Knowledge (XXG)

Crystallographic defect

Source đź“ť

162:. There are two different types of substitutional defects: Isovalent substitution and aliovalent substitution. Isovalent substitution is where the ion that is substituting the original ion is of the same oxidation state as the ion it is replacing. Aliovalent substitution is where the ion that is substituting the original ion is of a different oxidation state than the ion it is replacing. Aliovalent substitutions change the overall charge within the ionic compound, but the ionic compound must be neutral. Therefore, a charge compensation mechanism is required. Hence either one of the metals is partially or fully oxidised or reduced, or ion vacancies are created. 1875: 31: 235: 2268: 185: 311: 2280: 134: 158:. The atom is not supposed to be anywhere in the crystal, and is thus an impurity. In some cases where the radius of the substitutional atom (ion) is substantially smaller than that of the atom (ion) it is replacing, its equilibrium position can be shifted away from the lattice site. These types of substitutional defects are often referred to as 207:
Complexes can form between different kinds of point defects. For example, if a vacancy encounters an impurity, the two may bind together if the impurity is too large for the lattice. Interstitials can form 'split interstitial' or 'dumbbell' structures where two atoms effectively share an atomic site,
153:
Due to fundamental limitations of material purification methods, materials are never 100% pure, which by definition induces defects in crystal structure. In the case of an impurity, the atom is often incorporated at a regular atomic site in the crystal structure. This is neither a vacant site nor is
297:
are line defects corresponding to "adding" or "subtracting" an angle around a line. Basically, this means that if you track the crystal orientation around the line defect, you get a rotation. Usually, they were thought to play a role only in liquid crystals, but recent developments suggest that they
246:
Edge dislocations are caused by the termination of a plane of atoms in the middle of a crystal. In such a case, the adjacent planes are not straight, but instead bend around the edge of the terminating plane so that the crystal structure is perfectly ordered on either side. The analogy with a stack
106:
are lattice sites which would be occupied in a perfect crystal, but are vacant. If a neighboring atom moves to occupy the vacant site, the vacancy moves in the opposite direction to the site which used to be occupied by the moving atom. The stability of the surrounding crystal structure guarantees
82:
Point defects are defects that occur only at or around a single lattice point. They are not extended in space in any dimension. Strict limits for how small a point defect is are generally not defined explicitly. However, these defects typically involve at most a few extra or missing atoms. Larger
168:
occur in an ordered alloy or compound when atoms of different type exchange positions. For example, some alloys have a regular structure in which every other atom is a different species; for illustration assume that type A atoms sit on the corners of a cubic lattice, and type B atoms sit in the
107:
that the neighboring atoms will not simply collapse around the vacancy. In some materials, neighboring atoms actually move away from a vacancy, because they experience attraction from atoms in the surroundings. A vacancy (or pair of vacancies in an ionic solid) is sometimes called a
204:) can be considered a defect in silica. Moreover, defects can also be defined in amorphous solids based on empty or densely packed local atomic neighbourhoods, and the properties of such 'defects' can be shown to be similar to normal vacancies and interstitials in crystals. 258:(b). For an edge type, b is perpendicular to the dislocation line, whereas in the cases of the screw type it is parallel. In metallic materials, b is aligned with close-packed crystallographic directions and its magnitude is equivalent to one interatomic spacing. 176:) all atoms are in rings containing six atoms. If the sheet contains regions where the number of atoms in a ring is different from six, while the total number of atoms remains the same, a topological defect has formed. An example is the 250:
The screw dislocation is more difficult to visualise, but basically comprises a structure in which a helical path is traced around the linear defect (dislocation line) by the atomic planes of atoms in the crystal lattice.
416:
simulations are widely used to study the properties of defects in solids with computer simulations. Simulating jamming of hard spheres of different sizes and/or in containers with non-commeasurable sizes using the
169:
center of the cubes. If one cube has an A atom at its center, the atom is on a site usually occupied by a B atom, and is thus an antisite defect. This is neither a vacancy nor an interstitial, nor an impurity.
524: 2145: 2140: 360:, steps between atomically flat terraces can also be regarded as planar defects. It has been shown that such defects and their geometry have significant influence on the adsorption of organic molecules 328:
occur in ordered alloys: in this case, the crystallographic direction remains the same, but each side of the boundary has an opposite phase: For example, if the ordering is usually ABABABAB (
2196: 172:
Topological defects are regions in a crystal where the normal chemical bonding environment is topologically different from the surroundings. For instance, in a perfect sheet of graphite (
389:
A successful mathematical classification method for physical lattice defects, which works not only with the theory of dislocations and other defects in crystals but also, e.g., for
464:
Hong, J.; Hu, Z.; Probert, M.; Li, K.; Lv, D.; Yang, X.; Gu, L.; Mao, N.; Feng, Q.; Xie, L.; Zhang, J.; Wu, D.; Zhang, Z.; Jin, C.; Ji, W.; Zhang, X.; Yuan, J.; Zhang, Z. (2015).
264:
It is the presence of dislocations and their ability to readily move (and interact) under the influence of stresses induced by external loads that leads to the characteristic
196:
solids may contain defects. These are naturally somewhat hard to define, but sometimes their nature can be quite easily understood. For instance, in ideally bonded amorphous
521: 940: 640:
Hausmann, H.; Pillukat, A.; Ehrhart, P. (1996). "Point defects and their reactions in electron-irradiated GaAs investigated by optical absorption spectroscopy".
2014: 70:, but this is usually imperfect. Several types of defects are often characterized: point defects, line defects, planar defects, bulk defects. Topological 2201: 1926: 322:
occur where the crystallographic direction of the lattice abruptly changes. This usually occurs when two crystals begin growing separately and then meet.
576:, T. Diaz de la Rubia, S. Coffa, P. A. Stolk, and C. S. Rafferty (eds), vol. 469 of MRS Symposium Proceedings, Materials Research Society, Pittsburgh, 247:
of paper is apt: if a half a piece of paper is inserted in a stack of paper, the defect in the stack is only noticeable at the edge of the half sheet.
2092: 1384: 342:
structures. They are formed by a local deviation of the stacking sequence of layers in a crystal. An example would be the ABABCABAB stacking sequence.
121:. They are generally high energy configurations. Small atoms (mostly impurities) in some crystals can occupy interstices without high energy, such as 2191: 2183: 254:
The presence of dislocation results in lattice strain (distortion). The direction and magnitude of such distortion is expressed in terms of a
2244: 2222: 963: 418: 2237: 2087: 1753: 1618: 1467: 261:
Dislocations can move if the atoms from one of the surrounding planes break their bonds and rebond with the atoms at the terminating edge.
2227: 2125: 1821: 435: 95:. These dislocations permit ionic transport through crystals leading to electrochemical reactions. These are frequently specified using 1474: 2306: 2249: 2107: 2077: 2006: 1356: 1339: 581: 284: 1959: 1075:
Cai, W.; Bulatov, V. V.; Justo, J. F.; Argon, A.S; Yip, S. (2000). "Intrinsic mobility of a dissociated dislocation in silicon".
272: 223:
are linear defects, around which the atoms of the crystal lattice are misaligned. There are two basic types of dislocations, the
1278:
Stillinger, Frank H.; Lubachevsky, Boris D. (1995). "Patterns of broken symmetry in the impurity-perturbed rigid-disk crystal".
729:
Ashkenazy, Yinon; Averback, Robert S. (2012). "Irradiation Induced Grain Boundary Flow—A New Creep Mechanism at the Nanoscale".
2232: 2155: 2029: 1628: 821:
Nordlund, K; Ashkenazy, Y; Averback, R. S; Granato, A. V (2005). "Strings and interstitials in liquids, glasses and crystals".
775:
Mayr, S.; Ashkenazy, Y.; Albe, K.; Averback, R. (2003). "Mechanisms of radiation-induced viscous flow: Role of point defects".
1989: 2067: 901:"Control of defect binding and magnetic interaction energies in dilute magnetic semiconductors by charge state manipulation" 200:
all Si atoms have 4 bonds to O atoms and all O atoms have 2 bonds to Si atom. Thus e.g. an O atom with only one Si bond (a
2082: 2072: 1377: 997:
Waldmann, T. (2012). "The role of surface defects in large organic molecule adsorption: substrate configuration effects".
1854: 2206: 1479: 1457: 1884: 1758: 1204:
Nordlund, K.; Averback, R. (1998). "The role of self-interstitial atoms on the high temperature properties of metals".
440: 96: 1512: 1407: 1874: 2284: 2115: 1412: 2130: 2059: 1517: 1507: 405: 1643: 2272: 1996: 1892: 1765: 1728: 1522: 1502: 1370: 1680: 1239:
Sadigh, B; Lenosky, Thomas; Theiss, Silva; Caturla, Maria-Jose; Diaz De La Rubia, Tomas; Foad, Majeed (1999).
541: 2120: 1964: 1909: 1623: 1816: 1633: 329: 1738: 2173: 1969: 1931: 1690: 1424: 934: 62:. The positions and orientations of particles, which are repeating at fixed distances determined by the 1331: 979: 1897: 1770: 1606: 1497: 1287: 1252: 1213: 1178: 1131: 1084: 1049: 1006: 912: 873: 830: 784: 738: 692: 649: 606: 477: 349:
is a defect that introduces a plane of mirror symmetry in the ordering of a crystal. For example, in
276: 39: 572:
Watkins, G. D. (1997) "Native defects and their interactions with impurities in silicon", p. 139 in
373:
Voids — small regions where there are no atoms, and which can be thought of as clusters of vacancies
1914: 1902: 1777: 1743: 1723: 1344: 413: 376:
Impurities can cluster together to form small regions of a different phase. These are often called
114: 34:
Electron microscopy of antisites (a, Mo substitutes for S) and vacancies (b, missing S atoms) in a
146:
or Frenkel pair. This is caused when an ion moves into an interstitial site and creates a vacancy.
2163: 1974: 1919: 1462: 1303: 846: 708: 409: 350: 177: 91:: for example a vacancy in many ionic solids is called a luminescence center, a color center, or 1167:"Convergence of supercell calculations for point defects in semiconductors: vacancy in silicon" 2097: 1936: 1864: 1844: 1564: 1434: 1352: 1335: 1147: 1100: 1022: 959: 800: 754: 665: 622: 577: 503: 325: 118: 67: 63: 287:
has been used for studying the electrical activity of dislocations in semiconductors, mainly
2135: 1941: 1859: 1849: 1648: 1581: 1552: 1545: 1295: 1260: 1221: 1186: 1139: 1092: 1057: 1014: 920: 881: 838: 792: 746: 700: 657: 614: 493: 485: 87:
loops. For historical reasons, many point defects, especially in ionic crystals, are called
30: 2024: 2019: 1984: 1804: 1703: 1638: 1601: 1596: 1447: 1393: 159: 108: 1291: 1256: 1217: 1182: 1135: 1088: 1053: 1010: 916: 877: 834: 788: 742: 696: 653: 610: 481: 421:
can be an effective technique for demonstrating some types of crystallographic defects.
1834: 1799: 1787: 1782: 1748: 1718: 1708: 1667: 1611: 1535: 1489: 1323: 683:
Lieb, Klaus-Peter; Keinonen, Juhani (2006). "Luminescence of ion-irradiated α-quartz".
498: 465: 430: 357: 335: 319: 255: 143: 103: 231:
dislocation. "Mixed" dislocations, combining aspects of both types, are also common.
180:
in nanotubes, which consists of two adjacent 5-membered and two 7-membered atom rings.
2300: 1979: 1792: 1591: 1241:"Mechanism of Boron Diffusion in Silicon: An Ab Initio and Kinetic Monte Carlo Study" 850: 712: 528: 346: 339: 201: 1307: 531:, volume 25 of Landolt-Börnstein, New Series III, chapter 2, p. 88, Springer, Berlin 1685: 1675: 1569: 1452: 1166: 1119: 594: 390: 370:
Three-dimensional macroscopic or bulk defects, such as pores, cracks, or inclusions
294: 265: 242:
is shown. The dislocation line is presented in blue, the Burgers vector b in black.
234: 796: 2168: 1839: 1713: 1540: 1264: 1225: 1096: 842: 618: 377: 314:
Origin of stacking faults: Different stacking sequences of close-packed crystals
220: 188:
Schematic illustration of defects in a compound solid, using GaAs as an example.
84: 885: 298:
might have a role also in solid materials, e.g. leading to the self-healing of
1733: 1419: 1061: 704: 280: 184: 17: 1190: 1143: 661: 137:
Schematic illustration of some simple point defect types in a monatomic solid
1442: 393:
in liquid crystals and for excitations in superfluid He, is the topological
310: 193: 126: 35: 1104: 1026: 804: 758: 626: 507: 1151: 669: 2039: 1809: 1557: 1040:
Mermin, N. (1979). "The topological theory of defects in ordered media".
445: 394: 299: 173: 122: 92: 71: 55: 353:
crystals, the stacking sequence of a twin boundary would be ABCABCBACBA.
133: 2049: 1299: 1018: 489: 288: 59: 925: 900: 750: 338:
occur in a number of crystal structures, but the common example is in
197: 1240: 864:
Hannes Raebiger (2010). "Theory of defect complexes in insulators".
1334:, pp. 743–1456, World Scientific (Singapore, 1989); Paperback 2044: 1362: 522:
Properties and interactions of atomic defects in metals and alloys
309: 233: 183: 132: 29: 142:
A nearby pair of a vacancy and an interstitial is often called a
51: 1366: 117:
are atoms that occupy a site in the crystal structure at which
1120:"Vacancy formation energies for fcc and bcc transition metals" 466:"Exploring atomic defects in molybdenum disulphide monolayers" 899:
Hannes Raebiger, Hikaru Nakayama, and Takeshi Fujita (2014).
50:
is an interruption of the regular patterns of arrangement of
1165:
Puska, M. J.; Pöykkö, S.; Pesola, M.; Nieminen, R. (1998).
595:"Direct Antisite Formation in Electron Irradiation of GaAs" 332:
crystal), an antiphase boundary takes the form of ABABBABA.
2146:
Zeitschrift für Kristallographie – New Crystal Structures
2141:
Zeitschrift für Kristallographie – Crystalline Materials
548:, J.-I. Takamura (ED.), p. 783, North Holland, Amsterdam 83:
defects in an ordered structure are usually considered
74:
establishes a mathematical method of characterization.
2034: 208:
resulting in neither atom actually occupying the site.
154:
the atom on an interstitial site and it is called a
2215: 2182: 2154: 2106: 2058: 2005: 1952: 1883: 1666: 1657: 1580: 1488: 1433: 1400: 27:Disruption of the periodicity of a crystal lattice 217:Line defects can be described by gauge theories. 546:Point Defects and Defect Interactions in Metals 558:Crawford, J. H.; Slifkin, L. M., eds. (1975). 1378: 1118:Korhonen, T; Puska, M.; Nieminen, R. (1995). 8: 939:: CS1 maint: multiple names: authors list ( 574:Defects and Diffusion in Silicon Processing 66:parameters in crystals, exhibit a periodic 2212: 1663: 1485: 1430: 1385: 1371: 1363: 924: 497: 816: 814: 770: 768: 724: 722: 456: 932: 542:Atomic Defects and Diffusion in Metals 7: 2279: 1619:Phase transformation crystallography 2126:Journal of Chemical Crystallography 999:Physical Chemistry Chemical Physics 436:Crystallographic defects in diamond 385:Mathematical classification methods 271:Dislocations can be observed using 25: 593:Mattila, T; Nieminen, RM (1995). 285:Deep-level transient spectroscopy 2278: 2267: 2266: 1873: 1351:. Verlag Chemie, Weinheim 1981, 1328:Gauge Fields in Condensed Matter 954:Hirth, J. P.; Lothe, J. (1992). 419:Lubachevsky–Stillinger algorithm 273:transmission electron microscopy 2068:Bilbao Crystallographic Server 1280:Journal of Statistical Physics 958:(2 ed.). Krieger Pub Co. 1: 797:10.1103/PhysRevLett.90.055505 982:Cracked metal, heal thyself, 119:there is usually not an atom 2116:Crystal Growth & Design 1408:Timeline of crystallography 1265:10.1103/PhysRevLett.83.4341 1226:10.1103/PhysRevLett.80.4201 1097:10.1103/PhysRevLett.84.3346 619:10.1103/PhysRevLett.74.2721 401:Computer simulation methods 2323: 1927:Nuclear magnetic resonance 984:MIT news, October 9, 2013" 905:Journal of Applied Physics 886:10.1103/PhysRevB.82.073104 2262: 2131:Journal of Crystal Growth 1871: 1062:10.1103/RevModPhys.51.591 1042:Reviews of Modern Physics 843:10.1209/epl/i2005-10132-1 705:10.1080/00107510601088156 562:. New York: Plenum Press. 406:Density functional theory 2307:Crystallographic defects 1997:Single particle analysis 1855:Hermann–Mauguin notation 1191:10.1103/PhysRevB.58.1318 1144:10.1103/PhysRevB.51.9526 662:10.1103/PhysRevB.54.8527 2121:Crystallography Reviews 1965:Isomorphous replacement 1759:Lomer–Cottrell junction 599:Physical Review Letters 560:Point Defects in Solids 268:of metallic materials. 48:crystallographic defect 1634:Spinodal decomposition 1332:"Stresses and defects" 956:Theory of dislocations 330:hexagonal close-packed 315: 243: 189: 138: 43: 2174:Gregori Aminoff Prize 1970:Molecular replacement 1349:Solid State Reactions 980:"Chandler, David L., 540:Siegel, R. W. (1982) 470:Nature Communications 313: 237: 187: 156:substitutional defect 136: 33: 1480:Structure prediction 685:Contemporary Physics 441:Kröger–Vink notation 326:Antiphase boundaries 277:field ion microscopy 227:dislocation and the 115:Interstitial defects 97:Kröger–Vink notation 40:molybdenum disulfide 1744:Cottrell atmosphere 1724:Partial dislocation 1468:Restriction theorem 1345:Hermann Schmalzried 1292:1995JSP....78.1011S 1257:1999PhRvL..83.4341S 1218:1998PhRvL..80.4201N 1183:1998PhRvB..58.1318P 1136:1995PhRvB..51.9526K 1089:2000PhRvL..84.3346C 1054:1979RvMP...51..591M 1011:2012PCCP...1410726W 917:2014JAP...115a2008R 878:2010PhRvB..82g3104R 835:2005EL.....71..625N 789:2003PhRvL..90e5505M 743:2012NanoL..12.4084A 697:2006ConPh..47..305L 654:1996PhRvB..54.8527H 611:1995PhRvL..74.2721M 520:Ehrhart, P. (1991) 482:2015NatCo...6.6293H 414:kinetic Monte Carlo 2164:Carl Hermann Medal 1975:Molecular dynamics 1822:Defects in diamond 1817:Stone–Wales defect 1463:Reciprocal lattice 1425:Biocrystallography 1300:10.1007/BF02183698 1286:(3–4): 1011–1026. 1019:10.1039/C2CP40800G 490:10.1038/ncomms7293 410:molecular dynamics 351:cubic close-packed 316: 244: 190: 178:Stone Wales defect 139: 60:crystalline solids 44: 42:. Scale bar: 1 nm. 2294: 2293: 2258: 2257: 1865:Thermal ellipsoid 1830: 1829: 1739:Frank–Read source 1699: 1698: 1565:Aperiodic crystal 1531: 1530: 1413:Crystallographers 1251:(21): 4341–4344. 1212:(19): 4201–4204. 1130:(15): 9526–9532. 1083:(15): 3346–3349. 965:978-0-89464-617-1 926:10.1063/1.4838016 866:Physical Review B 751:10.1021/nl301554k 648:(12): 8527–8539. 642:Physical Review B 605:(14): 2721–2724. 68:crystal structure 16:(Redirected from 2314: 2282: 2281: 2270: 2269: 2213: 2136:Kristallografija 1990:Gerchberg–Saxton 1885:Characterisation 1877: 1860:Structure factor 1664: 1649:Ostwald ripening 1486: 1431: 1387: 1380: 1373: 1364: 1312: 1311: 1275: 1269: 1268: 1236: 1230: 1229: 1201: 1195: 1194: 1177:(3): 1318–1325. 1162: 1156: 1155: 1115: 1109: 1108: 1072: 1066: 1065: 1037: 1031: 1030: 1005:(30): 10726–31. 994: 988: 987: 976: 970: 969: 951: 945: 944: 938: 930: 928: 896: 890: 889: 861: 855: 854: 818: 809: 808: 772: 763: 762: 726: 717: 716: 680: 674: 673: 637: 631: 630: 590: 584: 570: 564: 563: 555: 549: 538: 532: 518: 512: 511: 501: 461: 320:Grain boundaries 240:edge dislocation 166:Antisite defects 21: 2322: 2321: 2317: 2316: 2315: 2313: 2312: 2311: 2297: 2296: 2295: 2290: 2254: 2211: 2178: 2150: 2102: 2054: 2025:CrystalExplorer 2001: 1985:Phase retrieval 1948: 1879: 1878: 1869: 1826: 1805:Schottky defect 1704:Perfect crystal 1695: 1691:Abnormal growth 1653: 1639:Supersaturation 1602:Miscibility gap 1583: 1576: 1527: 1484: 1448:Bravais lattice 1429: 1396: 1394:Crystallography 1391: 1320: 1318:Further reading 1315: 1277: 1276: 1272: 1245:Phys. Rev. Lett 1238: 1237: 1233: 1206:Phys. Rev. Lett 1203: 1202: 1198: 1164: 1163: 1159: 1117: 1116: 1112: 1077:Phys. Rev. Lett 1074: 1073: 1069: 1039: 1038: 1034: 996: 995: 991: 978: 977: 973: 966: 953: 952: 948: 931: 898: 897: 893: 863: 862: 858: 820: 819: 812: 777:Phys. Rev. Lett 774: 773: 766: 728: 727: 720: 682: 681: 677: 639: 638: 634: 592: 591: 587: 571: 567: 557: 556: 552: 539: 535: 519: 515: 463: 462: 458: 454: 427: 403: 387: 367: 358:single crystals 336:Stacking faults 308: 215: 160:off-center ions 109:Schottky defect 104:Vacancy defects 80: 28: 23: 22: 15: 12: 11: 5: 2320: 2318: 2310: 2309: 2299: 2298: 2292: 2291: 2289: 2288: 2276: 2263: 2260: 2259: 2256: 2255: 2253: 2252: 2247: 2242: 2241: 2240: 2235: 2230: 2219: 2217: 2210: 2209: 2204: 2199: 2194: 2188: 2186: 2180: 2179: 2177: 2176: 2171: 2166: 2160: 2158: 2152: 2151: 2149: 2148: 2143: 2138: 2133: 2128: 2123: 2118: 2112: 2110: 2104: 2103: 2101: 2100: 2095: 2090: 2085: 2080: 2075: 2070: 2064: 2062: 2056: 2055: 2053: 2052: 2047: 2042: 2037: 2032: 2027: 2022: 2017: 2011: 2009: 2003: 2002: 2000: 1999: 1994: 1993: 1992: 1982: 1977: 1972: 1967: 1962: 1960:Direct methods 1956: 1954: 1950: 1949: 1947: 1946: 1945: 1944: 1939: 1929: 1924: 1923: 1922: 1917: 1907: 1906: 1905: 1900: 1889: 1887: 1881: 1880: 1872: 1870: 1868: 1867: 1862: 1857: 1852: 1847: 1845:Ewald's sphere 1842: 1837: 1831: 1828: 1827: 1825: 1824: 1819: 1814: 1813: 1812: 1807: 1797: 1796: 1795: 1790: 1788:Frenkel defect 1785: 1783:Bjerrum defect 1775: 1774: 1773: 1763: 1762: 1761: 1756: 1751: 1749:Peierls stress 1746: 1741: 1736: 1731: 1726: 1721: 1719:Burgers vector 1711: 1709:Stacking fault 1706: 1700: 1697: 1696: 1694: 1693: 1688: 1683: 1678: 1672: 1670: 1668:Grain boundary 1661: 1655: 1654: 1652: 1651: 1646: 1641: 1636: 1631: 1626: 1621: 1616: 1615: 1614: 1612:Liquid crystal 1609: 1604: 1599: 1588: 1586: 1578: 1577: 1575: 1574: 1573: 1572: 1562: 1561: 1560: 1550: 1549: 1548: 1543: 1532: 1529: 1528: 1526: 1525: 1520: 1515: 1510: 1505: 1500: 1494: 1492: 1483: 1482: 1477: 1475:Periodic table 1472: 1471: 1470: 1465: 1460: 1455: 1450: 1439: 1437: 1428: 1427: 1422: 1417: 1416: 1415: 1404: 1402: 1398: 1397: 1392: 1390: 1389: 1382: 1375: 1367: 1361: 1360: 1342: 1324:Hagen Kleinert 1319: 1316: 1314: 1313: 1270: 1231: 1196: 1157: 1110: 1067: 1048:(3): 591–648. 1032: 989: 971: 964: 946: 891: 856: 829:(4): 625–631. 823:Europhys. Lett 810: 764: 718: 691:(5): 305–331. 675: 632: 585: 565: 550: 533: 527:2013-02-03 at 513: 455: 453: 450: 449: 448: 443: 438: 433: 431:Bjerrum defect 426: 423: 402: 399: 386: 383: 382: 381: 374: 371: 366: 363: 362: 361: 356:On planes of 354: 343: 333: 323: 307: 306:Planar defects 304: 256:Burgers vector 214: 211: 210: 209: 205: 182: 181: 170: 163: 148: 147: 144:Frenkel defect 131: 130: 112: 79: 76: 26: 24: 18:Crystal defect 14: 13: 10: 9: 6: 4: 3: 2: 2319: 2308: 2305: 2304: 2302: 2287: 2286: 2277: 2275: 2274: 2265: 2264: 2261: 2251: 2248: 2246: 2243: 2239: 2236: 2234: 2231: 2229: 2226: 2225: 2224: 2221: 2220: 2218: 2214: 2208: 2205: 2203: 2200: 2198: 2195: 2193: 2190: 2189: 2187: 2185: 2181: 2175: 2172: 2170: 2167: 2165: 2162: 2161: 2159: 2157: 2153: 2147: 2144: 2142: 2139: 2137: 2134: 2132: 2129: 2127: 2124: 2122: 2119: 2117: 2114: 2113: 2111: 2109: 2105: 2099: 2096: 2094: 2091: 2089: 2086: 2084: 2081: 2079: 2076: 2074: 2071: 2069: 2066: 2065: 2063: 2061: 2057: 2051: 2048: 2046: 2043: 2041: 2038: 2036: 2033: 2031: 2028: 2026: 2023: 2021: 2018: 2016: 2013: 2012: 2010: 2008: 2004: 1998: 1995: 1991: 1988: 1987: 1986: 1983: 1981: 1980:Patterson map 1978: 1976: 1973: 1971: 1968: 1966: 1963: 1961: 1958: 1957: 1955: 1951: 1943: 1940: 1938: 1935: 1934: 1933: 1930: 1928: 1925: 1921: 1918: 1916: 1913: 1912: 1911: 1908: 1904: 1901: 1899: 1896: 1895: 1894: 1891: 1890: 1888: 1886: 1882: 1876: 1866: 1863: 1861: 1858: 1856: 1853: 1851: 1850:Friedel's law 1848: 1846: 1843: 1841: 1838: 1836: 1833: 1832: 1823: 1820: 1818: 1815: 1811: 1808: 1806: 1803: 1802: 1801: 1798: 1794: 1793:Wigner effect 1791: 1789: 1786: 1784: 1781: 1780: 1779: 1778:Interstitials 1776: 1772: 1769: 1768: 1767: 1764: 1760: 1757: 1755: 1752: 1750: 1747: 1745: 1742: 1740: 1737: 1735: 1732: 1730: 1727: 1725: 1722: 1720: 1717: 1716: 1715: 1712: 1710: 1707: 1705: 1702: 1701: 1692: 1689: 1687: 1684: 1682: 1679: 1677: 1674: 1673: 1671: 1669: 1665: 1662: 1660: 1656: 1650: 1647: 1645: 1642: 1640: 1637: 1635: 1632: 1630: 1627: 1625: 1624:Precipitation 1622: 1620: 1617: 1613: 1610: 1608: 1605: 1603: 1600: 1598: 1595: 1594: 1593: 1592:Phase diagram 1590: 1589: 1587: 1585: 1579: 1571: 1568: 1567: 1566: 1563: 1559: 1556: 1555: 1554: 1551: 1547: 1544: 1542: 1539: 1538: 1537: 1534: 1533: 1524: 1521: 1519: 1516: 1514: 1511: 1509: 1506: 1504: 1501: 1499: 1496: 1495: 1493: 1491: 1487: 1481: 1478: 1476: 1473: 1469: 1466: 1464: 1461: 1459: 1456: 1454: 1451: 1449: 1446: 1445: 1444: 1441: 1440: 1438: 1436: 1432: 1426: 1423: 1421: 1418: 1414: 1411: 1410: 1409: 1406: 1405: 1403: 1399: 1395: 1388: 1383: 1381: 1376: 1374: 1369: 1368: 1365: 1358: 1357:3-527-25872-8 1354: 1350: 1346: 1343: 1341: 1340:9971-5-0210-0 1337: 1333: 1329: 1325: 1322: 1321: 1317: 1309: 1305: 1301: 1297: 1293: 1289: 1285: 1281: 1274: 1271: 1266: 1262: 1258: 1254: 1250: 1246: 1242: 1235: 1232: 1227: 1223: 1219: 1215: 1211: 1207: 1200: 1197: 1192: 1188: 1184: 1180: 1176: 1172: 1168: 1161: 1158: 1153: 1149: 1145: 1141: 1137: 1133: 1129: 1125: 1121: 1114: 1111: 1106: 1102: 1098: 1094: 1090: 1086: 1082: 1078: 1071: 1068: 1063: 1059: 1055: 1051: 1047: 1043: 1036: 1033: 1028: 1024: 1020: 1016: 1012: 1008: 1004: 1000: 993: 990: 985: 983: 975: 972: 967: 961: 957: 950: 947: 942: 936: 927: 922: 918: 914: 911:(1): 012008. 910: 906: 902: 895: 892: 887: 883: 879: 875: 872:(7): 073104. 871: 867: 860: 857: 852: 848: 844: 840: 836: 832: 828: 824: 817: 815: 811: 806: 802: 798: 794: 790: 786: 783:(5): 055505. 782: 778: 771: 769: 765: 760: 756: 752: 748: 744: 740: 737:(8): 4084–9. 736: 732: 725: 723: 719: 714: 710: 706: 702: 698: 694: 690: 686: 679: 676: 671: 667: 663: 659: 655: 651: 647: 643: 636: 633: 628: 624: 620: 616: 612: 608: 604: 600: 596: 589: 586: 583: 582:1-55899-373-8 579: 575: 569: 566: 561: 554: 551: 547: 543: 537: 534: 530: 529:archive.today 526: 523: 517: 514: 509: 505: 500: 495: 491: 487: 483: 479: 475: 471: 467: 460: 457: 451: 447: 444: 442: 439: 437: 434: 432: 429: 428: 424: 422: 420: 415: 411: 407: 400: 398: 396: 392: 391:disclinations 384: 379: 375: 372: 369: 368: 364: 359: 355: 352: 348: 347:twin boundary 344: 341: 337: 334: 331: 327: 324: 321: 318: 317: 312: 305: 303: 301: 296: 295:Disclinations 292: 290: 286: 282: 278: 274: 269: 267: 262: 259: 257: 252: 248: 241: 236: 232: 230: 226: 222: 218: 212: 206: 203: 202:dangling bond 199: 195: 192: 191: 186: 179: 175: 171: 167: 164: 161: 157: 152: 151: 150: 145: 141: 140: 135: 128: 124: 120: 116: 113: 110: 105: 102: 101: 100: 98: 94: 90: 86: 78:Point defects 77: 75: 73: 69: 65: 61: 57: 53: 49: 41: 37: 32: 19: 2283: 2271: 2216:Associations 2184:Organisation 1676:Disclination 1658: 1607:Polymorphism 1570:Quasicrystal 1513:Orthorhombic 1453:Miller index 1401:Key concepts 1348: 1327: 1283: 1279: 1273: 1248: 1244: 1234: 1209: 1205: 1199: 1174: 1171:Phys. Rev. B 1170: 1160: 1127: 1124:Phys. Rev. B 1123: 1113: 1080: 1076: 1070: 1045: 1041: 1035: 1002: 998: 992: 981: 974: 955: 949: 935:cite journal 908: 904: 894: 869: 865: 859: 826: 822: 780: 776: 734: 731:Nano Letters 730: 688: 684: 678: 645: 641: 635: 602: 598: 588: 573: 568: 559: 553: 545: 536: 516: 473: 469: 459: 408:, classical 404: 388: 378:precipitates 365:Bulk defects 340:close-packed 293: 283:techniques. 270: 266:malleability 263: 260: 253: 249: 245: 239: 228: 224: 221:Dislocations 219: 216: 213:Line defects 165: 155: 149: 88: 81: 47: 45: 2169:Ewald Prize 1937:Diffraction 1915:Diffraction 1898:Diffraction 1840:Bragg plane 1835:Bragg's law 1714:Dislocation 1629:Segregation 1541:Crystallite 1458:Point group 1330:, Vol. II, 85:dislocation 1953:Algorithms 1942:Scattering 1920:Scattering 1903:Scattering 1771:Slip bands 1734:Cross slip 1584:transition 1518:Tetragonal 1508:Monoclinic 1420:Metallurgy 452:References 281:atom probe 2060:Databases 1523:Triclinic 1503:Hexagonal 1443:Unit cell 1435:Structure 851:250805987 713:119348046 194:Amorphous 127:palladium 64:unit cell 56:molecules 36:monolayer 2301:Category 2273:Category 2108:Journals 2040:OctaDist 2035:JANA2020 2007:Software 1893:Electron 1810:F-center 1597:Eutectic 1558:Fiveling 1553:Twinning 1546:Equiaxed 1308:55943037 1105:11019086 1027:22751288 805:12633371 759:22775230 627:10058001 525:Archived 508:25695374 476:: 6293. 446:F-center 425:See also 397:theory. 395:homotopy 174:graphene 123:hydrogen 93:F-center 72:homotopy 2285:Commons 2233:Germany 1910:Neutron 1800:Vacancy 1659:Defects 1644:GP-zone 1490:Systems 1288:Bibcode 1253:Bibcode 1214:Bibcode 1179:Bibcode 1152:9977614 1132:Bibcode 1085:Bibcode 1050:Bibcode 1007:Bibcode 913:Bibcode 874:Bibcode 831:Bibcode 785:Bibcode 739:Bibcode 693:Bibcode 670:9984528 650:Bibcode 607:Bibcode 499:4346634 478:Bibcode 289:silicon 89:centers 2228:France 2223:Europe 2156:Awards 1686:Growth 1536:Growth 1355:  1338:  1306:  1150:  1103:  1025:  962:  849:  803:  757:  711:  668:  625:  580:  506:  496:  300:cracks 198:silica 2250:Japan 2197:IOBCr 2050:SHELX 2045:Olex2 1932:X-ray 1582:Phase 1498:Cubic 1304:S2CID 847:S2CID 709:S2CID 544:, in 229:screw 52:atoms 2192:IUCr 2093:ICDD 2088:ICSD 2073:CCDC 2020:Coot 2015:CCP4 1766:Slip 1729:Kink 1353:ISBN 1336:ISBN 1148:PMID 1101:PMID 1023:PMID 960:ISBN 941:link 801:PMID 755:PMID 666:PMID 623:PMID 578:ISBN 504:PMID 412:and 279:and 225:edge 2207:DMG 2202:RAS 2098:PDB 2083:COD 2078:CIF 2030:DSR 1754:GND 1681:CSL 1296:doi 1261:doi 1222:doi 1187:doi 1140:doi 1093:doi 1058:doi 1015:doi 921:doi 909:115 882:doi 839:doi 793:doi 747:doi 701:doi 658:doi 615:doi 494:PMC 486:doi 238:An 125:in 58:in 54:or 38:of 2303:: 2245:US 2238:UK 1347:: 1326:, 1302:. 1294:. 1284:78 1282:. 1259:. 1249:83 1247:. 1243:. 1220:. 1210:80 1208:. 1185:. 1175:58 1173:. 1169:. 1146:. 1138:. 1128:51 1126:. 1122:. 1099:. 1091:. 1081:84 1079:. 1056:. 1046:51 1044:. 1021:. 1013:. 1003:14 1001:. 937:}} 933:{{ 919:. 907:. 903:. 880:. 870:82 868:. 845:. 837:. 827:71 825:. 813:^ 799:. 791:. 781:90 779:. 767:^ 753:. 745:. 735:12 733:. 721:^ 707:. 699:. 689:47 687:. 664:. 656:. 646:54 644:. 621:. 613:. 603:74 601:. 597:. 502:. 492:. 484:. 472:. 468:. 345:A 302:. 291:. 275:, 99:. 46:A 1386:e 1379:t 1372:v 1359:. 1310:. 1298:: 1290:: 1267:. 1263:: 1255:: 1228:. 1224:: 1216:: 1193:. 1189:: 1181:: 1154:. 1142:: 1134:: 1107:. 1095:: 1087:: 1064:. 1060:: 1052:: 1029:. 1017:: 1009:: 986:. 968:. 943:) 929:. 923:: 915:: 888:. 884:: 876:: 853:. 841:: 833:: 807:. 795:: 787:: 761:. 749:: 741:: 715:. 703:: 695:: 672:. 660:: 652:: 629:. 617:: 609:: 510:. 488:: 480:: 474:6 380:. 129:. 111:. 20:)

Index

Crystal defect

monolayer
molybdenum disulfide
atoms
molecules
crystalline solids
unit cell
crystal structure
homotopy
dislocation
F-center
Kröger–Vink notation
Vacancy defects
Schottky defect
Interstitial defects
there is usually not an atom
hydrogen
palladium

Frenkel defect
off-center ions
graphene
Stone Wales defect

Amorphous
silica
dangling bond
Dislocations

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑