Knowledge

Dual-phase steel

Source đź“ť

31: 268:). Therefore, the overall behaviour of DP steels is governed by the volume fraction, morphology (size, aspect ratio, interconnectivity, etc.), the grain size and the carbon content. For achieving these microstructures, DP steels typically contain 0.06–0.15 wt.% C and 1.5-3% Mn (the former strengthens the martensite, and the latter causes solid solution strengthening in ferrite, while both stabilize the austenite), Cr & Mo (to retard pearlite or bainite formation), Si (to promote ferrite transformation), V and Nb (for precipitation strengthening and microstructure refinement). The desire to produce high strength steels with 218: 283:
DP steels have high ultimate tensile strength (UTS, enabled by the martensite) combined with low initial yielding stress (provided by the ferrite phase), high early-stage strain hardening and macroscopically homogeneous plastic flow (enabled through the absence of
472:
Tasan, C.C.; Diehl, M.; Yan, D.; Bechtold, M.; Roters, F.; Schemmann, L.; Zheng, C.; Peranio, N.; Ponge, D. (July 2015), "An Overview of Dual-Phase Steels: Advances in Microstructure-Oriented Processing and Micromechanically Guided Design",
30: 573:
Abid, Najmul H.; Abu Al-Rub, Rashid K.; Palazotto, Anthony N. (2015), "Computational Modeling of the Effect of Equiaxed Heterogeneous Microstructures on Strength and Ductility of Dual Phase Steels",
514:
Strain localization and damage in dual phase steels investigated by coupled in-situ deformation experiments and crystal plasticity simulations
451:
Chakraborti, P.C.; Mitra, M.K. (2007-10-27), "Microstructure and tensile properties of high strength duplex ferrite-martensite (DFM) steels",
475: 546: 535: 257: 295:
top blowing process in the converter, and undergoes an alloy treatment in the secondary metallurgy phase. The product is
608: 264:
consisting of a soft ferrite matrix containing islands of martensite as the secondary phase (martensite increases the
110: 105: 484: 288:). These features render DP steels ideal materials for automotive-related sheet forming operations. 547:"Microstructure-Properties Correlation of Dual Phase Steels Produced by Controlled Rolling Process" 353: 273: 237: 47: 531: 500: 582: 492: 460: 329: 265: 161: 156: 512: 603: 561: 151: 496: 488: 323: 285: 261: 202: 146: 126: 76: 38: 597: 586: 341:
A high strain rate sensitivity (the faster it is crushed the more energy it absorbs)
511:
Tasan, C.C.; Hoefnagels, J.P.M.; Diehl, M.; Yan, D.; Roters, F.; Raabe, D. (2014),
300: 245: 207: 197: 136: 131: 85: 269: 141: 464: 217: 349: 277: 241: 166: 100: 62: 504: 304: 296: 192: 187: 182: 57: 52: 308: 90: 67: 312: 95: 520:, vol. 63, International Journal of Plasticity, pp. 198–210 376: 374: 292: 233: 216: 22: 348:
Due to these properties DP steels are often used for automotive
403: 401: 303:, with high tensile strength achieved by the composition with 244:
microstructure. DP steels are produced from low or medium
526:
Degarmo, E. Paul; Black, J T.; Kohser, Ronald A. (2003),
16:
Type of steel with a ferritic–martensitic microstructure
392: 380: 221:
Virtually generated microstructure of dual-phase steel.
328:
Low yield to tensile strength ratio (yield strength /
418: 416: 434: 407: 8: 554:Journal of Material Science & Technology 248:that are quenched from a temperature above A 276:led to development of DP steels in 2007 by 18: 528:Materials and Processes in Manufacturing 422: 370: 174: 118: 75: 37: 21: 381:Abid, Abu Al-Rub & Palazotto 2015 7: 497:10.1146/annurev-matsci-070214-021103 453:Materials Science and Engineering: A 476:Annual Review of Materials Research 335:High initial strain hardening rates 14: 318:Their advantages are as follows: 291:The steel melt is produced in an 258:continuous cooling transformation 435:Degarmo, Black & Kohser 2003 29: 587:10.1016/j.commatsci.2015.02.051 575:Computational Materials Science 1: 560:(5): 451–454, archived from 408:Chakraborti & Mitra 2007 260:diagram. This results in a 625: 465:10.1016/j.msea.2007.02.042 175:Other iron-based materials 111:Widmanstätten structures 530:(9th ed.), Wiley, 344:Good fatigue resistance 338:Good uniform elongation 222: 232:) is a high-strength 220: 545:Fallahi, A. (2002), 581:, Elsevier: 20–37, 489:2015AnRMS..45..391T 106:Tempered martensite 609:Vehicle technology 274:microalloyed steel 223: 393:Tasan et al. 2014 215: 214: 616: 589: 568: 566: 551: 540: 521: 519: 507: 467: 459:(1–2): 123–133, 438: 432: 426: 420: 411: 405: 396: 390: 384: 378: 330:tensile strength 266:tensile strength 256:determined from 226:Dual-phase steel 162:Weathering steel 157:High-speed steel 33: 19: 624: 623: 619: 618: 617: 615: 614: 613: 594: 593: 572: 564: 549: 544: 538: 525: 517: 510: 471: 450: 447: 442: 441: 433: 429: 421: 414: 406: 399: 391: 387: 379: 372: 367: 362: 255: 251: 152:Stainless steel 77:Microstructures 17: 12: 11: 5: 622: 620: 612: 611: 606: 596: 595: 592: 591: 570: 542: 536: 523: 508: 483:(1): 391–431, 469: 446: 443: 440: 439: 437:, p. 117. 427: 412: 397: 385: 369: 368: 366: 363: 361: 358: 352:, wheels, and 346: 345: 342: 339: 336: 333: 326: 324:yield strength 286:LĂĽders effects 262:microstructure 253: 249: 213: 212: 211: 210: 205: 203:Malleable iron 200: 195: 190: 185: 177: 176: 172: 171: 170: 169: 164: 159: 154: 149: 147:Maraging steel 144: 139: 134: 129: 127:Crucible steel 121: 120: 116: 115: 114: 113: 108: 103: 98: 93: 88: 80: 79: 73: 72: 71: 70: 65: 60: 55: 50: 42: 41: 35: 34: 26: 25: 15: 13: 10: 9: 6: 4: 3: 2: 621: 610: 607: 605: 602: 601: 599: 588: 584: 580: 576: 571: 567:on 2016-03-03 563: 559: 555: 548: 543: 539: 537:0-471-65653-4 533: 529: 524: 516: 515: 509: 506: 502: 498: 494: 490: 486: 482: 478: 477: 470: 466: 462: 458: 454: 449: 448: 444: 436: 431: 428: 424: 419: 417: 413: 409: 404: 402: 398: 394: 389: 386: 382: 377: 375: 371: 364: 359: 357: 355: 351: 343: 340: 337: 334: 331: 327: 325: 321: 320: 319: 316: 314: 310: 306: 302: 298: 294: 289: 287: 281: 279: 275: 272:greater than 271: 267: 263: 259: 247: 246:carbon steels 243: 239: 235: 231: 227: 219: 209: 206: 204: 201: 199: 196: 194: 191: 189: 186: 184: 181: 180: 179: 178: 173: 168: 165: 163: 160: 158: 155: 153: 150: 148: 145: 143: 140: 138: 135: 133: 130: 128: 125: 124: 123: 122: 117: 112: 109: 107: 104: 102: 99: 97: 94: 92: 89: 87: 84: 83: 82: 81: 78: 74: 69: 66: 64: 61: 59: 56: 54: 51: 49: 46: 45: 44: 43: 40: 36: 32: 28: 27: 24: 20: 578: 574: 562:the original 557: 553: 527: 513: 480: 474: 456: 452: 445:Bibliography 430: 423:Fallahi 2002 388: 347: 317: 301:killed steel 290: 282: 229: 225: 224: 208:Wrought iron 198:Ductile iron 137:Spring steel 132:Carbon steel 350:body panels 270:formability 252:but below A 242:martensitic 236:that has a 142:Alloy steel 86:Spheroidite 598:Categories 360:References 278:Tata Steel 193:White iron 167:Tool steel 101:Ledeburite 63:Martensite 505:1531-7331 305:manganese 297:aluminium 188:Gray iron 183:Cast iron 58:Cementite 53:Austenite 309:chromium 238:ferritic 230:DP steel 91:Pearlite 68:Graphite 485:Bibcode 354:bumpers 313:silicon 119:Classes 96:Bainite 48:Ferrite 604:Steels 534:  503:  332:= 0.5) 293:oxygen 39:Phases 23:Steels 565:(PDF) 550:(PDF) 518:(PDF) 365:Notes 234:steel 532:ISBN 501:ISSN 322:Low 311:and 583:doi 579:103 493:doi 461:doi 457:466 600:: 577:, 558:18 556:, 552:, 499:, 491:, 481:45 479:, 455:, 415:^ 400:^ 373:^ 356:. 315:. 307:, 280:. 590:. 585:: 569:. 541:. 522:. 495:: 487:: 468:. 463:: 425:. 410:. 395:. 383:. 299:- 254:3 250:1 240:– 228:(

Index

Steels

Phases
Ferrite
Austenite
Cementite
Martensite
Graphite
Microstructures
Spheroidite
Pearlite
Bainite
Ledeburite
Tempered martensite
Widmanstätten structures
Crucible steel
Carbon steel
Spring steel
Alloy steel
Maraging steel
Stainless steel
High-speed steel
Weathering steel
Tool steel
Cast iron
Gray iron
White iron
Ductile iron
Malleable iron
Wrought iron

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑