:. 629:: 606:. 584:: 578:2 522:2 507:2 500:2 492:2 476:2 419:2 402:2 238:/ 235:ə 232:t 229:s 226:ɪ 223:r 220:k 217:ˈ 214:/ 210:( 193:7 186:6 181:5 174:4 114:3 89:2 69:1 34:. 20:)

Index

Cristæ
Crista (disambiguation)
Cell biology
mitochondrion

Outer membrane
Porin
Intermembrane space
Lamella
Inner membrane
Matrix
Cristæ
Mitochondrial DNA
Ribosome
ATP synthase
/ˈkrɪstə/
inner membrane
mitochondrion
surface area
chemical reactions
aerobic cellular respiration
oxygen
proteins
ATP synthase
cytochromes
ultrastructural
Palade
Sjöstrand
septum
ATP synthase

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.