Knowledge (XXG)

IPv6

Source 📝

716: 1393: 1928: 1518: 1936: 897: 2386: 1816: 639: 36: 963:
called "privacy addresses" or, more correctly, "temporary addresses". Temporary addresses are random and unstable. A typical consumer device generates a new temporary address daily and will ignore traffic addressed to an old address after one week. Temporary addresses are used by default by Windows since XP SP1, macOS since (Mac OS X) 10.7, Android since 4.0, and iOS since version 4.3. Use of temporary addresses by Linux distributions varies.
1221: 2226: 1086: 1783:
stack requires that the resolving DNS server can resolve both types of addresses. Such a dual-stack DNS server holds IPv4 addresses in the A records and IPv6 addresses in the AAAA records. Depending on the destination that is to be resolved, a DNS name server may return an IPv4 or IPv6 IP address, or both. A default address selection mechanism, or preferred protocol, needs to be configured either on hosts or the DNS server. The
2050:, causing IPv6 traffic flowing into networks having only IPv4 security management in place. This may also occur with operating system upgrades, when the newer operating system enables IPv6 by default, while the older one did not. Failing to update the security infrastructure to accommodate IPv6 can lead to IPv6 traffic bypassing it. Shadow networks have occurred on business networks in which enterprises are replacing 83: 907:, the transmission of a packet to multiple destinations in a single send operation, is part of the base specification in IPv6. In IPv4 this is an optional (although commonly implemented) feature. IPv6 multicast addressing has features and protocols in common with IPv4 multicast, but also provides changes and improvements by eliminating the need for certain protocols. IPv6 does not implement traditional 1232:
subnet always uses 64 bits for the host portion of the address, designated as the interface identifier, while the most-significant 64 bits are used as the routing prefix. While the myth has existed regarding IPv6 subnets being impossible to scan, RFC 7707 notes that patterns resulting from some IPv6 address configuration techniques and algorithms allow address scanning in many real-world scenarios.
2105: 888:(CIDR) methods were developed to make the best use of the small address space. The standard size of a subnet in IPv6 is 2 addresses, about four billion times the size of the entire IPv4 address space. Thus, actual address space utilization will be small in IPv6, but network management and routing efficiency are improved by the large subnet space and hierarchical route aggregation. 985:(IKE) was recommended, but with RFC 6434 the inclusion of IPsec in IPv6 implementations was downgraded to a recommendation because it was considered impractical to require full IPsec implementation for all types of devices that may use IPv6. However, as of RFC 4301 IPv6 protocol implementations that do implement IPsec need to implement IKEv2 and need to support a minimum set of 1129: 843:, designed to minimize packet header processing by routers. Because the headers of IPv4 packets and IPv6 packets are significantly different, the two protocols are not interoperable. However, most transport and application-layer protocols need little or no change to operate over IPv6; exceptions are application protocols that embed Internet-layer addresses, such as 1491:
response, known as a router advertisement, from a router, the response includes the network configuration information to allow establishment of a globally unique address with an appropriate unicast network prefix. There are also two flag bits that tell the host whether it should use DHCP to get further information and addresses:
1826:(ISPs) are increasingly providing their business and private customers with public-facing IPv6 global unicast addresses. If IPv4 is still used in the local area network (LAN), however, and the ISP can only provide one public-facing IPv6 address, the IPv4 LAN addresses are translated into the public facing IPv6 address using 1418:. This prefix is followed by 54 bits that can be used for subnetting, although they are typically set to zeros, and a 64-bit interface identifier. The host can compute and assign the Interface identifier by itself without the presence or cooperation of an external network component like a DHCP server, in a process called 1006:. However, many devices implement IPv6 support in software (as opposed to hardware), thus resulting in very bad packet processing performance. Additionally, for many implementations, the use of Extension Headers causes packets to be processed by a router's CPU, leading to poor performance or even security issues. 2120:(IETF) in the early 1990s started an effort to develop a next generation IP protocol. By the beginning of 1992, several proposals appeared for an expanded Internet addressing system and by the end of 1992 the IETF announced a call for white papers. In September 1993, the IETF created a temporary, ad hoc 583:
for identification and location definition. With the rapid growth of the Internet after commercialization in the 1990s, it became evident that far more addresses would be needed to connect devices than the IPv4 address space had available. By 1998, the IETF had formalized the successor protocol. IPv6
1884:
While some ISPs still allocate customers only IPv4 addresses, many ISPs allocate their customers only an IPv6 or dual-stack IPv4 and IPv6. ISPs report the share of IPv6 traffic from customers over their network to be anything between 20% and 40%, but by mid-2017 IPv6 traffic still only accounted for
1425:
The lower 64 bits of the link-local address (the suffix) were originally derived from the MAC address of the underlying network interface card. As this method of assigning addresses would cause undesirable address changes when faulty network cards were replaced, and as it also suffered from a number
966:
Renumbering an existing network for a new connectivity provider with different routing prefixes is a major effort with IPv4. With IPv6, however, changing the prefix announced by a few routers can in principle renumber an entire network, since the host identifiers (the least-significant 64 bits of an
1485:
A host bringing up a new IPv6 interface first generates a unique link-local address using one of several mechanisms designed to generate a unique address. Should a non-unique address be detected, the host can try again with a newly generated address. Once a unique link-local address is established,
1231:
have 128 bits. The design of the IPv6 address space implements a different design philosophy than in IPv4, in which subnetting was used to improve the efficiency of utilization of the small address space. In IPv6, the address space is deemed large enough for the foreseeable future, and a local area
943:
IPv6 hosts configure themselves automatically. Every interface has a self-generated link-local address and, when connected to a network, conflict resolution is performed and routers provide network prefixes via router advertisements. Stateless configuration of routers can be achieved with a special
1791:
to assist dual-stack applications, so that they can connect using both IPv4 and IPv6, but prefer an IPv6 connection if it is available. However, dual-stack also needs to be implemented on all routers between the host and the service for which the DNS server has returned an IPv6 address. Dual-stack
1490:
interface that supports IPv6. It does so by sending out an ICMPv6 router solicitation message to the all-routers multicast group with its link-local address as source. If there is no answer after a predetermined number of attempts, the host concludes that no routers are connected. If it does get a
928:
for IPv6 have at least a 64-bit routing prefix, yielding the smallest subnet size available in IPv6 (also 64 bits). With such an assignment it is possible to embed the unicast address prefix into the IPv6 multicast address format, while still providing a 32-bit block, the least significant bits of
1782:
A device with dual-stack implementation in the operating system has an IPv4 and IPv6 address, and can communicate with other nodes in the LAN or the Internet using either IPv4 or IPv6. The DNS protocol is used by both IP protocols to resolve fully qualified domain names and IP addresses, but dual
1918:
to tunnel over IPv4 networks, by encapsulating IPv6 packets within UDP. The Teredo relay is an IPv6 router that mediates between a Teredo server and the native IPv6 network. It was expected that 6to4 and Teredo would be widely deployed until ISP networks would switch to native IPv6, but by 2014
1897:
reported 7%. A 2017 survey found that many DSL customers that were served by a dual stack ISP did not request DNS servers to resolve fully qualified domain names into IPv6 addresses. The survey also found that the majority of traffic from IPv6-ready web-server resources were still requested and
962:
A stable, unique, globally addressable IP address would facilitate tracking a device across networks. Therefore, such addresses are a particular privacy concern for mobile devices, such as laptops and cell phones. To address these privacy concerns, the SLAAC protocol includes what are typically
1978:
Because of the significant internal differences between IPv4 and IPv6 protocol stacks, some of the lower-level functionality available to programmers in the IPv6 stack does not work the same when used with IPv4-mapped addresses. Some common IPv6 stacks do not implement the IPv4-mapped address
919:
multicast group at address ff02::1, which is analogous to IPv4 multicasting to address 224.0.0.1. IPv6 also provides for new multicast implementations, including embedding rendezvous point addresses in an IPv6 multicast group address, which simplifies the deployment of inter-domain solutions.
1093:
The IPv6 packet header has a minimum size of 40 octets (320 bits). Options are implemented as extensions. This provides the opportunity to extend the protocol in the future without affecting the core packet structure. However, RFC 7872 notes that some network operators drop IPv6 packets with
757:
as decimal values of four octets, each in the range 0 to 255, or 8 bits per number. Thus, IPv4 provides an addressing capability of 2 or approximately 4.3 billion addresses. Address exhaustion was not initially a concern in IPv4 as this version was originally presumed to be a test of DARPA's
1002:. Although IPv6 packet headers are at least twice the size of IPv4 packet headers, processing of packets that only contain the base IPv6 header by routers may, in some cases, be more efficient, because less processing is required in routers due to the headers being aligned to match common 668:
In addition to offering more addresses, IPv6 also implements features not present in IPv4. It simplifies aspects of address configuration, network renumbering, and router announcements when changing network connectivity providers. It simplifies packet processing in routers by placing the
2286:
By 2011, all major operating systems in use on personal computers and server systems had production-quality IPv6 implementations. Cellular telephone systems presented a large deployment field for Internet Protocol devices as mobile telephone service made the transition from
1158:
field tells the receiver how to interpret the data which follows the header. If the packet contains options, this field contains the option type of the next option. The "Next Header" field of the last option points to the upper-layer protocol that is carried in the packet's
1834:(NAT) mechanism. Some ISPs cannot provide their customers with public-facing IPv4 and IPv6 addresses, thus supporting dual-stack networking, because some ISPs have exhausted their globally routable IPv4 address pool. Meanwhile, ISP customers are still trying to reach IPv4 1743:, a dual-stack implementation of the IPv4 and IPv6 on devices is the easiest way to migrate to IPv6. Many other transition mechanisms use tunneling to encapsulate IPv6 traffic within IPv4 networks and vice versa. This is an imperfect solution, which reduces the 1498:
The Other bit, which indicates whether or not the host should obtain other information through DHCP. The other information consists of one or more prefix information options for the subnets that the host is attached to, a lifetime for the prefix, and two flags:
1943:
Hybrid dual-stack IPv6/IPv4 implementations recognize a special class of addresses, the IPv4-mapped IPv6 addresses. These addresses are typically written with a 96-bit prefix in the standard IPv6 format, and the remaining 32 bits are written in the customary
989:. This requirement will help to make IPsec implementations more interoperable between devices from different vendors. The IPsec Authentication Header (AH) and the Encapsulating Security Payload header (ESP) are implemented as IPv6 extension headers. 859:
The main advantage of IPv6 over IPv4 is its larger address space. The size of an IPv6 address is 128 bits, compared to 32 bits in IPv4. The address space therefore has 2=340,282,366,920,938,463,463,374,607,431,768,211,456 addresses (340
1314:
Consecutive sections of zeros are replaced with two colons (::). This may only be used once in an address, as multiple use would render the address indeterminate. A double colon should not be used to denote an omitted single section of
615:. The use of multicast addressing is expanded and simplified, and provides additional optimization for the delivery of services. Device mobility, security, and configuration aspects have been considered in the design of the protocol. 1383:
Because IPv6 addresses contain colons, and URLs use colons to separate the host from the port number, an IPv6 address used as the host-part of a URL should be enclosed in square brackets, e.g. http:// or http://:8080/path/page.html.
758:
networking concepts. During the first decade of operation of the Internet, it became apparent that methods had to be developed to conserve address space. In the early 1990s, even after the redesign of the addressing system using a
1525:
The assignment procedure for global addresses is similar to local-address construction. The prefix is supplied from router advertisements on the network. Multiple prefix announcements cause multiple addresses to be configured.
2074:
requires that the first fragment of an IPv6 packet contains the entire IPv6 header chain, such that some very pathological fragmentation cases are forbidden. Additionally, as a result of research on the evasion of RA-Guard in
879:
While this address space is very large, it was not the intent of the designers of IPv6 to assure geographical saturation with usable addresses. Rather, the longer addresses simplify allocation of addresses, enable efficient
929:
the address, or approximately 4.2 billion multicast group identifiers. Thus each user of an IPv6 subnet automatically has available a set of globally routable source-specific multicast groups for multicast applications.
1025:
of Internet design, which envisioned that most processing in the network occurs in the leaf nodes. Integrity protection for the data that is encapsulated in the IPv6 packet is assumed to be assured by both the
1669:(FQDN), the DNS client of the host sends two DNS requests, one querying A records and the other querying AAAA records. The host operating system may be configured with a preference for address selection rules 1502:
On-link: If this flag is set, the host will treat all addresses on the specific subnet as being on-link and send packets directly to them instead of sending them to a router for the duration of the given
997:
The packet header in IPv6 is simpler than the IPv4 header. Many rarely used fields have been moved to optional header extensions. The IPv6 packet header has simplified the process of packet forwarding by
923:
In IPv4 it is very difficult for an organization to get even one globally routable multicast group assignment, and the implementation of inter-domain solutions is arcane. Unicast address assignments by a
1906:
The technical basis for tunneling, or encapsulating IPv6 packets in IPv4 packets, is outlined in RFC 4213. When the Internet backbone was IPv4-only, one of the frequently used tunneling protocols was
2058:
systems, that do. Some IPv6 stack implementors have therefore recommended disabling IPv4 mapped addresses and instead using a dual-stack network where supporting both IPv4 and IPv6 is necessary.
4255: 2264:
began experimental IPv6 deployment in 2003 and by 2016 the IPv6 traffic on their networks averaged between 20% and 40%. A significant portion of this IPv6 traffic was generated through their
981:(IPsec) was originally developed for IPv6, but found widespread deployment first in IPv4, for which it was re-engineered. IPsec was a mandatory part of all IPv6 protocol implementations, and 2318:(BGP) routing database. A further 243 networks advertised only an IPv6 prefix. Internet backbone transit networks offering IPv6 support existed in every country globally, except in parts of 1154:(320 bits) of the IPv6 packet. It contains the source and destination addresses, traffic class, hop count, and the type of the optional extension or payload which follows the header. This 596:
total addresses. The actual number is slightly smaller, as multiple ranges are reserved for special usage or completely excluded from general use. The two protocols are not designed to be
2038:
A number of security implications may arise from the use of IPv6. Some of them may be related with the IPv6 protocols themselves, while others may be related with implementation flaws.
2424: 3153: 801: 1495:
The Manage bit, which indicates whether or not the host should use DHCP to obtain additional addresses rather than rely on an auto-configured address from the router advertisement.
955:. The design of IPv6 intended to re-emphasize the end-to-end principle of network design that was originally conceived during the establishment of the early Internet by rendering 4599: 4408: 2737: 4884: 812:(AFRINIC) as the sole regional internet registry that is still using the normal protocol for distributing IPv4 addresses. As of November 2018, AFRINIC's minimum allocation is 1951:
Addresses in this group consist of an 80-bit prefix of zeros, the next 16 bits are ones, and the remaining, least-significant 32 bits contain the IPv4 address. For example,
5331: 3191: 2409: 528: 1898:
served over IPv4, mostly due to ISP customers that did not use the dual stack facility provided by their ISP and to a lesser extent due to customers of IPv4-only ISPs.
5426: 1482:(LAN) by sending a neighbor solicitation message asking for the link-layer address of the IP address. If any other host in the LAN is using that address, it responds. 1147:
The header consists of a fixed portion with minimal functionality required for all packets and may be followed by optional extensions to implement special features.
5326: 2404: 607:
IPv6 provides other technical benefits in addition to a larger addressing space. In particular, it permits hierarchical address allocation methods that facilitate
2853: 4979: 2573: 3423: 1177:
Extension headers carry options that are used for special treatment of a packet in the network, e.g., for routing, fragmentation, and for security using the
288: 2156:(Xerox), Dino Farinacci (Cisco), Paul Francis (NTT), Eric Fleischmann (Boeing), Mark Knopper (Ameritech), Greg Minshall (Novell), Rob Ullmann (Lotus), and 5373: 2132:, and had a directorate with 15 engineers from diverse backgrounds for direction-setting and preliminary document review: The working-group members were 2303:
released technical specifications for devices to operate on its "next-generation" networks. The specification mandated IPv6 operation according to the
1077:
and is therefore as efficient as native IPv6. IPv6 routers may also allow entire subnets to move to a new router connection point without renumbering.
4247: 5321: 2163:
The Internet Engineering Task Force adopted the IPng model on 25 July 1994, with the formation of several IPng working groups. By 1996, a series of
1736:
are needed to enable IPv6 hosts to reach IPv4 services and to allow isolated IPv6 hosts and networks to reach each other over IPv4 infrastructure.
1042:. Thus, while IPv4 allowed UDP datagram headers to have no checksum (indicated by 0 in the header field), IPv6 requires a checksum in UDP headers. 5400: 4566: 793: 5079: 2091:
has deprecated the use of fragmentation with Neighbor Discovery, and discouraged the use of fragmentation with Secure Neighbor Discovery (SEND).
1240:
The 128 bits of an IPv6 address are represented in 8 groups of 16 bits each. Each group is written as four hexadecimal digits (sometimes called
805: 3805: 3771: 3740: 3375: 2733: 827:
RIPE NCC announced that it had fully run out of IPv4 addresses on 25 November 2019, and called for greater progress on the adoption of IPv6.
521: 248: 2845: 777:(RIRs). However, each RIR still has available address pools and is expected to continue with standard address allocation policies until one 378: 373: 343: 970:
The SLAAC address generation method is implementation-dependent. IETF recommends that addresses be deterministic but semantically opaque.
5098: 4099: 4058: 2823: 4147: 2141: 1732:
IPv6 is not foreseen to supplant IPv4 instantaneously. Both protocols will continue to operate simultaneously for some time. Therefore,
770: 739: 203: 4589: 4404: 753:. IPv4 includes an addressing system that uses numerical identifiers consisting of 32 bits. These addresses are typically displayed in 661:
transmission across multiple IP networks, closely adhering to the design principles developed in the previous version of the protocol,
4497: 1603:
s are specifically considered. It remains to be seen whether ISPs will honor this recommendation. For example, during initial trials,
1167: 450: 393: 318: 4890: 5431: 4630: 4481: 4337: 4306: 4286: 2611: 2066:
Research has shown that the use of fragmentation can be leveraged to evade network security controls, similar to IPv4. As a result,
460: 430: 1914:
was also frequently used for integrating IPv6 LANs with the IPv4 Internet backbone. Teredo is outlined in RFC 4380 and allows IPv6
5151: 1106:
IPv4 limits packets to 65,535 (2−1) octets of payload. An IPv6 node can optionally handle packets over this limit, referred to as
5436: 5132: 1171: 514: 445: 238: 915:, and therefore does not define broadcast addresses. In IPv6, the same result is achieved by sending a packet to the link-local 4784: 4199: 3831: 3102: 2667: 2532: 2493: 2117: 561: 115: 4832: 3070: 1987:). On these operating systems, a program must open a separate socket for each IP protocol it uses. On some systems, e.g., the 5252: 4858: 4121: 3183: 2414: 2399: 2238: 885: 785: 759: 263: 253: 2046:
The addition of nodes having IPv6 enabled by default by the software manufacturer may result in the inadvertent creation of
1279:
from any group of hexadecimal digits are removed, which is usually done to all of the leading zeros. For example, the group
4382: 3318: 3277: 1792:
clients should be configured to prefer IPv6 only if the network is able to forward IPv6 packets using the IPv6 versions of
1680:
An alternative record type was used in early DNS implementations for IPv6, designed to facilitate network renumbering, the
2770: 2314:
continued. In 2018 only 25.3% of the about 54,000 autonomous systems advertised both IPv4 and IPv6 prefixes in the global
1555:
blocks, which they divide among subordinate networks. The initial recommendation of September 2001 stated assignment of a
1031: 383: 363: 313: 2710: 5383: 1095: 1003: 303: 298: 293: 5378: 4143: 2242: 1831: 1666: 1463: 1459: 956: 715: 480: 440: 308: 2279:(DNS) has supported IPv6 since 2008. In the same year, IPv6 was first used in a major world event during the Beijing 4987: 2565: 1392: 5393: 2230: 1842: 1823: 978: 774: 3415: 5388: 5352: 5082:(Press release). The Beijing Organizing Committee for the Games of the XXIX Olympiad. 30 May 2008. Archived from 2797: 2149: 1870: 1744: 1733: 1727: 1455: 1111: 1054: 769:
The last unassigned top-level address blocks of 16 million IPv4 addresses were allocated in February 2011 by the
601: 5059: 1927: 2444: 2176: 1517: 1110:, which can be as large as 4,294,967,295 (2−1) octets. The use of jumbograms may improve performance over high- 333: 273: 1271:
For convenience and clarity, the representation of an IPv6 address may be shortened with the following rules:
5347: 3521: 2315: 2261: 2246: 1886: 1541: 925: 821: 789: 763: 710: 600:, and thus direct communication between them is impossible, complicating the move to IPv6. However, several 565: 556:
that provides an identification and location system for computers on networks and routes traffic across the
500: 490: 283: 198: 182: 1935: 788:(CIDR) block remains. After that, only blocks of 1,024 addresses (/22) will be provided from the RIRs to a 2354:
had an IPv6 deployment of about 66%. In 2018 Xfinity reported an estimated 36.1 million IPv6 users, while
2300: 1763:
Dual-stack IP implementations provide complete IPv4 and IPv6 protocol stacks in the operating system of a
1035: 844: 553: 368: 218: 959:
obsolete. Therefore, every device on the network is globally addressable directly from any other device.
2371: 982: 896: 873: 848: 495: 268: 4554: 5083: 4523: 3791: 2385: 1815: 4940: 4806: 4756: 4675: 4447: 4221: 4167: 3948: 3895: 3853: 3676: 3599: 3541: 3495: 3454: 3349: 3230: 3124: 3049: 3003: 2681: 2280: 2164: 1945: 1858: 1022: 1010: 908: 754: 278: 162: 572:. In December 1998, IPv6 became a Draft Standard for the IETF, which subsequently ratified it as an 2265: 1915: 1160: 1141: 1021:
in the IPv6 protocol) is reduced by one. The absence of a checksum in the IPv6 header furthers the
944:
router renumbering protocol. When necessary, hosts may configure additional stateful addresses via
1202:
to make their packets small enough to reach the destination without needing to be fragmented. See
5245: 2641: 2367: 2276: 2137: 1748: 1639: 1627: 1487: 1479: 1401: 1199: 1137: 1074: 1050: 999: 673:
size is standardized by fixing the size of the host identifier portion of an address to 64 bits.
485: 213: 2524: 2485: 1845:(RIR) zones have obtained IPv6 address space. This includes many of the world's major ISPs and 5261: 4798: 4774: 4667: 4626: 4477: 4333: 4282: 4213: 4073: 4030: 3845: 3801: 3767: 3763: 3757: 3736: 3381: 3371: 3116: 2811: 2617: 2607: 2536: 2311: 2211:, which elevated IPv6 to "Internet Standard" (the highest maturity level for IETF protocols). 1980: 1862: 1797: 1793: 1151: 1058: 881: 742: 731: 638: 608: 573: 549: 413: 189: 3726: 824:
may receive additional allocation when about 80% of all the address space has been utilized.
5162: 5065: 5039: 5006: 4959: 4788: 4746: 4657: 4437: 4372: 4362: 4203: 4157: 4089: 4081: 4048: 4038: 4011: 3938: 3885: 3835: 3666: 3589: 3531: 3485: 3444: 3339: 3308: 3300: 3267: 3259: 3220: 3187: 3136: 3106: 3039: 2993: 2962: 2942: 2922: 2902: 2883: 2671: 2569: 2544: 2497: 2335: 2204: 2196: 2188: 2168: 2084: 2076: 2067: 1911: 1850: 1804: 1711: 1703: 1695: 1670: 1655: 1435: 1427: 1046: 677: 651: 2241:(CIDR) in the routing and IP address allocation for the Internet, and the extensive use of 1220: 5309: 5106: 3920: 2391: 2225: 2220: 1874: 1752: 1085: 1039: 654: 354: 104: 4302: 1779:. This permits dual-stack hosts to participate in IPv6 and IPv4 networks simultaneously. 622:
digits each, separated by colons. The full representation may be shortened; for example,
4911:
Cicileo, Guillermo; Gagliano, Roque; O’Flaherty, Christian; et al. (October 2009).
4002:
Narten, T. (August 1999). "Neighbor discovery and stateless autoconfiguration in IPv6".
2299:(VoIP) service that would leverage IPv6 enhancements. In 2009, the US cellular operator 2256:
deployed IPv6 at a trial location in 2004 and later expanded IPv6 deployment across the
1807:
and network device vendors, legacy networking hardware and servers do not support IPv6.
1114:
links. The use of jumbograms is indicated by the Jumbo Payload Option extension header.
1013:
is calculated for the IPv4 header, and has to be recalculated by routers every time the
49:
Please help update this article to reflect recent events or newly available information.
3928: 3527:
Definition of the Differentiated Services Field (DS Field) in the IPv4 and IPv6 Headers
2257: 2145: 2125: 1846: 1788: 1772: 1768: 851:(NTP), where the new address format may cause conflicts with existing protocol syntax. 836: 750: 647: 404: 74: 911:, i.e. the transmission of a packet to all hosts on the attached link using a special 5421: 5415: 5238: 3656: 3475: 3400: 2520: 2481: 2350:
had 73% and 63% IPv6 deployment respectively. In the United States the broadband ISP
2296: 2253: 2153: 2129: 1979:
feature, either because the IPv6 and IPv4 stacks are separate implementations (e.g.,
1878: 612: 597: 155: 4912: 1702:
and its references (with further discussion of the pros and cons of both schemes in
5283: 4113: 3924: 1988: 1740: 1690: 1434:
has replaced the original MAC-based method with the hash-based method specified in
1377: 1276: 1260:) and the groups are separated by colons (:). An example of this representation is 1228: 1215: 1014: 986: 938: 720: 323: 1919:
Google Statistics showed that the use of both mechanisms had dropped to almost 0.
5002: 2760: 1566:
subnet to end-consumer sites. In March 2011 this recommendation was refined: The
1450:
IPv6 uses a new mechanism for mapping IP addresses to link-layer addresses (e.g.
5288: 5224: 4818: 4809: 4778: 4759: 4740: 4703: 4699: 4695: 4691: 4687: 4678: 4647: 4459: 4450: 4431: 4354: 4233: 4224: 4193: 4179: 4170: 4151: 3984: 3980: 3976: 3972: 3968: 3964: 3960: 3951: 3932: 3907: 3898: 3879: 3865: 3856: 3825: 3732: 3712: 3708: 3704: 3700: 3696: 3692: 3688: 3679: 3660: 3635: 3631: 3627: 3619: 3615: 3611: 3602: 3583: 3569: 3565: 3561: 3557: 3553: 3544: 3525: 3507: 3498: 3479: 3457: 3438: 3352: 3333: 3292: 3251: 3233: 3214: 3140: 3127: 3096: 3052: 3033: 3019: 3015: 3006: 2987: 2966: 2946: 2926: 2906: 2684: 2661: 2323: 2208: 2200: 2192: 2172: 2157: 2140:(AT&T), Jim Bound (Digital Equipment Corporation), Ross Callon (Wellfleet), 2088: 2080: 2071: 1835: 1715: 1707: 1699: 1674: 1659: 1647: 1635: 1451: 1439: 1431: 1376:
As an IPv6 address may have more than one representation, the IETF has issued a
1203: 1123: 1070: 861: 840: 681: 619: 171: 167: 3623: 2104: 1053:, perform end-to-end fragmentation, or send packets no larger than the default 5230: 4914:
IPv6 For All: A Guide for IPv6 Usage and Application in Different Environments
2706: 2698: 2635: 2381: 2051: 1854: 1467: 1248: 1027: 952: 670: 580: 471: 5044: 5027: 4802: 4671: 4217: 3849: 3385: 3120: 2621: 2540: 1198:
Unlike with IPv4, routers never fragment a packet. Hosts are expected to use
1166:
The current use of the IPv6 Traffic Class field divides this between a 6 bit
5293: 3157: 3098:
Temporary Address Extensions for Stateless Address Autoconfiguration in IPv6
2327: 2133: 2055: 1894: 1478:
transmission. IPv6 hosts verify the uniqueness of their IPv6 addresses in a
1475: 1107: 1018: 904: 884:, and allow implementation of special addressing features. In IPv4, complex 693: 150: 82: 2124:(IPng) area to deal specifically with such issues. The new area was led by 4739:
R. Gilligan; S. Thomson; J. Bound; J. McCann; W. Stevens (February 2003).
3252:"Network Renumbering Overview: Why would I want it and what is it anyway?" 2734:"IPv4 Address Exhaustion Not Instant Cause for Concern with IPv6 in Wings" 1486:
the IPv6 host determines whether the LAN is connected on this link to any
43:
Parts of this article (those related to RFC 8200 and RFC 8201) need to be
17: 4727: 4117: 3161: 2849: 2765: 2113: 1866: 1776: 1764: 1684:
records for the forward lookup and a number of other innovations such as
1631: 797: 746: 658: 557: 4015: 3216:
Network Renumbering Overview: Why would I want it and what is it anyway?
2931:
Embedding the Rendezvous Point (RP) Address in an IPv6 Multicast Address
2342:
in the Netherlands had 73% deployment and in Belgium the broadband ISPs
2167:
was released defining Internet Protocol version 6 (IPv6), starting with
1128: 5218: 4723: 4251: 4248:"Comcast Activates First Users With IPv6 Native Dual Stack Over DOCSIS" 2879: 2819: 2355: 2351: 2347: 1996: 1984: 1604: 809: 766:, and that further changes to the Internet infrastructure were needed. 689: 685: 5212: 5011: 4964: 4955: 4377: 4094: 4053: 3313: 3272: 2888: 2793: 2549: 2502: 1506:
Address: This flag tells the host to actually create a global address.
5368: 5003:"The Recommendation for the IP Next Generation Protocol – Appendix B" 4793: 4751: 4662: 4442: 4367: 4208: 4162: 4085: 4043: 3943: 3890: 3840: 3797: 3671: 3594: 3536: 3490: 3449: 3437:
V. Devarapalli; R. Wakikawa; A. Petrescu; P. Thubert (January 2005).
3344: 3304: 3263: 3225: 3111: 3044: 2998: 2676: 2448: 2419: 2339: 2331: 2319: 1992: 1890: 1651: 1471: 1242: 945: 434: 328: 227: 207: 3071:"Privacy Extensions for Stateless Address Autoconfiguration in IPv6" 669:
responsibility for packet fragmentation in the end points. The IPv6
3728:
IPv6 Fundamentals: A Straightforward Approach to Understanding IPv6
2637:
Google IPv6 Conference 2008: What will the IPv6 Internet look like?
5183: 5032:
International Journal of Advanced Network, Monitoring and Controls
4717: 4594: 4562: 2527:(July 2017), "Internet Protocol, Version 6 (IPv6) Specification", 2224: 2103: 2011: 1934: 1926: 1827: 1814: 1643: 1516: 1391: 1219: 1178: 1127: 1084: 895: 735: 714: 637: 455: 233: 4646:
M. Cotton; L. Vegoda; B. Haberman (April 2013). R. Bonica (ed.).
3416:"Operational Implications of IPv6 Packets with Extension Headers" 4653: 4498:"Understanding Dual Stacking of IPv4 and IPv6 Unicast Addresses" 4358: 4077: 4034: 3419: 3296: 3255: 2269: 2054:
systems that do not have an IPv6 stack enabled by default, with
1967:. A previous format, called "IPv4-compatible IPv6 address", was 1907: 1784: 1646:, where the name space is hierarchically divided by the 1-digit 1567: 727: 662: 569: 418: 388: 338: 258: 223: 143: 5234: 3759:
IPv6 Address Planning: Designing an Address Plan for the Future
2880:"Technical Criteria for Choosing IP The Next Generation (IPng)" 1999:, this feature is controlled by the socket option IPV6_V6ONLY. 1570:"recommends giving home sites significantly more than a single 5314: 2343: 1654:
units (4 bits) of the IPv6 address. This scheme is defined in
1049:. IPv6 hosts are required to do one of the following: perform 762:
model, it became clear that this would not suffice to prevent
585: 243: 29: 4153:
IAB/IESG Recommendations on IPv6 Address Allocations to Sites
3370:(3rd ed.). Sebastopol, CA: O'Reilly Media. p. 196. 1983:
2000, XP, and Server 2003), or because of security concerns (
872:). Some blocks of this space and some specific addresses are 4531: 3585:
The Addition of Explicit Congestion Notification (ECN) to IP
3095:
F. Gont; S. Krishnan; T. Narten; R. Draves (February 2021).
2330:
ISPs had deployed IPv6 for the majority of their customers.
2249:
to allow for IPv6 deployment, which began in the mid-2000s.
1195:
extension header), the payload must be less than 4 GB.
2292: 2288: 5227:– RFC 8200 document ratifying IPv6 as an Internet Standard 4074:"IPv6 Stateless Address Autoconfiguration - Section 5.5.1" 2374:
on IPv6, with the two network providers refusing to peer.
2260:. By 2016, 82% of the traffic on their network used IPv6. 1819:
IPv6 Prefix Assignment mechanism with IANA, RIRs, and ISPs
1009:
Moreover, an IPv6 header does not include a checksum. The
3154:"Overview of the Advanced Networking Pack for Windows XP" 2597: 2595: 2593: 2591: 1665:
When a dual-stack host queries a DNS server to resolve a
1581:, but does not recommend that every home site be given a 1030:
or error detection in higher-layer protocols, namely the
967:
address) can be independently self-configured by a host.
5133:"Verizon Mandates IPv6 Support for Next-Gen Cell Phones" 4623:
IPv6 Essentials: Integrating IPv6 into Your IPv4 Network
4474:
IPv6 Essentials: Integrating IPv6 into Your IPv4 Network
4330:
IPv6 Essentials: Integrating IPv6 into Your IPv4 Network
4279:
IPv6 Essentials: Integrating IPv6 into Your IPv4 Network
3368:
IPv6 Essentials: Integrating IPv6 into Your IPv4 Network
4405:"IPv6: Dual stack where you can; tunnel where you must" 2425:
University of New Hampshire InterOperability Laboratory
1529:
Stateless address autoconfiguration (SLAAC) requires a
618:
IPv6 addresses are represented as eight groups of four
5001:
Bradner, Scott O.; Mankin, Allison J. (January 1995).
4941:"IPv4-Mapped Addresses on the Wire Considered Harmful" 4433:
Basic Transition Mechanisms for IPv6 Hosts and Routers
3582:
K. Ramakrishnan; S. Floyd; D. Black (September 2001).
2951:
The Internet Multicast Address Allocation Architecture
2663:
The Recommendation for the IP Next Generation Protocol
2010:
is a class of IPv4-embedded IPv6 addresses for use in
802:
Latin America and Caribbean Network Information Centre
588:
addresses, theoretically allowing 2, or approximately
4956:"IP: Next Generation (IPng) White Paper Solicitation" 3827:
A Recommendation for IPv6 Address Text Representation
2709:: The Number Resource Organization. 3 February 2011. 1796:. When dual-stack network protocols are in place the 1458:
addressing method, on which the functionality of the
1184:
Without special options, a payload must be less than
611:
across the Internet, and thus limit the expansion of
4590:"Five ways for IPv6 and IPv4 to peacefully co-exist" 3069:
T. Narten; R. Draves; S. Krishnan (September 2007).
2252:
Universities were among the early adopters of IPv6.
835:
On the Internet, data is transmitted in the form of
564:(IETF) to deal with the long-anticipated problem of 5361: 5340: 5302: 5271: 3997: 3995: 3993: 3335:
Recommendation on Stable IPv6 Interface Identifiers
2986:S. Thomson; T. Narten; T. Jinmei (September 2007). 2953:, D. Thaler, M. Handley, D. Estrin (September 2000) 1710:), but has been deprecated to experimental status ( 161: 149: 139: 121: 111: 100: 92: 4777:; M. Bagnulo; M. Boucadair; X. Li (October 2010). 2604:Linux Kernel Networking: Implementation and Theory 939:IPv6 address § Stateless address autoconfiguration 734:. IPv4 was developed as a research project by the 730:(IPv4) was the first publicly used version of the 684:and allows three different types of transmission: 676:The addressing architecture of IPv6 is defined in 5332:Comparison of IPv6 support in common applications 3934:Uniform Resource Identifier (URI): Generic Syntax 2490:Internet Protocol, Version 6 (IPv6) Specification 2410:Comparison of IPv6 support in common applications 2307:, and deprecated IPv4 as an optional capability. 2295:technologies, in which voice is provisioned as a 2203:in 1998. In July 2017 this RFC was superseded by 4303:"IPv6 Transition Mechanism/Tunneling Comparison" 1396:The Link-Local Unicast Address structure in IPv6 1334:After removing all leading zeros in each group: 798:Réseaux IP Européens Network Coordination Centre 5327:Comparison of IPv6 support in operating systems 4886:Shadow Networks: an Unintended IPv6 Side Effect 4192:T. Narten; G. Huston; L. Roberts (March 2011). 4114:"IPv6 Address Allocation and Assignment Policy" 2878:Partridge, C.; Kastenholz, F. (December 1994). 2405:Comparison of IPv6 support in operating systems 1378:proposed standard for representing them in text 1224:A general structure for an IPv6 unicast address 5028:"The Shortcomings of Ipv6 and Upgrade of Ipv4" 4860:IPv6 Security Frequently Asked Questions (FAQ) 4588:Vaughan-Nichols, Steven J. (14 October 2010). 4555:"What Stops IPv6 Traffic in a Dual-Stack ISP?" 3440:Network Mobility (NEMO) Basic Support Protocol 3332:Cooper, Alissa; Gont, Fernando; Thaler, Dave. 2334:provided over 86% of its customers with IPv6, 1345:After omitting consecutive sections of zeros: 579:Devices on the Internet are assigned a unique 5246: 5080:"Beijing2008.cn leaps to next-generation Net" 3785: 3783: 2971:Unicast-Prefix-based IPv6 Multicast Addresses 2447:. New Zealand IPv6 Task Force. Archived from 1885:a fraction of total traffic at several large 1094:extension headers when they traverse transit 946:Dynamic Host Configuration Protocol version 6 522: 8: 4031:"Neighbor Discovery for IP version 6 (IPv6)" 3250:Ferguson, P.; Berkowitz, H. (January 1997). 2846:"The RIPE NCC has run out of IPv4 Addresses" 2529:IETF Request for Comments (RFC) Pages – Test 2366:There is a peering dispute going on between 2112:Due to the anticipated global growth of the 1521:The global unicast address structure in IPv6 1462:(ARP) in IPv4 is based. IPv6 implements the 1150:The fixed header occupies the first 40  808:(ARIN) have reached this stage. This leaves 68: 5184:"The case of Hurricane Electric And Cogent" 5026:Wang, Tao; Gao, Jiaqiong (1 January 2019). 3401:"IPv6 Security Assessment and Benchmarking" 2326:and China. By mid-2018 some major European 2108:A timeline for the standards governing IPv6 933:Stateless address autoconfiguration (SLAAC) 5253: 5239: 5231: 5146: 5144: 5142: 5126: 5124: 4742:Basic Socket Interface Extensions for IPv6 3819: 3817: 3650: 3648: 3646: 3644: 3213:P. Ferguson; H. Berkowitz (January 1997). 2981: 2979: 2873: 2871: 2699:"Free Pool of IPv4 Address Space Depleted" 2305:3GPP Release 8 Specifications (March 2009) 2187:The first RFC to standardize IPv6 was the 2175:. (Version 5 was used by the experimental 1747:(MTU) of a link and therefore complicates 1446:Address uniqueness and router solicitation 1319:An example of application of these rules: 1089:Several examples of IPv6 extension headers 529: 515: 178: 67: 5219:An Introduction and Statistics about IPv6 5043: 5010: 4963: 4954:Bradner, S.; Mankin, A. (December 1993). 4939:Jun-ichiro itojun Hagino (October 2003). 4792: 4750: 4661: 4441: 4430:E. Nordmark; R. Gilligan (October 2005). 4376: 4366: 4355:"Advisory Guidelines for 6to4 Deployment" 4332:. O'Reilly Media, Inc. pp. 222–223. 4207: 4161: 4093: 4052: 4042: 3942: 3889: 3839: 3824:S. Kawamura; M. Kawashima (August 2010). 3793:Practical IPv6 for Windows Administrators 3670: 3593: 3535: 3489: 3448: 3343: 3312: 3271: 3224: 3110: 3043: 2997: 2887: 2761:"Europe hits old internet address limits" 2675: 2655: 2653: 2651: 2548: 2515: 2513: 2501: 2476: 2474: 2472: 2470: 2468: 2466: 951:Like IPv4, IPv6 supports globally unique 745:, before becoming the foundation for the 736:Defense Advanced Research Projects Agency 642:Glossary of terms used for IPv6 addresses 5322:World IPv6 Day and World IPv6 Launch Day 4780:IPv6 Addressing of IPv4/IPv6 Translators 2989:IPv6 Stateless Address Autoconfiguration 2933:, P. Savola, B. Haberman (November 2004) 2660:Bradner, S.; Mankin, A. (January 1995). 1841:A significant percentage of ISPs in all 5427:Internet properties established in 1996 5401:Site Multihoming by IPv6 Intermediation 2566:"RFC 8200 – IPv6 Has Been Standardized" 2436: 1803:While dual-stack is supported by major 1400:All interfaces of IPv6 hosts require a 1361:0000:0000:0000:0000:0000:0000:0000:0001 1327:2001:0db8:0000:0000:0000:ff00:0042:8329 1264:2001:0db8:0000:0000:0000:ff00:0042:8329 948:(DHCPv6) or static addresses manually. 794:Asia-Pacific Network Information Centre 624:2001:0db8:0000:0000:0000:8a2e:0370:7334 470: 403: 353: 188: 181: 4407:. networkworld.com. 5 September 2007. 2973:, B. Haberman, D. Thaler (August 2002) 2644:from the original on 11 December 2021. 1975:; however, this method is deprecated. 806:American Registry for Internet Numbers 4649:Special-Purpose IP Address Registries 4102:from the original on 11 January 2024. 4061:from the original on 17 January 2024. 3426:from the original on 27 October 2023. 2800:from the original on 10 January 2024. 1811:ISP customers with public-facing IPv6 723:representation to its binary notation 7: 5225:The standard document ratifying IPv6 5099:"IPv6 and the 2008 Beijing Olympics" 4602:from the original on 5 December 2023 4476:. O'Reilly Media, Inc. p. 222. 4411:from the original on 20 January 2024 4385:from the original on 28 January 2023 4309:from the original on 23 October 2023 4281:. O'Reilly Media, Inc. p. 176. 4258:from the original on 23 October 2023 4246:Brzozowski, John (31 January 2011). 4195:IPv6 Address Assignment to End Sites 3662:IP Version 6 Addressing Architecture 3280:from the original on 7 January 2024. 3194:from the original on 23 October 2023 2856:from the original on 19 January 2024 2826:from the original on 23 October 2023 2773:from the original on 5 November 2023 2740:from the original on 20 January 2024 2713:from the original on 18 January 2024 2576:from the original on 23 October 2023 1931:IPv4-compatible IPv6 unicast address 1420:link-local address autoconfiguration 1191:. With a Jumbo Payload option (in a 792:(LIR). As of September 2015, all of 548:) is the most recent version of the 4625:. O'Reilly Media, Inc. p. 33. 3184:"Privacy Extensions for IPv6 SLAAC" 2911:Host extensions for IP multicasting 2732:Rashid, Fahmida (1 February 2011). 2195:in 1995, which became obsoleted by 1454:), because it does not support the 1357:The loopback address is defined as 771:Internet Assigned Numbers Authority 740:United States Department of Defense 604:have been devised to rectify this. 4857:Gont, Fernando (10 January 2019), 4569:from the original on 27 March 2023 4504:. Juniper Networks. 31 August 2017 2358:reported 22.3 million IPv6 users. 1168:Differentiated Services Code Point 810:African Network Information Center 27:Version 6 of the Internet Protocol 25: 3321:from the original on 8 June 2023. 2272:, which relies entirely on IPv6. 2014:transition methods. For example, 1638:("quad-A") resource records. For 719:Decomposition of the dot-decimal 4883:Mullins, Robert (5 April 2012), 4834:IPv6 Security for IPv4 Engineers 4831:Gont, Fernando (10 March 2019), 4124:from the original on 3 June 2023 2759:Ward, Mark (14 September 2012). 2564:Siddiqui, Aftab (17 July 2017). 2384: 1939:IPv4-mapped IPv6 unicast address 1634:are mapped to IPv6 addresses by 1426:of security and privacy issues, 1172:Explicit Congestion Notification 1136:An IPv6 packet has two parts: a 993:Simplified processing by routers 81: 34: 5152:"State of IPv6 Deployment 2018" 4785:Internet Engineering Task Force 4200:Internet Engineering Task Force 3832:Internet Engineering Task Force 3103:Internet Engineering Task Force 2533:Internet Engineering Task Force 2494:Internet Engineering Task Force 2118:Internet Engineering Task Force 1642:, the IETF reserved the domain 562:Internet Engineering Task Force 116:Internet Engineering Task Force 4072:Thomson, S. (September 2007). 3291:Berkowitz, H. (January 1997). 2415:DoD IPv6 product certification 2400:China Next Generation Internet 2310:The deployment of IPv6 in the 2239:Classless Inter-Domain Routing 1622:IPv6 in the Domain Name System 1607:customers were given a single 886:Classless Inter-Domain Routing 786:Classless Inter-Domain Routing 568:, and was intended to replace 1: 5061:State of IPv6 Deployment 2018 4553:Pujol, Enric (12 June 2017). 4353:Carpenter, B. (August 2011). 4029:Narten, T. (September 2007). 2229:Monthly IPv6 allocations per 1032:Transmission Control Protocol 5384:Multicast Listener Discovery 4980:"History of the IPng Effort" 3524:; D. Black (December 1998). 2338:had 56% deployment of IPv6, 2095:Standardization through RFCs 2022:represents the IPv4 address 1959:represents the IPv4 address 1759:Dual-stack IP implementation 1045:IPv6 routers do not perform 775:regional Internet registries 560:. IPv6 was developed by the 5379:Neighbor Discovery Protocol 5131:Morr, Derek (9 June 2009). 3478:; R. Hinden (August 1999). 3035:Router Renumbering for IPv6 3032:M. Crawford (August 2000). 2243:network address translation 1832:network address translation 1667:fully qualified domain name 1464:Neighbor Discovery Protocol 1460:Address Resolution Protocol 1338:2001:db8:0:0:0:ff00:42:8329 957:network address translation 900:Multicast structure in IPv6 728:Internet Protocol Version 4 663:Internet Protocol Version 4 542:Internet Protocol version 6 127:; 28 years ago 69:Internet Protocol version 6 5453: 5394:Multicast router discovery 4821:. 4706:. 4462:. 4236:. 4182:. 3987:. 3910:. 3881:Special-Use IPv6 Addresses 3878:M. Blanchet (April 2008). 3868:. 3715:. 3638:. 3572:. 3510:. 3293:"Router Renumbering Guide" 3143:. 3022:. 2913:, S. Deering (August 1989) 2640:. Event occurs at 13:35. 2231:regional Internet registry 2218: 1923:IPv4-mapped IPv6 addresses 1843:regional Internet registry 1824:Internet service providers 1734:IPv6 transition mechanisms 1725: 1694:records. It is defined in 1213: 1121: 979:Internet Protocol Security 936: 820:or 1024 IPv4 addresses. A 708: 5389:Secure Neighbor Discovery 5353:IPv6 transition mechanism 4745:. Network Working Group. 4436:. Network Working Group. 4156:. Network Working Group. 3937:. Network Working Group. 3884:. Network Working Group. 3665:. Network Working Group. 3588:. Network Working Group. 3530:. Network Working Group. 3484:. Network Working Group. 3443:. Network Working Group. 3219:. Network Working Group. 3038:. Network Working Group. 2992:. Network Working Group. 2237:The 1993 introduction of 2062:IPv6 packet fragmentation 1893:reported it to be 2% and 1800:can be migrated to IPv6. 1745:maximum transmission unit 1728:IPv6 transition mechanism 1542:Local Internet registries 1204:IPv6 packet fragmentation 1055:maximum transmission unit 874:reserved for special uses 80: 73: 5432:Internet layer protocols 5213:IPv6 in the Linux Kernel 5045:10.21307/ijanmc-2019-029 2177:Internet Stream Protocol 1887:Internet exchange points 1859:Chubu Telecommunications 1838:and other destinations. 1775:implementation, such as 1404:, which have the prefix 987:cryptographic algorithms 657:and provides end-to-end 5437:Network layer protocols 5348:IPv4 address exhaustion 4004:IEEE Internet Computing 3790:Horley, Edward (2013). 3725:Graziani, Rick (2012). 3414:Gont, F. (March 2016). 2316:Border Gateway Protocol 2262:Imperial College London 2247:IPv4 address exhaustion 2100:Working-group proposals 926:local Internet registry 839:. IPv6 specifies a new 790:local Internet registry 764:IPv4 address exhaustion 711:IPv4 address exhaustion 705:IPv4 address exhaustion 628:2001:db8::8a2e:370:7334 566:IPv4 address exhaustion 554:communications protocol 183:Internet protocol suite 4702:. Updated by RFC  4178:Obsoleted by RFC  3971:. Updated by RFC  3906:Obsoleted by RFC  3691:. Updated by RFC  3626:. Updated by RFC  3560:. Updated by RFC  3520:K. Nichols; S. Blake; 3399:Zack, E. (July 2013). 3018:. Updated by RFC  2234: 2109: 1940: 1932: 1820: 1544:are assigned at least 1522: 1397: 1365:and is abbreviated to 1349:2001:db8::ff00:42:8329 1236:Address representation 1225: 1133: 1090: 1036:User Datagram Protocol 901: 845:File Transfer Protocol 724: 643: 5097:Das, Kaushik (2008). 4684:Best Common Practice. 4621:Silvia Hagen (2014). 4472:Silvia Hagen (2014). 4328:Silvia Hagen (2014). 4277:Silvia Hagen (2014). 4230:Best Common Practice. 3957:Internet Standard 66. 3756:Coffeen, Tom (2014). 3366:Silvia Hagen (2014). 2794:"IPV4 Address Report" 2372:Cogent Communications 2228: 2107: 1938: 1930: 1818: 1771:on top of the common 1722:Transition mechanisms 1520: 1395: 1373:by using both rules. 1223: 1131: 1088: 1057:(MTU), which is 1280 983:Internet Key Exchange 899: 849:Network Time Protocol 718: 700:Motivation and origin 641: 602:transition mechanisms 2852:. 25 November 2019. 2606:. New York: Apress. 2602:Rosen, Rami (2014). 2281:2008 Summer Olympics 2018:64:ff9b::192.0.2.128 1946:dot-decimal notation 1069:Unlike mobile IPv4, 1023:end-to-end principle 1011:IPv4 header checksum 855:Larger address space 831:Comparison with IPv4 755:dot-decimal notation 5341:IPv4 to IPv6 topics 5159:InternetSociety.org 5086:on 4 February 2009. 4686:Obsoletes RFC  4458:Obsoletes RFC  4232:Obsoletes RFC  4120:. 8 February 2011. 4016:10.1109/4236.780961 3983:. Updates RFC  3959:Obsoletes RFC  3687:Obsoletes RFC  3614:. Updates RFC  3610:Obsoletes RFC  3552:Obsoletes RFC  3506:Obsoletes RFC  3164:on 7 September 2017 3014:Obsoletes RFC  2554:Obsoletes RFC 2460. 2507:Obsoletes RFC 1883. 2268:collaboration with 2266:high energy physics 2183:RFC standardization 2002:The address prefix 1916:local area networks 1849:operators, such as 1751:, and may increase 1592:either". Blocks of 773:(IANA) to the five 70: 4815:Proposed Standard. 4726:Kernel Interfaces 4534:on 12 January 2017 4456:Proposed Standard. 4150:(September 2001). 3904:Proposed Standard. 3862:Proposed Standard. 3608:Proposed Standard. 3550:Proposed Standard. 3504:Proposed Standard. 3463:Proposed Standard. 3133:Proposed Standard. 3058:Proposed Standard. 2451:on 29 January 2019 2368:Hurricane Electric 2277:Domain Name System 2235: 2122:IP Next Generation 2110: 1955:::ffff:192.0.2.128 1941: 1933: 1821: 1749:Path MTU Discovery 1650:representation of 1640:reverse resolution 1628:Domain Name System 1523: 1480:local area network 1470:, which relies on 1402:link-local address 1398: 1388:Link-local address 1226: 1200:Path MTU Discovery 1193:Hop-By-Hop Options 1134: 1132:IPv6 packet header 1096:autonomous systems 1091: 1075:triangular routing 1051:Path MTU Discovery 902: 725: 644: 125:December 1995 5409: 5408: 5362:Related protocols 5262:Internet Protocol 5068:, 2018, p. 3 4817:Updates RFC  4250:(Press release). 4037:. section 6.3.7. 3864:Updates RFC  3807:978-1-4302-6371-5 3773:978-1-4919-0326-1 3742:978-0-13-303347-2 3659:(February 2006). 3377:978-1-4493-3526-7 3190:. 8 August 2014. 2848:(Press release). 2488:(December 1998), 2312:Internet backbone 1981:Microsoft Windows 1863:Kabel Deutschland 1798:application layer 1794:routing protocols 1686:bit-string labels 1513:Global addressing 1466:(NDP, ND) in the 1323:Initial address: 1252:and informally a 1246:or more formally 1081:Extension headers 913:broadcast address 882:route aggregation 760:classless network 732:Internet Protocol 609:route aggregation 576:on 14 July 2017. 574:Internet Standard 550:Internet Protocol 539: 538: 190:Application layer 177: 176: 64: 63: 16:(Redirected from 5444: 5255: 5248: 5241: 5232: 5200: 5199: 5197: 5195: 5180: 5174: 5173: 5171: 5169: 5163:Internet Society 5156: 5148: 5137: 5136: 5128: 5119: 5118: 5116: 5114: 5109:on 1 August 2008 5105:. Archived from 5094: 5088: 5087: 5076: 5070: 5069: 5066:Internet Society 5056: 5050: 5049: 5047: 5023: 5017: 5016: 5014: 4998: 4992: 4991: 4986:. Archived from 4976: 4970: 4969: 4967: 4951: 4945: 4944: 4936: 4930: 4929: 4927: 4925: 4919: 4908: 4902: 4901: 4900: 4898: 4893:on 11 April 2013 4889:, archived from 4880: 4874: 4873: 4872: 4870: 4865: 4854: 4848: 4847: 4846: 4844: 4839: 4828: 4822: 4813: 4796: 4794:10.17487/RFC6052 4770: 4764: 4763: 4754: 4752:10.17487/RFC3493 4736: 4730: 4721: 4720: 4713: 4707: 4682: 4665: 4663:10.17487/RFC6890 4643: 4637: 4636: 4618: 4612: 4611: 4609: 4607: 4585: 4579: 4578: 4576: 4574: 4550: 4544: 4543: 4541: 4539: 4530:. Archived from 4520: 4514: 4513: 4511: 4509: 4494: 4488: 4487: 4469: 4463: 4454: 4445: 4443:10.17487/RFC4213 4427: 4421: 4420: 4418: 4416: 4401: 4395: 4394: 4392: 4390: 4380: 4370: 4368:10.17487/RFC6343 4350: 4344: 4343: 4325: 4319: 4318: 4316: 4314: 4299: 4293: 4292: 4274: 4268: 4267: 4265: 4263: 4243: 4237: 4228: 4211: 4209:10.17487/RFC6177 4189: 4183: 4174: 4165: 4163:10.17487/RFC3177 4140: 4134: 4133: 4131: 4129: 4110: 4104: 4103: 4097: 4086:10.17487/RFC4862 4069: 4063: 4062: 4056: 4046: 4044:10.17487/RFC4861 4026: 4020: 4019: 3999: 3988: 3955: 3946: 3944:10.17487/RFC3986 3931:(January 2005). 3917: 3911: 3902: 3893: 3891:10.17487/RFC5156 3875: 3869: 3860: 3843: 3841:10.17487/RFC5952 3821: 3812: 3811: 3787: 3778: 3777: 3753: 3747: 3746: 3722: 3716: 3683: 3674: 3672:10.17487/RFC4291 3652: 3639: 3606: 3597: 3595:10.17487/RFC3168 3579: 3573: 3548: 3539: 3537:10.17487/RFC2474 3517: 3511: 3502: 3493: 3491:10.17487/RFC2675 3471: 3465: 3461: 3452: 3450:10.17487/RFC3963 3434: 3428: 3427: 3411: 3405: 3404: 3396: 3390: 3389: 3363: 3357: 3356: 3347: 3345:10.17487/RFC8064 3329: 3323: 3322: 3316: 3305:10.17487/RFC2072 3288: 3282: 3281: 3275: 3264:10.17487/RFC2071 3247: 3241: 3237: 3228: 3226:10.17487/RFC2071 3210: 3204: 3203: 3201: 3199: 3188:Internet Society 3180: 3174: 3173: 3171: 3169: 3160:. Archived from 3150: 3144: 3131: 3114: 3112:10.17487/RFC8981 3092: 3086: 3085: 3083: 3081: 3066: 3060: 3056: 3047: 3045:10.17487/RFC2894 3029: 3023: 3010: 3001: 2999:10.17487/RFC4862 2983: 2974: 2960: 2954: 2940: 2934: 2920: 2914: 2900: 2894: 2893: 2891: 2875: 2866: 2865: 2863: 2861: 2842: 2836: 2835: 2833: 2831: 2808: 2802: 2801: 2789: 2783: 2782: 2780: 2778: 2756: 2750: 2749: 2747: 2745: 2729: 2723: 2722: 2720: 2718: 2695: 2689: 2688: 2679: 2677:10.17487/RFC1752 2657: 2646: 2645: 2632: 2626: 2625: 2599: 2586: 2585: 2583: 2581: 2570:Internet Society 2561: 2555: 2553: 2552: 2517: 2508: 2506: 2505: 2478: 2461: 2460: 2458: 2456: 2441: 2394: 2389: 2388: 2336:Deutsche Telekom 2028: 2027: 2020: 2019: 2008: 2007: 1973: 1972: 1965: 1964: 1957: 1956: 1912:Teredo tunneling 1851:Verizon Wireless 1805:operating system 1616: 1615: 1612: 1601: 1600: 1597: 1590: 1589: 1586: 1579: 1578: 1575: 1564: 1563: 1560: 1553: 1552: 1549: 1538: 1537: 1534: 1416: 1415: 1412: 1409: 1371: 1370: 1363: 1362: 1351: 1350: 1340: 1339: 1329: 1328: 1309: 1308: 1303:is converted to 1301: 1300: 1293: 1292: 1287:is converted to 1285: 1284: 1266: 1265: 1190: 1189: 1047:IP fragmentation 871: 869: 864:, approximately 818: 817: 783: 782: 595: 593: 531: 524: 517: 179: 135: 133: 128: 85: 71: 59: 56: 50: 38: 37: 30: 21: 5452: 5451: 5447: 5446: 5445: 5443: 5442: 5441: 5412: 5411: 5410: 5405: 5357: 5336: 5310:IPv6 deployment 5298: 5267: 5259: 5209: 5204: 5203: 5193: 5191: 5182: 5181: 5177: 5167: 5165: 5154: 5150: 5149: 5140: 5130: 5129: 5122: 5112: 5110: 5096: 5095: 5091: 5078: 5077: 5073: 5058: 5057: 5053: 5025: 5024: 5020: 5000: 4999: 4995: 4990:on 23 May 2014. 4978: 4977: 4973: 4953: 4952: 4948: 4938: 4937: 4933: 4923: 4921: 4917: 4910: 4909: 4905: 4896: 4894: 4882: 4881: 4877: 4868: 4866: 4863: 4856: 4855: 4851: 4842: 4840: 4837: 4830: 4829: 4825: 4772: 4771: 4767: 4738: 4737: 4733: 4716: 4715: 4714: 4710: 4674:. BCP 153. 4645: 4644: 4640: 4633: 4620: 4619: 4615: 4605: 4603: 4587: 4586: 4582: 4572: 4570: 4552: 4551: 4547: 4537: 4535: 4522: 4521: 4517: 4507: 4505: 4496: 4495: 4491: 4484: 4471: 4470: 4466: 4429: 4428: 4424: 4414: 4412: 4403: 4402: 4398: 4388: 4386: 4352: 4351: 4347: 4340: 4327: 4326: 4322: 4312: 4310: 4301: 4300: 4296: 4289: 4276: 4275: 4271: 4261: 4259: 4245: 4244: 4240: 4220:. BCP 157. 4191: 4190: 4186: 4142: 4141: 4137: 4127: 4125: 4112: 4111: 4107: 4071: 4070: 4066: 4028: 4027: 4023: 4001: 4000: 3991: 3919: 3918: 3914: 3877: 3876: 3872: 3823: 3822: 3815: 3808: 3789: 3788: 3781: 3774: 3766:. p. 170. 3755: 3754: 3750: 3743: 3724: 3723: 3719: 3685:Draft Standard. 3654: 3653: 3642: 3581: 3580: 3576: 3519: 3518: 3514: 3481:IPv6 Jumbograms 3473: 3472: 3468: 3436: 3435: 3431: 3413: 3412: 3408: 3398: 3397: 3393: 3378: 3365: 3364: 3360: 3331: 3330: 3326: 3290: 3289: 3285: 3249: 3248: 3244: 3212: 3211: 3207: 3197: 3195: 3182: 3181: 3177: 3167: 3165: 3152: 3151: 3147: 3094: 3093: 3089: 3079: 3077: 3068: 3067: 3063: 3031: 3030: 3026: 3012:Draft Standard. 2985: 2984: 2977: 2961: 2957: 2941: 2937: 2921: 2917: 2901: 2897: 2877: 2876: 2869: 2859: 2857: 2844: 2843: 2839: 2829: 2827: 2810: 2809: 2805: 2792:Huston, Geoff. 2791: 2790: 2786: 2776: 2774: 2758: 2757: 2753: 2743: 2741: 2731: 2730: 2726: 2716: 2714: 2697: 2696: 2692: 2659: 2658: 2649: 2634: 2633: 2629: 2614: 2601: 2600: 2589: 2579: 2577: 2563: 2562: 2558: 2519: 2518: 2511: 2480: 2479: 2464: 2454: 2452: 2443: 2442: 2438: 2433: 2392:Internet portal 2390: 2383: 2380: 2364: 2245:(NAT), delayed 2223: 2221:IPv6 deployment 2217: 2185: 2142:Brian Carpenter 2102: 2097: 2064: 2048:shadow networks 2044: 2042:Shadow networks 2036: 2025: 2024: 2017: 2016: 2005: 2004: 1970: 1969: 1962: 1961: 1954: 1953: 1925: 1904: 1813: 1761: 1730: 1724: 1624: 1613: 1610: 1609: 1598: 1595: 1594: 1587: 1584: 1583: 1576: 1573: 1572: 1561: 1558: 1557: 1550: 1547: 1546: 1540:address block. 1535: 1532: 1531: 1515: 1448: 1413: 1410: 1407: 1406: 1390: 1368: 1367: 1360: 1359: 1348: 1347: 1337: 1336: 1326: 1325: 1306: 1305: 1298: 1297: 1290: 1289: 1282: 1281: 1263: 1262: 1238: 1218: 1212: 1187: 1185: 1126: 1120: 1104: 1083: 1067: 1040:transport layer 995: 976: 941: 935: 894: 867: 865: 857: 837:network packets 833: 815: 814: 780: 779: 713: 707: 702: 655:internetworking 652:packet-switched 636: 591: 589: 535: 355:Transport layer 131: 129: 126: 105:Internetworking 88: 60: 54: 51: 48: 39: 35: 28: 23: 22: 15: 12: 11: 5: 5450: 5448: 5440: 5439: 5434: 5429: 5424: 5414: 5413: 5407: 5406: 5404: 5403: 5398: 5397: 5396: 5391: 5386: 5381: 5371: 5365: 5363: 5359: 5358: 5356: 5355: 5350: 5344: 5342: 5338: 5337: 5335: 5334: 5329: 5324: 5319: 5318: 5317: 5306: 5304: 5300: 5299: 5297: 5296: 5291: 5286: 5281: 5275: 5273: 5269: 5268: 5260: 5258: 5257: 5250: 5243: 5235: 5229: 5228: 5222: 5216: 5208: 5207:External links 5205: 5202: 5201: 5175: 5138: 5120: 5089: 5071: 5051: 5018: 4993: 4971: 4946: 4931: 4903: 4875: 4849: 4823: 4765: 4731: 4708: 4638: 4631: 4613: 4580: 4545: 4515: 4489: 4482: 4464: 4422: 4396: 4345: 4338: 4320: 4294: 4287: 4269: 4238: 4184: 4135: 4105: 4064: 4021: 3989: 3947:. STD 66. 3921:T. Berners-Lee 3912: 3870: 3813: 3806: 3800:. p. 17. 3779: 3772: 3764:O'Reilly Media 3748: 3741: 3735:. p. 55. 3717: 3640: 3574: 3512: 3466: 3429: 3406: 3391: 3376: 3358: 3324: 3283: 3242: 3239:Informational. 3205: 3175: 3145: 3087: 3061: 3024: 2975: 2955: 2935: 2915: 2895: 2867: 2837: 2816:my.afrinic.net 2803: 2784: 2751: 2724: 2690: 2647: 2627: 2612: 2587: 2556: 2509: 2462: 2435: 2434: 2432: 2429: 2428: 2427: 2422: 2417: 2412: 2407: 2402: 2396: 2395: 2379: 2376: 2363: 2362:Peering issues 2360: 2258:campus network 2219:Main article: 2216: 2213: 2184: 2181: 2138:Steve Bellovin 2126:Allison Mankin 2101: 2098: 2096: 2093: 2063: 2060: 2043: 2040: 2035: 2032: 1924: 1921: 1903: 1900: 1847:mobile network 1812: 1809: 1789:Happy Eyeballs 1787:has published 1773:physical layer 1769:network device 1760: 1757: 1726:Main article: 1723: 1720: 1623: 1620: 1514: 1511: 1510: 1509: 1508: 1507: 1504: 1496: 1447: 1444: 1389: 1386: 1355: 1354: 1343: 1332: 1317: 1316: 1312: 1237: 1234: 1229:IPv6 addresses 1214:Main article: 1211: 1208: 1122:Main article: 1119: 1116: 1103: 1100: 1082: 1079: 1066: 1063: 1034:(TCP) and the 994: 991: 975: 972: 934: 931: 893: 890: 856: 853: 832: 829: 804:(LACNIC), and 751:World Wide Web 709:Main article: 706: 703: 701: 698: 648:Internet Layer 635: 632: 613:routing tables 537: 536: 534: 533: 526: 519: 511: 508: 507: 506: 505: 498: 493: 488: 483: 475: 474: 468: 467: 466: 465: 458: 453: 448: 443: 438: 428: 427: 426: 421: 408: 407: 405:Internet layer 401: 400: 399: 398: 391: 386: 381: 376: 371: 366: 358: 357: 351: 350: 349: 348: 341: 336: 331: 326: 321: 316: 311: 306: 301: 296: 291: 286: 281: 276: 271: 266: 261: 256: 251: 246: 241: 236: 231: 221: 216: 211: 201: 193: 192: 186: 185: 175: 174: 165: 159: 158: 153: 147: 146: 141: 137: 136: 123: 119: 118: 113: 109: 108: 102: 98: 97: 94: 90: 89: 86: 78: 77: 75:Protocol stack 62: 61: 42: 40: 33: 26: 24: 14: 13: 10: 9: 6: 4: 3: 2: 5449: 5438: 5435: 5433: 5430: 5428: 5425: 5423: 5420: 5419: 5417: 5402: 5399: 5395: 5392: 5390: 5387: 5385: 5382: 5380: 5377: 5376: 5375: 5372: 5370: 5367: 5366: 5364: 5360: 5354: 5351: 5349: 5346: 5345: 5343: 5339: 5333: 5330: 5328: 5325: 5323: 5320: 5316: 5313: 5312: 5311: 5308: 5307: 5305: 5301: 5295: 5292: 5290: 5287: 5285: 5282: 5280: 5277: 5276: 5274: 5270: 5266: 5263: 5256: 5251: 5249: 5244: 5242: 5237: 5236: 5233: 5226: 5223: 5220: 5217: 5215:by Rami Rosen 5214: 5211: 5210: 5206: 5189: 5185: 5179: 5176: 5164: 5160: 5153: 5147: 5145: 5143: 5139: 5134: 5127: 5125: 5121: 5108: 5104: 5100: 5093: 5090: 5085: 5081: 5075: 5072: 5067: 5063: 5062: 5055: 5052: 5046: 5041: 5037: 5033: 5029: 5022: 5019: 5013: 5008: 5004: 4997: 4994: 4989: 4985: 4981: 4975: 4972: 4966: 4961: 4957: 4950: 4947: 4942: 4935: 4932: 4916: 4915: 4907: 4904: 4892: 4888: 4887: 4879: 4876: 4862: 4861: 4853: 4850: 4836: 4835: 4827: 4824: 4820: 4816: 4811: 4808: 4804: 4800: 4795: 4790: 4786: 4782: 4781: 4776: 4769: 4766: 4761: 4758: 4753: 4748: 4744: 4743: 4735: 4732: 4729: 4725: 4722: –  4719: 4712: 4709: 4705: 4701: 4697: 4693: 4689: 4685: 4680: 4677: 4673: 4669: 4664: 4659: 4655: 4651: 4650: 4642: 4639: 4634: 4632:9781449335267 4628: 4624: 4617: 4614: 4601: 4597: 4596: 4591: 4584: 4581: 4568: 4564: 4560: 4556: 4549: 4546: 4533: 4529: 4525: 4519: 4516: 4503: 4499: 4493: 4490: 4485: 4483:9781449335267 4479: 4475: 4468: 4465: 4461: 4457: 4452: 4449: 4444: 4439: 4435: 4434: 4426: 4423: 4410: 4406: 4400: 4397: 4384: 4379: 4374: 4369: 4364: 4360: 4356: 4349: 4346: 4341: 4339:9781449335267 4335: 4331: 4324: 4321: 4308: 4305:. Sixxs.net. 4304: 4298: 4295: 4290: 4288:9781449335267 4284: 4280: 4273: 4270: 4257: 4253: 4249: 4242: 4239: 4235: 4231: 4226: 4223: 4219: 4215: 4210: 4205: 4201: 4197: 4196: 4188: 4185: 4181: 4177: 4172: 4169: 4164: 4159: 4155: 4154: 4149: 4145: 4139: 4136: 4123: 4119: 4115: 4109: 4106: 4101: 4096: 4091: 4087: 4083: 4079: 4075: 4068: 4065: 4060: 4055: 4050: 4045: 4040: 4036: 4032: 4025: 4022: 4017: 4013: 4009: 4005: 3998: 3996: 3994: 3990: 3986: 3982: 3978: 3974: 3970: 3966: 3962: 3958: 3953: 3950: 3945: 3940: 3936: 3935: 3930: 3926: 3922: 3916: 3913: 3909: 3905: 3900: 3897: 3892: 3887: 3883: 3882: 3874: 3871: 3867: 3863: 3858: 3855: 3851: 3847: 3842: 3837: 3833: 3829: 3828: 3820: 3818: 3814: 3809: 3803: 3799: 3795: 3794: 3786: 3784: 3780: 3775: 3769: 3765: 3761: 3760: 3752: 3749: 3744: 3738: 3734: 3730: 3729: 3721: 3718: 3714: 3710: 3706: 3702: 3698: 3694: 3690: 3686: 3681: 3678: 3673: 3668: 3664: 3663: 3658: 3651: 3649: 3647: 3645: 3641: 3637: 3633: 3629: 3625: 3621: 3617: 3613: 3609: 3604: 3601: 3596: 3591: 3587: 3586: 3578: 3575: 3571: 3567: 3563: 3559: 3555: 3551: 3546: 3543: 3538: 3533: 3529: 3528: 3523: 3516: 3513: 3509: 3505: 3500: 3497: 3492: 3487: 3483: 3482: 3477: 3470: 3467: 3464: 3459: 3456: 3451: 3446: 3442: 3441: 3433: 3430: 3425: 3421: 3417: 3410: 3407: 3402: 3395: 3392: 3387: 3383: 3379: 3373: 3369: 3362: 3359: 3354: 3351: 3346: 3341: 3337: 3336: 3328: 3325: 3320: 3315: 3310: 3306: 3302: 3298: 3294: 3287: 3284: 3279: 3274: 3269: 3265: 3261: 3257: 3253: 3246: 3243: 3240: 3235: 3232: 3227: 3222: 3218: 3217: 3209: 3206: 3193: 3189: 3185: 3179: 3176: 3163: 3159: 3155: 3149: 3146: 3142: 3138: 3134: 3129: 3126: 3122: 3118: 3113: 3108: 3104: 3100: 3099: 3091: 3088: 3076: 3072: 3065: 3062: 3059: 3054: 3051: 3046: 3041: 3037: 3036: 3028: 3025: 3021: 3017: 3013: 3008: 3005: 3000: 2995: 2991: 2990: 2982: 2980: 2976: 2972: 2968: 2964: 2959: 2956: 2952: 2948: 2944: 2939: 2936: 2932: 2928: 2924: 2919: 2916: 2912: 2908: 2904: 2899: 2896: 2890: 2885: 2881: 2874: 2872: 2868: 2855: 2851: 2847: 2841: 2838: 2825: 2821: 2817: 2813: 2807: 2804: 2799: 2795: 2788: 2785: 2772: 2768: 2767: 2762: 2755: 2752: 2739: 2735: 2728: 2725: 2712: 2708: 2704: 2700: 2694: 2691: 2686: 2683: 2678: 2673: 2669: 2665: 2664: 2656: 2654: 2652: 2648: 2643: 2639: 2638: 2631: 2628: 2623: 2619: 2615: 2613:9781430261971 2609: 2605: 2598: 2596: 2594: 2592: 2588: 2575: 2571: 2567: 2560: 2557: 2551: 2546: 2542: 2538: 2534: 2530: 2526: 2522: 2516: 2514: 2510: 2504: 2499: 2495: 2491: 2487: 2483: 2477: 2475: 2473: 2471: 2469: 2467: 2463: 2450: 2446: 2440: 2437: 2430: 2426: 2423: 2421: 2418: 2416: 2413: 2411: 2408: 2406: 2403: 2401: 2398: 2397: 2393: 2387: 2382: 2377: 2375: 2373: 2369: 2361: 2359: 2357: 2353: 2349: 2345: 2341: 2337: 2333: 2329: 2325: 2321: 2317: 2313: 2308: 2306: 2302: 2298: 2297:voice over IP 2294: 2290: 2284: 2282: 2278: 2273: 2271: 2267: 2263: 2259: 2255: 2254:Virginia Tech 2250: 2248: 2244: 2240: 2232: 2227: 2222: 2214: 2212: 2210: 2206: 2202: 2198: 2194: 2190: 2182: 2180: 2178: 2174: 2170: 2166: 2161: 2159: 2155: 2154:Steve Deering 2151: 2147: 2143: 2139: 2136:(Microsoft), 2135: 2131: 2130:Scott Bradner 2127: 2123: 2119: 2115: 2106: 2099: 2094: 2092: 2090: 2086: 2082: 2078: 2073: 2069: 2061: 2059: 2057: 2053: 2049: 2041: 2039: 2033: 2031: 2029: 2021: 2013: 2009: 2000: 1998: 1994: 1990: 1986: 1982: 1976: 1974: 1971:::192.0.2.128 1966: 1958: 1949: 1947: 1937: 1929: 1922: 1920: 1917: 1913: 1909: 1901: 1899: 1896: 1892: 1888: 1882: 1880: 1876: 1872: 1868: 1864: 1860: 1856: 1855:StarHub Cable 1852: 1848: 1844: 1839: 1837: 1833: 1829: 1825: 1817: 1810: 1808: 1806: 1801: 1799: 1795: 1790: 1786: 1780: 1778: 1774: 1770: 1766: 1758: 1756: 1754: 1750: 1746: 1742: 1739:According to 1737: 1735: 1729: 1721: 1719: 1717: 1713: 1709: 1705: 1701: 1697: 1693: 1692: 1687: 1683: 1678: 1676: 1672: 1668: 1663: 1661: 1657: 1653: 1649: 1645: 1641: 1637: 1633: 1629: 1621: 1619: 1617: 1606: 1602: 1591: 1580: 1569: 1565: 1554: 1543: 1539: 1527: 1519: 1512: 1505: 1501: 1500: 1497: 1494: 1493: 1492: 1489: 1483: 1481: 1477: 1473: 1469: 1465: 1461: 1457: 1453: 1452:MAC addresses 1445: 1443: 1441: 1437: 1433: 1429: 1423: 1421: 1417: 1403: 1394: 1387: 1385: 1381: 1379: 1374: 1372: 1364: 1352: 1344: 1341: 1333: 1330: 1322: 1321: 1320: 1313: 1310: 1302: 1294: 1286: 1278: 1277:leading zeros 1274: 1273: 1272: 1269: 1267: 1259: 1255: 1251: 1250: 1245: 1244: 1235: 1233: 1230: 1222: 1217: 1209: 1207: 1205: 1201: 1196: 1194: 1182: 1180: 1175: 1173: 1169: 1164: 1162: 1157: 1153: 1148: 1145: 1143: 1139: 1130: 1125: 1117: 1115: 1113: 1109: 1101: 1099: 1097: 1087: 1080: 1078: 1076: 1072: 1064: 1062: 1060: 1056: 1052: 1048: 1043: 1041: 1038:(UDP) on the 1037: 1033: 1029: 1024: 1020: 1016: 1012: 1007: 1005: 1001: 992: 990: 988: 984: 980: 973: 971: 968: 964: 960: 958: 954: 949: 947: 940: 932: 930: 927: 921: 918: 914: 910: 906: 898: 891: 889: 887: 883: 877: 875: 863: 854: 852: 850: 846: 842: 841:packet format 838: 830: 828: 825: 823: 819: 811: 807: 803: 799: 796:(APNIC), the 795: 791: 787: 784: 776: 772: 767: 765: 761: 756: 752: 748: 744: 741: 737: 733: 729: 722: 717: 712: 704: 699: 697: 695: 691: 687: 683: 679: 674: 672: 666: 664: 660: 656: 653: 650:protocol for 649: 640: 634:Main features 633: 631: 629: 625: 621: 616: 614: 610: 605: 603: 599: 598:interoperable 587: 582: 577: 575: 571: 567: 563: 559: 555: 551: 547: 543: 532: 527: 525: 520: 518: 513: 512: 510: 509: 504: 503: 499: 497: 494: 492: 489: 487: 484: 482: 479: 478: 477: 476: 473: 469: 464: 463: 459: 457: 454: 452: 449: 447: 444: 442: 439: 436: 432: 429: 425: 422: 420: 417: 416: 415: 412: 411: 410: 409: 406: 402: 397: 396: 392: 390: 387: 385: 382: 380: 377: 375: 372: 370: 367: 365: 362: 361: 360: 359: 356: 352: 347: 346: 342: 340: 337: 335: 332: 330: 327: 325: 322: 320: 317: 315: 312: 310: 307: 305: 302: 300: 297: 295: 292: 290: 287: 285: 282: 280: 277: 275: 272: 270: 267: 265: 262: 260: 257: 255: 252: 250: 247: 245: 242: 240: 237: 235: 232: 229: 225: 222: 220: 217: 215: 212: 209: 205: 202: 200: 197: 196: 195: 194: 191: 187: 184: 180: 173: 169: 166: 164: 160: 157: 156:Network layer 154: 152: 148: 145: 142: 138: 124: 120: 117: 114: 110: 106: 103: 99: 95: 91: 84: 79: 76: 72: 66: 58: 46: 41: 32: 31: 19: 5284:IPv6 address 5278: 5264: 5194:10 September 5192:. Retrieved 5187: 5178: 5166:. Retrieved 5158: 5111:. Retrieved 5107:the original 5102: 5092: 5084:the original 5074: 5060: 5054: 5035: 5031: 5021: 4996: 4988:the original 4983: 4974: 4949: 4934: 4922:. Retrieved 4913: 4906: 4895:, retrieved 4891:the original 4885: 4878: 4867:, retrieved 4859: 4852: 4841:, retrieved 4833: 4826: 4814: 4779: 4768: 4741: 4734: 4711: 4683: 4648: 4641: 4622: 4616: 4604:. Retrieved 4593: 4583: 4571:. Retrieved 4558: 4548: 4536:. Retrieved 4532:the original 4527: 4518: 4506:. Retrieved 4501: 4492: 4473: 4467: 4455: 4432: 4425: 4413:. Retrieved 4399: 4387:. Retrieved 4348: 4329: 4323: 4311:. Retrieved 4297: 4278: 4272: 4260:. Retrieved 4241: 4229: 4194: 4187: 4175: 4152: 4138: 4126:. Retrieved 4108: 4067: 4024: 4010:(4): 54–62. 4007: 4003: 3956: 3933: 3915: 3903: 3880: 3873: 3861: 3826: 3792: 3758: 3751: 3727: 3720: 3684: 3661: 3607: 3584: 3577: 3549: 3526: 3515: 3503: 3480: 3469: 3462: 3439: 3432: 3409: 3394: 3367: 3361: 3334: 3327: 3286: 3245: 3238: 3215: 3208: 3196:. Retrieved 3178: 3166:. Retrieved 3162:the original 3148: 3132: 3097: 3090: 3078:. Retrieved 3075:www.ietf.org 3074: 3064: 3057: 3034: 3027: 3011: 2988: 2970: 2958: 2950: 2938: 2930: 2918: 2910: 2898: 2858:. Retrieved 2840: 2828:. Retrieved 2815: 2806: 2787: 2777:15 September 2775:. Retrieved 2764: 2754: 2742:. Retrieved 2727: 2715:. Retrieved 2702: 2693: 2662: 2636: 2630: 2603: 2578:. Retrieved 2559: 2528: 2489: 2453:. Retrieved 2449:the original 2439: 2365: 2309: 2304: 2285: 2274: 2251: 2236: 2186: 2162: 2121: 2111: 2065: 2047: 2045: 2037: 2023: 2015: 2006:64:ff9b::/96 2003: 2001: 1989:Linux kernel 1977: 1968: 1960: 1952: 1950: 1942: 1905: 1883: 1840: 1822: 1802: 1781: 1762: 1741:Silvia Hagen 1738: 1731: 1689: 1685: 1681: 1679: 1664: 1625: 1608: 1593: 1582: 1571: 1556: 1545: 1530: 1528: 1524: 1484: 1449: 1424: 1419: 1405: 1399: 1382: 1375: 1366: 1358: 1356: 1346: 1335: 1324: 1318: 1304: 1296: 1295:. The group 1288: 1280: 1275:One or more 1270: 1261: 1257: 1253: 1247: 1241: 1239: 1227: 1216:IPv6 address 1197: 1192: 1183: 1176: 1170:and a 2-bit 1165: 1155: 1149: 1146: 1135: 1118:IPv6 packets 1105: 1092: 1068: 1044: 1015:time to live 1008: 996: 977: 969: 965: 961: 953:IP addresses 950: 942: 922: 916: 912: 909:IP broadcast 905:Multicasting 903: 892:Multicasting 878: 858: 834: 826: 813: 800:(RIPE NCC), 778: 768: 726: 721:IPv4 address 675: 667: 645: 627: 623: 617: 606: 578: 545: 541: 540: 501: 461: 423: 394: 344: 122:Introduction 112:Developer(s) 93:Abbreviation 65: 52: 44: 5294:Mobile IPv6 5289:IPv6 packet 5190:. BGP.tools 5135:. CircleID. 4920:. p. 5 4502:Juniper.net 4415:27 November 3929:L. Masinter 3925:R. Fielding 3733:Cisco Press 3655:R. Hinden; 3474:D. Borman; 2860:26 November 2830:28 November 2580:25 February 2324:Middle East 2158:Lixia Zhang 2152:(NEARNET), 2150:John Curran 2026:192.0.2.128 1963:192.0.2.128 1836:web servers 1648:hexadecimal 1258:quad-nibble 1249:hexadectets 1181:framework. 1156:Next Header 1124:IPv6 packet 1071:mobile IPv6 862:undecillion 738:(DARPA), a 646:IPv6 is an 620:hexadecimal 87:IPv6 header 5416:Categories 5303:Deployment 5168:19 January 5038:(1): 1–9. 4775:C. Huitema 4508:19 January 4313:20 January 3657:S. Deering 3476:S. Deering 3198:17 January 3135:Obsoletes 2717:19 January 2707:Montevideo 2521:S. Deering 2482:S. Deering 2455:26 October 2431:References 2215:Deployment 2146:Dave Clark 2052:Windows XP 1879:Telefónica 1468:link layer 1210:Addressing 1108:jumbograms 1102:Jumbograms 1028:link layer 1004:word sizes 937:See also: 847:(FTP) and 581:IP address 552:(IP), the 472:Link layer 18:Dual-stack 5265:version 6 5221:by Google 5188:BGP.tools 5113:15 August 4869:30 August 4843:30 August 4803:2070-1721 4672:2070-1721 4559:APNIC.net 4389:20 August 4218:2070-1721 4176:Obsolete. 3850:2070-1721 3386:881832733 3158:Microsoft 3121:2070-1721 2736:. eWeek. 2622:869747983 2541:2070-1721 2525:R. Hinden 2486:R. Hinden 2328:broadband 2160:(Xerox). 2134:J. Allard 2056:Windows 7 1948:of IPv4. 1902:Tunneling 1895:SeattleIX 1875:Internode 1632:hostnames 1618:network. 1503:lifetime. 1476:multicast 1456:broadcast 1019:hop limit 917:all nodes 694:multicast 584:uses 128- 151:OSI layer 55:July 2017 5103:IPv6.com 4787:(IETF). 4773:C. Bao; 4718:inet6(4) 4606:13 March 4600:Archived 4567:Archived 4538:13 March 4409:Archived 4383:Archived 4307:Archived 4262:15 April 4256:Archived 4202:(IETF). 4128:27 March 4122:Archived 4118:RIPE NCC 4100:Archived 4059:Archived 3522:F. Baker 3424:Archived 3319:Archived 3278:Archived 3192:Archived 3168:15 April 3080:13 March 2854:Archived 2850:RIPE NCC 2824:Archived 2798:Archived 2771:Archived 2766:BBC News 2738:Archived 2711:Archived 2642:Archived 2574:Archived 2535:(IETF), 2496:(IETF), 2378:See also 2356:AT&T 2144:(CERN), 2114:Internet 2034:Security 1889:(IXPs). 1871:T-Mobile 1867:Swisscom 1777:Ethernet 1765:computer 1644:ip6.arpa 1065:Mobility 1017:(called 749:and the 747:Internet 665:(IPv4). 659:datagram 626:becomes 558:Internet 140:Based on 107:protocol 5272:General 4984:The Sun 4924:2 March 4897:2 March 4724:OpenBSD 4573:13 June 4528:NRO.net 4252:Comcast 2820:AFRINIC 2744:23 June 2703:NRO.net 2352:Xfinity 2348:Telenet 2301:Verizon 2148:(MIT), 1997:FreeBSD 1985:OpenBSD 1753:latency 1630:(DNS), 1626:In the 1605:Comcast 1254:quibble 1243:hextets 1174:field. 1161:payload 1142:payload 1073:avoids 1000:routers 690:anycast 686:unicast 502:more... 486:Tunnels 462:more... 395:more... 345:more... 334:TLS/SSL 289:ONC/RPC 226: ( 132:1995-12 130: ( 101:Purpose 45:updated 5374:ICMPv6 5369:DHCPv6 5009:  4962:  4801:  4728:Manual 4670:  4629:  4524:"IPv6" 4480:  4375:  4336:  4285:  4216:  4092:  4051:  3848:  3804:  3798:Apress 3770:  3739:  3384:  3374:  3311:  3270:  3139:  3119:  2965:  2945:  2925:  2905:  2886:  2620:  2610:  2547:  2539:  2500:  2445:"FAQs" 2420:OCCAID 2340:XS4ALL 2332:Sky UK 2322:, the 2320:Africa 2207:  2199:  2191:  2171:  2116:, the 2087:  2079:  2070:  1995:, and 1993:NetBSD 1891:AMS-IX 1714:  1706:  1698:  1673:  1658:  1652:nibble 1488:router 1472:ICMPv6 1438:  1430:  1408:fe80:: 1315:zeros. 1152:octets 1138:header 1059:octets 743:agency 680:  671:subnet 329:Telnet 228:HTTP/3 163:RFC(s) 5155:(PDF) 4918:(PDF) 4864:(PDF) 4838:(PDF) 4595:ZDNET 4563:APNIC 2812:"FAQ" 2233:(RIR) 2012:NAT64 1828:NAT64 1691:DNAME 1179:IPsec 974:IPsec 456:IPsec 234:HTTPS 5422:IPv6 5279:IPv6 5196:2024 5170:2022 5115:2008 5012:1752 4965:1550 4926:2013 4899:2013 4871:2019 4845:2019 4819:4291 4810:6052 4799:ISSN 4760:3493 4704:8190 4700:5736 4698:and 4696:5735 4692:5156 4688:4773 4679:6890 4668:ISSN 4654:IETF 4627:ISBN 4608:2017 4575:2017 4540:2017 4510:2022 4478:ISBN 4460:2893 4451:4213 4417:2012 4391:2012 4378:6343 4359:IETF 4334:ISBN 4315:2012 4283:ISBN 4264:2019 4234:3177 4225:6177 4214:ISSN 4180:6177 4171:3177 4148:IESG 4130:2011 4095:4862 4078:IETF 4054:4861 4035:IETF 3985:1738 3981:8820 3979:and 3977:7320 3973:6874 3969:1808 3967:and 3965:2396 3961:2732 3952:3986 3908:6890 3899:5156 3866:4291 3857:5952 3846:ISSN 3802:ISBN 3768:ISBN 3737:ISBN 3713:8064 3711:and 3709:7371 3705:7346 3701:7136 3697:6052 3693:5952 3689:3513 3680:4291 3636:8311 3634:and 3632:6040 3628:4301 3622:and 3620:2401 3616:2474 3612:2481 3603:3168 3570:8436 3568:and 3566:3260 3562:3168 3558:1349 3556:and 3554:1455 3545:2474 3508:2147 3499:2675 3458:3963 3420:IETF 3382:OCLC 3372:ISBN 3353:8064 3314:2072 3297:IETF 3273:2071 3256:IETF 3234:2071 3200:2020 3170:2019 3141:4941 3128:8981 3117:ISSN 3082:2017 3053:2894 3020:7527 3016:2462 3007:4862 2967:3306 2947:2908 2927:3956 2907:1112 2889:1726 2862:2019 2832:2018 2779:2012 2746:2012 2719:2022 2685:1752 2668:IETF 2618:OCLC 2608:ISBN 2582:2018 2550:8200 2537:ISSN 2503:2460 2457:2015 2370:and 2346:and 2275:The 2270:CERN 2209:8200 2201:2460 2193:1883 2173:1883 2165:RFCs 2128:and 2089:6980 2081:7113 2072:7112 1908:6to4 1877:and 1830:, a 1785:IETF 1716:3363 1708:3364 1700:2874 1688:and 1675:6724 1660:3596 1636:AAAA 1568:IETF 1474:and 1440:7217 1432:8064 1299:0000 1283:0042 1140:and 692:and 682:4291 570:IPv4 546:IPv6 451:IGMP 431:ICMP 389:QUIC 384:RSVP 379:SCTP 374:DCCP 339:XMPP 319:SNMP 314:SMTP 299:RTSP 274:OSPF 264:NNTP 259:MQTT 254:MGCP 249:LDAP 239:IMAP 224:HTTP 204:DHCP 172:8200 168:2460 144:IPv4 96:IPv6 5315:6rd 5040:doi 5007:RFC 4960:RFC 4807:RFC 4789:doi 4757:RFC 4747:doi 4676:RFC 4658:doi 4448:RFC 4438:doi 4373:RFC 4363:doi 4222:RFC 4204:doi 4168:RFC 4158:doi 4144:IAB 4090:RFC 4082:doi 4049:RFC 4039:doi 4012:doi 3949:RFC 3939:doi 3896:RFC 3886:doi 3854:RFC 3836:doi 3677:RFC 3667:doi 3624:793 3600:RFC 3590:doi 3542:RFC 3532:doi 3496:RFC 3486:doi 3455:RFC 3445:doi 3350:RFC 3340:doi 3309:RFC 3301:doi 3268:RFC 3260:doi 3231:RFC 3221:doi 3137:RFC 3125:RFC 3107:doi 3050:RFC 3040:doi 3004:RFC 2994:doi 2963:RFC 2943:RFC 2923:RFC 2903:RFC 2884:RFC 2682:RFC 2672:doi 2545:RFC 2498:RFC 2344:VOO 2291:to 2205:RFC 2197:RFC 2189:RFC 2179:.) 2169:RFC 2085:RFC 2077:RFC 2068:RFC 1767:or 1718:). 1712:RFC 1704:RFC 1696:RFC 1671:RFC 1656:RFC 1436:RFC 1428:RFC 1369:::1 1256:or 1112:MTU 866:3.4 822:LIR 816:/22 678:RFC 590:3.4 586:bit 496:MAC 491:PPP 481:ARP 446:ECN 441:NDP 369:UDP 364:TCP 324:SSH 309:SIP 304:RIP 294:RTP 284:PTP 279:POP 269:NTP 244:IRC 219:FTP 214:DNS 199:BGP 5418:: 5186:. 5161:. 5157:. 5141:^ 5123:^ 5101:. 5064:, 5034:. 5030:. 5005:. 4982:. 4958:. 4805:. 4797:. 4783:. 4755:. 4694:, 4690:, 4666:. 4656:. 4652:. 4598:. 4592:. 4565:. 4561:. 4557:. 4526:. 4500:. 4446:. 4381:. 4371:. 4361:. 4357:. 4254:. 4212:. 4198:. 4166:. 4146:; 4116:. 4098:. 4088:. 4080:. 4076:. 4057:. 4047:. 4033:. 4006:. 3992:^ 3975:, 3963:, 3927:; 3923:; 3894:. 3852:. 3844:. 3834:. 3830:. 3816:^ 3796:. 3782:^ 3762:. 3731:. 3707:, 3703:, 3699:, 3695:, 3675:. 3643:^ 3630:, 3618:, 3598:. 3564:, 3540:. 3494:. 3453:. 3422:. 3418:. 3380:. 3348:. 3338:. 3317:. 3307:. 3299:. 3295:. 3276:. 3266:. 3258:. 3254:. 3229:. 3186:. 3156:. 3123:. 3115:. 3105:. 3101:. 3073:. 3048:. 3002:. 2978:^ 2969:, 2949:, 2929:, 2909:, 2882:. 2870:^ 2822:. 2818:. 2814:. 2796:. 2769:. 2763:. 2705:. 2701:. 2680:. 2670:. 2666:. 2650:^ 2616:. 2590:^ 2572:. 2568:. 2543:, 2531:, 2523:; 2512:^ 2492:, 2484:; 2465:^ 2293:4G 2289:3G 2283:. 2083:, 2030:. 1991:, 1910:. 1881:. 1873:, 1869:, 1865:, 1861:, 1857:, 1853:, 1755:. 1682:A6 1677:. 1662:. 1614:64 1599:56 1588:48 1577:64 1562:48 1551:32 1536:64 1442:. 1422:. 1414:10 1380:. 1291:42 1268:. 1206:. 1188:kB 1186:64 1163:. 1144:. 1098:. 1061:. 876:. 870:10 781:/8 696:. 688:, 630:. 594:10 435:v6 424:v6 419:v4 414:IP 208:v6 170:, 5254:e 5247:t 5240:v 5198:. 5172:. 5117:. 5048:. 5042:: 5036:4 5015:. 4968:. 4943:. 4928:. 4812:. 4791:: 4762:. 4749:: 4681:. 4660:: 4635:. 4610:. 4577:. 4542:. 4512:. 4486:. 4453:. 4440:: 4419:. 4393:. 4365:: 4342:. 4317:. 4291:. 4266:. 4227:. 4206:: 4173:. 4160:: 4132:. 4084:: 4041:: 4018:. 4014:: 4008:3 3954:. 3941:: 3901:. 3888:: 3859:. 3838:: 3810:. 3776:. 3745:. 3682:. 3669:: 3605:. 3592:: 3547:. 3534:: 3501:. 3488:: 3460:. 3447:: 3403:. 3388:. 3355:. 3342:: 3303:: 3262:: 3236:. 3223:: 3202:. 3172:. 3130:. 3109:: 3084:. 3055:. 3042:: 3009:. 2996:: 2892:. 2864:. 2834:. 2781:. 2748:. 2721:. 2687:. 2674:: 2624:. 2584:. 2459:. 1611:/ 1596:/ 1585:/ 1574:/ 1559:/ 1548:/ 1533:/ 1411:/ 1353:. 1342:. 1331:. 1311:. 1307:0 868:× 592:× 544:( 530:e 523:t 516:v 437:) 433:( 230:) 210:) 206:( 134:) 57:) 53:( 47:. 20:)

Index

Dual-stack
Protocol stack
Diagram of an IPV6 header
Internetworking
Internet Engineering Task Force
IPv4
OSI layer
Network layer
RFC(s)
2460
8200
Internet protocol suite
Application layer
BGP
DHCP
v6
DNS
FTP
HTTP
HTTP/3
HTTPS
IMAP
IRC
LDAP
MGCP
MQTT
NNTP
NTP
OSPF
POP

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.