Knowledge (XXG)

de Sitter double star experiment

Source đź“ť

238:
velocity (or whose orbital plane was almost perpendicular to our line of view) this might merely make the star's orbit seem erratic, but for a sufficient combination of orbital speed and distance (and inclination), the "fast" light given off during approach would be able to catch up with and even overtake "slow" light emitted earlier during a recessional part of the star's orbit, and the star would present an image that was scrambled and out of sequence. That is,
82: 99:
Willem de Sitter's argument against emission theory. According to simple emission theory, light moves at a speed of c with respect to the emitting object. If this were true, light emitted from a star in a double-star system from different parts of the orbital path would travel towards us at different
237:
argued that if this was true, a star orbiting in a double-star system would usually, with regard to us, alternate between moving towards us and away from us. Light emitted from different parts of the orbital path would travel towards us at different speeds. For a nearby star with a small orbital
104:
would apparently be violated for a distant observer. Many bizarre effects would be seen, including (a) as illustrated, unusually shaped variable star light curves such as have never been seen, (b) extreme Doppler red- and blue-shifts in phase with the light curves, implying highly non-Keplerian
293:
published the results of a similar double-survey, and reached a similar conclusion - that any apparent irregularities in double-star orbits were too small to support the emission theory. Contrary to the data cited by de Sitter, Brecher observed the x-ray spectrum, thereby eliminating possible
245:
De Sitter made a study of double stars and found no cases where the stars' computed orbits appeared non-Keplerian. Since the total flight-time difference between "fast" and "slow" lightsignals would be expected to scale linearly with distance in simple emission theory, and the study would
286:. That is, during their flight to Earth, the light rays would have been absorbed and re-emitted by interstellar matter nearly at rest relative to Earth, so that the speed of light should become constant with respect to Earth, regardless of the motion of the original source(s). 105:
orbits, (c) splitting of the spectral lines (note simultaneous arrival of blue- and red-shifted light at the target), and (d) if the binary star system is resolvable in a telescope, the periodic breaking up of the stellar images into multiple images.
51:
dependent on the velocity of the emitting object. De Sitter showed that Ritz's theory would have predicted that the orbits of binary stars would appear more eccentric than consistent with experiment and with the laws of
100:
speeds. For certain combinations of orbital speed, distance, and inclination, the "fast" light given off during approach would overtake "slow" light emitted during a recessional part of the star's orbit. Thus
91: 568:
In some cases, we should observe the same component of the double star system simultaneously at different places, and these 'ghost stars' would disappear and reappear in the course of their periodic motions.
334: 632: 146:, the light would then be expected to move at this same speed until it eventually reached an observer. For an object moving directly towards (or away from) the observer at 228: 196: 799: 164: 140: 825: 259:
Modern experiments of the de Sitter type refute the idea that light might travel at a speed that was partially dependent on the velocity of the emitter (
794: 625: 271:
is a factor between 0 and 1, denoting the extent to which the speed of light depends on the source velocity. De Sitter established an upper limit of
246:(statistically) have included stars with a reasonable spread of distances and orbital speeds and orientations, de Sitter concluded that the effect 731: 768: 726: 701: 618: 239: 101: 867: 384:Über die Genauigkeit, innerhalb welcher die Unabhängigkeit der Lichtgeschwindigkeit von der Bewegung der Quelle behauptet werden kann 736: 716: 561: 660: 670: 655: 721: 685: 773: 763: 758: 711: 706: 665: 893: 846: 386: 363: 340: 112: 40: 36: 641: 65: 250:
have been seen if the model was correct, and its absence meant that the emission theory was almost certainly wrong.
90: 898: 872: 48: 862: 297: 279: 143: 32: 589: 518: 481: 421: 17: 841: 56:. However, the results from astronomical observations did not support this. This was confirmed by 778: 750: 408: 815: 680: 557: 553: 546: 597: 526: 489: 234: 28: 201: 169: 390: 367: 290: 57: 593: 522: 485: 425: 509:
Brecher, K. (1977). "Is the speed of light independent of the velocity of the source".
443: 149: 125: 120: 887: 820: 746: 16:
This article is about observing binary stars. For precession of orbiting bodies, see
44: 493: 530: 610: 383: 360: 339:
There are also terrestrial experiments that speak against such theories, see
468: 283: 81: 53: 407: 601: 294:
influences of the extinction effect. He established an upper limit of
61: 442: 361:
Ein astronomischer Beweis fĂĽr die Konstanz der Lichtgeschwindigkeit
64:
spectrum. For other experiments related to special relativity, see
142:
with respect to the emitting object. If there are no complicating
116: 449:
Proceedings of the Royal Netherlands Academy of Arts and Sciences
414:
Proceedings of the Royal Netherlands Academy of Arts and Sciences
614: 166:, this light would then be expected to still be travelling at 275:< 0.002, but extinction effects make that result suspect. 580:
Fox, J. G. (1965), "Evidence Against Emission Theories",
409:"A proof of the constancy of the velocity of light"  467: 300: 242:
would apparently be violated for a distant observer.
204: 172: 152: 128: 855: 834: 808: 787: 745: 694: 648: 545: 328: 222: 190: 158: 134: 444:"On the constancy of the velocity of light"  278:De Sitter's experiment was criticized because of 626: 8: 633: 619: 611: 795:Tests of relativistic energy and momentum 504: 502: 317: 299: 203: 171: 151: 127: 119:thrown off by an object should move at a 548:Introduction to the Theory of Relativity 732:Lorentz-violating neutrino oscillations 436: 434: 352: 469:"A Neglected Type of Relativity"  800:Kaufmann–Bucherer–Neumann experiments 769:Experimental testing of time dilation 727:Antimatter tests of Lorentz violation 702:Modern searches for Lorentz violation 341:experiments testing emission theories 7: 552:. Dover Publications, Inc. pp.  329:{\displaystyle k<2\times 10^{-9}} 868:Test theories of special relativity 14: 826:Michelson–Gale–Pearson experiment 737:Lorentz-violating electrodynamics 717:Experiments of Rayleigh and Brace 267:can be positive or negative, and 35:in 1910) and used to support the 779:Length contraction confirmations 676:de Sitter double star experiment 263:), where the emitter's velocity 89: 80: 466:Comstock, Daniel Frost (1910), 847:Refutations of emission theory 686:Measurements of neutrino speed 217: 205: 185: 173: 1: 494:10.1103/PhysRevSeriesI.30.262 230:) at the time it reached us. 842:Refutations of aether theory 764:Moessbauer rotor experiments 666:Moessbauer rotor experiments 661:Kennedy–Thorndike experiment 37:special theory of relativity 656:Michelson–Morley experiment 642:Tests of special relativity 582:American Journal of Physics 531:10.1103/PhysRevLett.39.1051 66:tests of special relativity 915: 722:Trouton–Rankine experiment 441:de Sitter, Willem (1913), 406:de Sitter, Willem (1913), 15: 774:Hafele–Keating experiment 60:in 1977 by observing the 39:against a competing 1908 873:Standard-Model Extension 759:Ives–Stilwell experiment 712:Trouton–Noble experiment 707:Hughes–Drever experiment 544:Bergmann, Peter (1976). 31:in 1913 (as well as by 511:Physical Review Letters 240:Kepler's laws of motion 102:Kepler's laws of motion 49:variable speed of light 863:One-way speed of light 330: 224: 192: 160: 136: 671:Resonator experiments 331: 225: 223:{\displaystyle (c-v)} 193: 191:{\displaystyle (c+v)} 161: 137: 33:Daniel Frost Comstock 298: 202: 170: 150: 126: 111:According to simple 18:de Sitter precession 894:Physics experiments 788:Relativistic energy 594:1965AmJPh..33....1F 523:1977PhRvL..39.1051B 486:1910PhRvI..30..262. 426:1913KNAB...15.1297D 751:Length contraction 695:Lorentz invariance 396:, 14, 1267 (1913). 389:2016-03-03 at the 373:, 14, 429 (1913). 366:2016-11-30 at the 326: 280:extinction effects 220: 188: 156: 132: 47:that postulated a 881: 880: 821:Sagnac experiment 816:Fizeau experiment 681:Hammar experiment 602:10.1119/1.1971219 517:(17): 1051–1054. 159:{\displaystyle v} 135:{\displaystyle c} 27:was described by 906: 635: 628: 621: 612: 606: 605: 577: 571: 570: 551: 541: 535: 534: 506: 497: 496: 471: 463: 457: 456: 446: 438: 429: 428: 420:(2): 1297–1298, 411: 403: 397: 394:Physik. Zeitschr 380: 374: 371:Physik. Zeitschr 357: 335: 333: 332: 327: 325: 324: 235:Willem de Sitter 229: 227: 226: 221: 197: 195: 194: 189: 165: 163: 162: 157: 144:dragging effects 141: 139: 138: 133: 93: 84: 29:Willem de Sitter 25:de Sitter effect 914: 913: 909: 908: 907: 905: 904: 903: 899:1913 in science 884: 883: 882: 877: 851: 830: 804: 783: 749: 741: 690: 644: 639: 609: 579: 578: 574: 564: 543: 542: 538: 508: 507: 500: 474:Physical Review 465: 464: 460: 440: 439: 432: 405: 404: 400: 391:Wayback Machine 381: 377: 368:Wayback Machine 358: 354: 350: 313: 296: 295: 291:Kenneth Brecher 256: 200: 199: 168: 167: 148: 147: 124: 123: 113:emission theory 109: 108: 107: 106: 96: 95: 94: 86: 85: 74: 58:Kenneth Brecher 41:emission theory 21: 12: 11: 5: 912: 910: 902: 901: 896: 886: 885: 879: 878: 876: 875: 870: 865: 859: 857: 853: 852: 850: 849: 844: 838: 836: 832: 831: 829: 828: 823: 818: 812: 810: 806: 805: 803: 802: 797: 791: 789: 785: 784: 782: 781: 776: 771: 766: 761: 755: 753: 743: 742: 740: 739: 734: 729: 724: 719: 714: 709: 704: 698: 696: 692: 691: 689: 688: 683: 678: 673: 668: 663: 658: 652: 650: 649:Speed/isotropy 646: 645: 640: 638: 637: 630: 623: 615: 608: 607: 572: 562: 536: 498: 458: 430: 398: 382:W. de Sitter, 375: 359:W. de Sitter, 351: 349: 346: 345: 344: 337: 323: 320: 316: 312: 309: 306: 303: 287: 276: 255: 252: 219: 216: 213: 210: 207: 187: 184: 181: 178: 175: 155: 131: 98: 97: 88: 87: 79: 78: 77: 76: 75: 73: 70: 13: 10: 9: 6: 4: 3: 2: 911: 900: 897: 895: 892: 891: 889: 874: 871: 869: 866: 864: 861: 860: 858: 854: 848: 845: 843: 840: 839: 837: 833: 827: 824: 822: 819: 817: 814: 813: 811: 809:Fizeau/Sagnac 807: 801: 798: 796: 793: 792: 790: 786: 780: 777: 775: 772: 770: 767: 765: 762: 760: 757: 756: 754: 752: 748: 747:Time dilation 744: 738: 735: 733: 730: 728: 725: 723: 720: 718: 715: 713: 710: 708: 705: 703: 700: 699: 697: 693: 687: 684: 682: 679: 677: 674: 672: 669: 667: 664: 662: 659: 657: 654: 653: 651: 647: 643: 636: 631: 629: 624: 622: 617: 616: 613: 603: 599: 595: 591: 587: 583: 576: 573: 569: 565: 563:0-486-63282-2 559: 555: 550: 549: 540: 537: 532: 528: 524: 520: 516: 512: 505: 503: 499: 495: 491: 487: 483: 479: 475: 470: 462: 459: 454: 450: 445: 437: 435: 431: 427: 423: 419: 415: 410: 402: 399: 395: 392: 388: 385: 379: 376: 372: 369: 365: 362: 356: 353: 347: 342: 338: 321: 318: 314: 310: 307: 304: 301: 292: 288: 285: 281: 277: 274: 270: 266: 262: 258: 257: 253: 251: 249: 243: 241: 236: 231: 214: 211: 208: 182: 179: 176: 153: 145: 129: 122: 118: 114: 103: 92: 83: 71: 69: 67: 63: 59: 55: 50: 46: 42: 38: 34: 30: 26: 19: 835:Alternatives 675: 585: 581: 575: 567: 547: 539: 514: 510: 477: 473: 461: 455:(1): 395–396 452: 448: 417: 413: 401: 393: 378: 370: 355: 272: 268: 264: 260: 247: 244: 232: 110: 45:Walther Ritz 24: 22: 588:(1): 1–17, 888:Categories 480:(2): 267, 348:References 72:The effect 319:− 311:× 289:In 1977, 284:J. G. Fox 261:c'=c + kv 233:In 1913, 212:− 54:mechanics 387:Archived 364:Archived 121:speed of 856:General 590:Bibcode 519:Bibcode 482:Bibcode 422:Bibcode 560:  248:should 62:x-rays 554:19–20 254:Notes 198:( or 117:light 558:ISBN 305:< 23:The 598:doi 527:doi 490:doi 282:by 43:by 890:: 596:, 586:33 584:, 566:. 556:. 525:. 515:39 513:. 501:^ 488:, 478:30 476:, 472:, 453:16 451:, 447:, 433:^ 418:15 416:, 412:, 315:10 115:, 68:. 634:e 627:t 620:v 604:. 600:: 592:: 533:. 529:: 521:: 492:: 484:: 424:: 343:. 336:. 322:9 308:2 302:k 273:k 269:k 265:v 218:) 215:v 209:c 206:( 186:) 183:v 180:+ 177:c 174:( 154:v 130:c 20:.

Index

de Sitter precession
Willem de Sitter
Daniel Frost Comstock
special theory of relativity
emission theory
Walther Ritz
variable speed of light
mechanics
Kenneth Brecher
x-rays
tests of special relativity
de Sitter's argument against emission theory.
Animation of de Sitter's argument.
Kepler's laws of motion
emission theory
light
speed of
dragging effects
Willem de Sitter
Kepler's laws of motion
extinction effects
J. G. Fox
Kenneth Brecher
experiments testing emission theories
Ein astronomischer Beweis fĂĽr die Konstanz der Lichtgeschwindigkeit
Archived
Wayback Machine
Über die Genauigkeit, innerhalb welcher die Unabhängigkeit der Lichtgeschwindigkeit von der Bewegung der Quelle behauptet werden kann
Archived
Wayback Machine

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑