Knowledge (XXG)

Kröger–Vink notation

Source 📝

286:
example, the defect may result in an ion on its own ion site or a vacancy on the cation site. To complete the reactions, the proper number of each ion must be present (mass balance), an equal number of sites must exist (site balance), and the sums of the charges of the reactants and products must also be equal (charge balance).
129:
indicates the lattice site that the species occupies. For instance, Ni might occupy a Cu site. In this case, M would be replaced by Ni and S would be replaced by Cu. The site may also be a lattice interstice, in this case, the symbol "i" is used. A cation site can be represented by the symbols C or M
138:
corresponds to the electronic charge of the species relative to the site that it occupies. The charge of the species is calculated by the charge on the current site minus the charge on the original site. To continue the previous example, Ni often has the same valency as Cu, so the relative charge is
276:
When using Kröger–Vink notation for both intrinsic and extrinsic defects, it is imperative to keep all masses, sites, and charges balanced in each reaction. If any piece is unbalanced, the reactants and the products do not equal the same entity and therefore all quantities are not conserved as they
778:
From the chart above, there are total of four possible chemical reactions using Kröger–Vink Notation depending on the intrinsic deficiency of atoms within the material. Assume the chemical composition is AX, with A being the cation and X being the anion. (The following assumes that X is a diatomic
285:
vacancies (Schottky) or cation/anion vacancies and interstitials (Frenkel). Otherwise, a compound is broken down into its respective cation and anion parts for the process to begin on each lattice. From here, depending on the required steps for the desired outcome, several possibilities occur. For
753:
tree for a simple ionic compound, AX, where A is a cation and X is an anion, summarizes the various ways in which intrinsic defects can form. Depending on the cation-to-anion ratio, the species can either be reduced and therefore classified as
277:
should be. The first step in this process is determining the correct type of defect and reaction that comes along with it; Schottky and Frenkel defects begin with a null reactant (∅) and produce either
168: 672:
favored site, usually depending on temperature. For the two equations shown below, the right side is usually at high temperature as this allows for more movement of
1429:
Therefore, given a temperature and the formation energy of Schottky defect, the intrinsic Schottky defect concentration can be calculated from the above equation.
1054:
Note that the vacancy on the Mg sublattice site has a −2 effective charge, and the vacancy on the oxygen sublattice site has a +2 effective charge. Using the
766: 1490: 1522: 1463: 35:. It is primarily used for ionic crystals and is particularly useful for describing various defect reactions. It was proposed by 779:
gas such as oxygen and therefore cation A has a +2 charge. Note that materials with this defect structure are often used in
1512: 738:(metal site oxidized, where B is an arbitrary cation having one more positive charge than the original atom on the site) 769:
Tree diagram representation of the oxidation and reduction states resulting from intrinsic defects in ionic compounds.
762:. Below, the tree is shown for a further explanation of the pathways and results of each breakdown of the substance. 1305:, the formula can be simplified into the following form where the enthalpy of formation can be directly calculated: 991: 28: 36: 999: 104: 41: 47: 1132: 1059: 147:
indicates a net single positive charge, while two would represent two net positive charges. Finally,
676:. The left side is usually at low temperature as the electrons lose their mobility due to loss in 1179: 1055: 987: 1517: 1486: 1459: 995: 24: 153: 1451: 319: 173:
signifies a net single negative charge, so two would indicate a net double negative charge.
1011: 765: 493: 489: 425: 363: 359: 315: 20: 52: 1063: 677: 660: 617: 421: 217: 98: 1455: 577:
Frenkel defect – forming an interstitial and vacancy pair on an anion or cation site:
1506: 1115:
Also, the equilibrium constant can be related to the Gibbs free energy of formation Δ
780: 116: 1480: 847:
In the reduced n-type, there is a deficiency of anions on the lattice sites:
192:— an aluminum ion sitting on an aluminum lattice site, with a neutral charge. 787:
In the reduced n-type, there are excess cations on the interstitial sites:
884:
In the oxidized p-type, there is cation deficiency on the lattice sites:
673: 511:
Schottky defect – forming a vacancy pair on both anion and cation sites:
110: 107:– i (although this is usually used to describe lattice site, not species) 1092:
Based on the above reaction, the stoichiometric relation is as follows:
244:— a chlorine anion on an interstitial site, with single negative charge. 1422: 934:
In the oxidized p-type, there are excess anions on interstitial sites:
669: 256:— an oxygen anion on an interstitial site, with double negative charge. 32: 130:(for metal), and an anion site can be represented by either an A or X. 204:— a nickel ion sitting on a copper lattice site, with neutral charge. 1446:
Kröger, F. A.; Vink, H. J. (1956). Seitz, F.; Turnbull, D. (eds.).
1002:) can be calculated given the defect concentration or vice versa. 956: 851: 764: 750: 507:
Assume that the cation C has +1 charge and anion A has −1 charge.
758:, or if the converse is true, the ionic species is classified as 92: 901: 832: 282: 278: 1014:, the Kröger–Vink defect reaction can be written as follows: 157: 554:
Schottky defect (charged) – forming an electron–hole pair:
232:— a calcium interstitial ion, with double positive charge. 982:
Relating chemical reactions to the equilibrium constant
156: 162: 101:– V or v (since V is also the symbol for vanadium) 19:is a set of conventions that are used to describe 267:— an electron. No site is normally specified. 8: 1479:Carter, C. Barry; Norton, M. Grant (2007). 1482:Ceramic Materials: Science and Engineering 155: 89:corresponds to the species. These can be 1438: 1122:according to the following relations, 7: 1197: 1124: 1094: 1068: 1016: 998:of formation, and the energy terms ( 14: 1450:. Vol. 3. pp. 307–435. 139:zero. To indicate a null charge, 65:The notation follows the scheme: 503:Basic types of defect reactions 220:, with single positive charge. 1: 1456:10.1016/S0081-1947(08)60135-6 1421:is a constant containing the 1301: 1250: 1244: 1066:indicating concentration): 1010:For a Schottky reaction in 1539: 1523:Crystallographic defects 745:Oxidation–reduction tree 668:Associates – forming an 163:{\displaystyle \prime } 1485:. New York: Springer. 994:can be related to its 770: 164: 95:– e.g., Si, Ni, O, Cl, 1000:enthalpy of formation 768: 165: 37:Ferdinand Anne Kröger 1060:equilibrium constant 709:(metal site reduced) 154: 17:Kröger–Vink notation 1513:Chemical properties 1448:Solid State Physics 1242:Relating equations 1062:can be written as ( 751:oxidation–reduction 1180:Boltzmann constant 1056:law of mass action 988:law of mass action 774:Schematic examples 771: 160: 143:is used. A single 1492:978-0-387-46270-7 1240: 1239: 1196: 1195: 1113: 1112: 1090: 1089: 1052: 1051: 996:Gibbs free energy 1530: 1497: 1496: 1476: 1470: 1469: 1443: 1416: 1413: 1411: 1410: 1398: 1395: 1382: 1374: 1371: 1369: 1368: 1359: 1356: 1343: 1341: 1340: 1328: 1325: 1312: 1294: 1291: 1289: 1288: 1277: 1274: 1261: 1234: 1198: 1190: 1170: 1167: 1165: 1164: 1153: 1150: 1137: 1125: 1107: 1095: 1084: 1069: 1046: 1037: 1036: 1028: 1027: 1017: 975: 974: 967: 966: 954: 953: 945: 944: 929: 928: 921: 920: 912: 911: 895: 894: 890: 879: 878: 871: 870: 862: 861: 842: 841: 826: 825: 821: 816: 815: 807: 806: 798: 797: 737: 736: 729: 728: 720: 719: 708: 707: 699: 698: 691: 690: 658: 657: 649: 648: 640: 639: 631: 630: 615: 614: 606: 605: 597: 596: 588: 587: 572: 571: 564: 563: 549: 548: 540: 539: 531: 530: 522: 521: 486: 485: 477: 476: 468: 467: 459: 458: 450: 449: 441: 440: 418: 417: 409: 408: 400: 399: 391: 390: 382: 381: 356: 355: 347: 346: 338: 337: 312: 311: 303: 302: 266: 265: 255: 254: 243: 242: 231: 230: 215: 214: 203: 202: 191: 190: 171: 169: 167: 166: 161: 78: 77: 56: 48:Hendrik Jan Vink 45: 21:electric charges 1538: 1537: 1533: 1532: 1531: 1529: 1528: 1527: 1503: 1502: 1501: 1500: 1493: 1478: 1477: 1473: 1466: 1445: 1444: 1440: 1435: 1414: 1406: 1399: 1396: 1391: 1387: 1386: 1384: 1380: 1372: 1367: 1360: 1357: 1352: 1348: 1347: 1345: 1336: 1329: 1326: 1321: 1317: 1316: 1314: 1310: 1299:Using equation 1292: 1284: 1278: 1275: 1270: 1266: 1265: 1263: 1259: 1232: 1222: 1211: 1204: 1188: 1177: 1168: 1160: 1154: 1151: 1146: 1142: 1141: 1139: 1135: 1118: 1105: 1082: 1064:square brackets 1058:, the reaction 1044: 1035: 1032: 1031: 1030: 1026: 1023: 1022: 1021: 1008: 984: 973: 971: 970: 969: 965: 962: 961: 960: 952: 949: 948: 947: 943: 940: 939: 938: 927: 925: 924: 923: 919: 916: 915: 914: 910: 907: 906: 905: 899: 892: 888: 887: 877: 875: 874: 873: 869: 866: 865: 864: 860: 857: 856: 855: 840: 838: 837: 836: 830: 823: 819: 818: 814: 811: 810: 809: 805: 802: 801: 800: 796: 793: 792: 791: 776: 747: 735: 733: 732: 731: 727: 724: 723: 722: 718: 715: 714: 713: 706: 703: 702: 701: 697: 695: 694: 693: 689: 686: 685: 684: 656: 653: 652: 651: 647: 644: 643: 642: 638: 635: 634: 633: 629: 626: 625: 624: 613: 610: 609: 608: 604: 601: 600: 599: 595: 592: 591: 590: 586: 583: 582: 581: 570: 568: 567: 566: 562: 560: 559: 558: 547: 544: 543: 542: 538: 535: 534: 533: 529: 526: 525: 524: 520: 517: 516: 515: 505: 490:Schottky defect 484: 481: 480: 479: 475: 472: 471: 470: 466: 463: 462: 461: 457: 454: 453: 452: 448: 445: 444: 443: 439: 436: 435: 434: 416: 413: 412: 411: 407: 404: 403: 402: 398: 395: 394: 393: 389: 386: 385: 384: 380: 377: 376: 375: 367: 360:Schottky defect 354: 351: 350: 349: 345: 342: 341: 340: 336: 333: 332: 331: 323: 316:Schottky defect 310: 307: 306: 305: 301: 298: 297: 296: 292: 274: 264: 262: 261: 260: 253: 250: 249: 248: 241: 238: 237: 236: 229: 226: 225: 224: 213: 210: 209: 208: 201: 198: 197: 196: 189: 186: 185: 184: 180: 152: 151: 149: 79: 76: 73: 72: 71: 63: 50: 39: 12: 11: 5: 1536: 1534: 1526: 1525: 1520: 1515: 1505: 1504: 1499: 1498: 1491: 1471: 1464: 1437: 1436: 1434: 1431: 1427: 1426: 1404: 1389: 1365: 1350: 1334: 1319: 1297: 1296: 1282: 1268: 1238: 1237: 1228: 1226: 1220: 1209: 1202: 1194: 1193: 1184: 1182: 1175: 1158: 1144: 1116: 1111: 1110: 1101: 1099: 1088: 1087: 1078: 1076: 1050: 1049: 1040: 1038: 1033: 1024: 1007: 1004: 983: 980: 979: 978: 977: 976: 972: 963: 950: 941: 932: 931: 930: 926: 917: 908: 897: 882: 881: 880: 876: 867: 858: 845: 844: 843: 839: 828: 812: 803: 794: 781:oxygen sensors 775: 772: 749:The following 746: 743: 742: 741: 740: 739: 734: 725: 716: 710: 704: 696: 687: 678:kinetic energy 666: 665: 664: 661:Frenkel defect 654: 645: 636: 627: 621: 618:Frenkel defect 611: 602: 593: 584: 575: 574: 573: 569: 561: 552: 551: 550: 545: 536: 527: 518: 504: 501: 500: 499: 498: 497: 482: 473: 464: 455: 446: 437: 431: 430: 429: 422:Frenkel defect 414: 405: 396: 387: 378: 372: 371: 370: 365: 352: 343: 334: 328: 327: 326: 321: 308: 299: 291: 288: 273: 270: 269: 268: 263: 257: 251: 245: 239: 233: 227: 221: 211: 205: 199: 193: 187: 179: 176: 175: 174: 159: 131: 122: 121: 120: 117:electron holes 114: 108: 102: 96: 81: 80: 74: 69: 62: 59: 13: 10: 9: 6: 4: 3: 2: 1535: 1524: 1521: 1519: 1516: 1514: 1511: 1510: 1508: 1494: 1488: 1484: 1483: 1475: 1472: 1467: 1465:9780126077032 1461: 1457: 1453: 1449: 1442: 1439: 1432: 1430: 1424: 1420: 1409: 1403: 1394: 1378: 1364: 1355: 1339: 1333: 1324: 1308: 1307: 1306: 1304: 1303: 1287: 1281: 1273: 1257: 1256: 1255: 1253: 1252: 1247: 1246: 1236: 1229: 1227: 1225: 1218: 1214: 1207: 1200: 1199: 1192: 1185: 1183: 1181: 1174: 1163: 1157: 1149: 1134: 1130: 1127: 1126: 1123: 1121: 1109: 1102: 1100: 1097: 1096: 1093: 1086: 1079: 1077: 1074: 1071: 1070: 1067: 1065: 1061: 1057: 1048: 1041: 1039: 1019: 1018: 1015: 1013: 1005: 1003: 1001: 997: 993: 992:concentration 990:, a defect's 989: 981: 958: 936: 935: 933: 903: 886: 885: 883: 853: 849: 848: 846: 834: 789: 788: 786: 785: 784: 782: 773: 767: 763: 761: 757: 752: 744: 711: 682: 681: 679: 675: 671: 667: 662: 622: 619: 579: 578: 576: 556: 555: 553: 513: 512: 510: 509: 508: 502: 495: 492:formation in 491: 488: 487: 432: 427: 424:formation in 423: 420: 419: 373: 368: 362:formation in 361: 358: 357: 329: 324: 318:formation in 317: 314: 313: 294: 293: 290:Example usage 289: 287: 284: 280: 271: 258: 246: 234: 222: 219: 216:— a chlorine 206: 194: 182: 181: 177: 172: 146: 142: 137: 136: 132: 128: 127: 123: 118: 115: 112: 109: 106: 105:interstitials 103: 100: 97: 94: 91: 90: 88: 87: 83: 82: 68: 67: 66: 60: 58: 54: 49: 43: 38: 34: 30: 27:positions of 26: 22: 18: 1481: 1474: 1447: 1441: 1428: 1418: 1407: 1401: 1392: 1376: 1362: 1353: 1337: 1331: 1322: 1300: 1298: 1285: 1279: 1271: 1249: 1243: 1241: 1230: 1223: 1216: 1212: 1205: 1186: 1172: 1161: 1155: 1147: 1128: 1119: 1114: 1103: 1091: 1080: 1072: 1053: 1042: 1009: 985: 835:) + 2 e 777: 759: 755: 748: 670:entropically 506: 275: 148: 144: 140: 134: 133: 125: 124: 85: 84: 64: 29:point defect 16: 15: 51: [ 40: [ 31:species in 1507:Categories 1433:References 1254:, we get: 986:Using the 968:+ 2 h 922:+ 2 h 872:+ 2 e 616:(cationic 348:+ 3 v 304:+ 2 v 674:electrons 659:(anionic 272:Procedure 158:′ 111:electrons 99:vacancies 1518:Notation 1423:entropic 1417:, where 1171:, where 1006:Examples 178:Examples 61:Notation 33:crystals 1412:⁠ 1385:⁠ 1370:⁠ 1346:⁠ 1342:⁠ 1315:⁠ 1290:⁠ 1264:⁠ 1178:is the 1166:⁠ 1140:⁠ 896: X 891:⁄ 827: X 822:⁄ 483:surface 474:surface 218:vacancy 170:⁠ 150:⁠ 25:lattice 1489:  1462:  760:p-type 756:n-type 279:cation 1425:term. 1309:= exp 1020:∅ ⇌ v 959:) + X 904:) ⇌ v 854:) ⇌ A 623:∅ ⇌ v 580:∅ ⇌ v 557:∅ ⇌ e 514:∅ ⇌ v 364:BaTiO 330:∅ ⇌ v 295:∅ ⇌ v 283:anion 93:atoms 55:] 44:] 1487:ISBN 1460:ISBN 1248:and 955:⇌ A( 469:+ Mg 410:+ Mg 281:and 46:and 23:and 1452:doi 1379:exp 1258:exp 1208:= Δ 1133:exp 1029:+ v 1012:MgO 946:+ X 913:+ X 863:+ v 808:⇌ A 799:+ X 783:.) 730:+ e 721:→ B 700:→ M 692:+ e 650:+ X 641:⇌ v 632:+ A 607:+ M 598:⇌ v 589:+ C 565:+ h 541:+ v 532:⇌ v 523:+ v 494:MgO 478:+ O 460:+ v 451:⇌ v 442:+ O 426:MgO 401:+ v 392:⇌ O 383:+ O 339:+ v 320:TiO 119:– h 113:– e 1509:: 1458:. 1375:= 1344:+ 1295:= 1215:− 1131:= 1098:= 1075:= 1025:Mg 850:A( 817:+ 680:. 456:Mg 438:Mg 433:Mg 415:Mg 379:Mg 374:Mg 344:Ti 335:Ba 300:Ti 235:Cl 223:Ca 212:Cl 200:Cu 195:Ni 188:Al 183:Al 57:. 53:nl 42:fr 1495:. 1468:. 1454:: 1419:A 1415:) 1408:T 1405:B 1402:k 1400:2 1397:/ 1393:H 1390:f 1388:Δ 1383:− 1381:( 1377:A 1373:) 1366:B 1363:k 1361:2 1358:/ 1354:S 1351:f 1349:Δ 1338:T 1335:B 1332:k 1330:2 1327:/ 1323:H 1320:f 1318:Δ 1313:− 1311:( 1302:5 1293:) 1286:T 1283:B 1280:k 1276:/ 1272:G 1269:f 1267:Δ 1262:− 1260:( 1251:4 1245:2 1235:) 1233:5 1231:( 1224:S 1221:f 1219:Δ 1217:T 1213:H 1210:f 1206:G 1203:f 1201:Δ 1191:) 1189:4 1187:( 1176:B 1173:k 1169:) 1162:T 1159:B 1156:k 1152:/ 1148:G 1145:f 1143:Δ 1138:− 1136:( 1129:k 1120:G 1117:f 1108:) 1106:3 1104:( 1085:) 1083:2 1081:( 1073:k 1047:) 1045:1 1043:( 1034:O 964:i 957:s 951:X 942:A 937:A 918:X 909:A 902:g 900:( 898:2 893:2 889:1 868:X 859:A 852:s 833:g 831:( 829:2 824:2 820:1 813:i 804:X 795:A 790:A 726:M 717:M 712:B 705:M 688:M 683:M 663:) 655:i 646:X 637:i 628:A 620:) 612:i 603:M 594:i 585:C 546:X 537:M 528:A 519:C 496:. 465:O 447:O 428:. 406:O 397:i 388:O 369:. 366:3 353:O 325:. 322:2 309:O 259:e 252:i 247:O 240:i 228:i 207:v 145:• 141:× 135:C 126:S 86:M 75:S 70:M

Index

electric charges
lattice
point defect
crystals
Ferdinand Anne Kröger
fr
Hendrik Jan Vink
nl
atoms
vacancies
interstitials
electrons
electron holes
vacancy
cation
anion
Schottky defect
TiO2
Schottky defect
BaTiO3
Frenkel defect
MgO
Schottky defect
MgO
Frenkel defect
Frenkel defect
entropically
electrons
kinetic energy
oxidation–reduction

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.