Knowledge (XXG)

De Sitter invariant special relativity

Source 📝

566: 431:. There is a fundamental difference, though: whereas in all doubly special relativity models the Lorentz symmetry is violated, in de Sitter relativity it remains as a physical symmetry. A drawback of the usual doubly special relativity models is that they are valid only at the energy scales where ordinary special relativity is supposed to break down, giving rise to a patchwork relativity. On the other hand, de Sitter relativity is found to be invariant under a simultaneous re-scaling of 74:, but under the symmetry group of de Sitter space instead. With this assumption, empty space automatically has de Sitter symmetry, and what would normally be called the cosmological constant in general relativity becomes a fundamental dimensional parameter describing the symmetry structure of spacetime. 400:
When a cosmological constant is viewed as a kinematic parameter, the definitions of energy and momentum must be changed from those of special relativity. These changes could significantly modify the physics of the early universe if the cosmological constant was greater back then. Some speculate that
392:
In de Sitter relativity, the cosmological constant is no longer a free parameter of the same type; it is determined by the de Sitter radius, a fundamental quantity that determines the commutation relation of translation with rotations/boosts. This means that the theory of de Sitter relativity might
241:
In the pancake world, this would manifest if the creatures were living on an enormous sphere rather than on a plane. In this case, when they wander around their sphere, they would eventually come to realize that translations are not entirely separate from rotations, because if they move around on
225:
The symmetry group of special relativity is not entirely simple, due to translations. The Lorentz group is the set of the transformations that keep the origin fixed, but translations are not included. The full Poincaré group is the semi-direct product of translations with the Lorentz group. If
388:
to the Poincaré group for short-distance kinematics, when the magnitudes of all translations considered are very small compared to the de Sitter radius. In quantum mechanics, short distances are probed by high energies, so that for energies above a very small value related to the cosmological
534:
R. Aldrovandi, J.P. BeltrĂĄn Almeida and J.G. Pereira have used the terms "de Sitter special relativity" and "de Sitter relativity" starting from their 2007 paper "de Sitter special relativity". This paper was based on previous work on amongst other things: the consequences of a non-vanishing
183:
The rotations around the horizontal axes would tilt objects by an infinitesimal amount. The tilt in the x–z plane (the "x-tilt") would be one parameter, and the tilt in the y–z plane (the "y-tilt") another. The symmetry group of this pancake world is then SO(2) semidirect product with
484:
While it looks as though this might pick out a preferred point in space—the center of repulsion, it is more subtly isotropic. Moving to the uniformly accelerated frame of reference of an observer at another point, all accelerations appear to have a repulsion center at the new point.
180:, being the known rotations in the horizontal (x–y) plane. Later on, they might discover rotations around the x- and y-axes—and in their everyday experience such rotations might always be by an infinitesimal angle, so that these rotations would effectively commute with each other. 250:
on the sphere. If the universe is the same everywhere (homogeneous) and there are no preferred directions (isotropic), then there are not many options for the symmetry group: they either live on a flat plane, or on a sphere with a constant positive curvature, or on a
215:, approaches 0. The Lorentz group is analogous—it is a simple group that turns into the Galilean group when the time range is made long compared to the space range, or where velocities may be regarded as infinitesimal, or equivalently, may be regarded as the limit 541:
Papers by other authors include: dSR and the fine structure constant; dSR and dark energy; dSR Hamiltonian Formalism; and De Sitter Thermodynamics from Diamonds's Temperature, Triply special relativity from six dimensions, Deformed General Relativity and
171:
An analogous thing can be made to happen with the ordinary rotation group in three dimensions. If you imagine a nearly flat world, one in which pancake-like creatures wander around on a pancake flat world, their conventional unit of height might be the
295:
Modern proponents of this idea, such as S. Cacciatori, V. Gorini and A. Kamenshchik, have reinterpreted this theory as physics, not just mathematics. They postulate that the acceleration of the expansion of the universe is not entirely due to
488:
What this means is that in a spacetime with non-vanishing curvature, gravity is modified from Newtonian gravity. At distances comparable to the radius of the space, objects feel an additional linear repulsion from the center of coordinates.
476:
contracts to the Newton–Hooke group. This has the effect that in the nonrelativistic limit, objects in de Sitter space have an extra "repulsion" from the origin: objects have a tendency to move away from the center with an outward pointing
397:. Unfortunately, the de Sitter radius, which determines the cosmological constant, is an adjustable parameter in de Sitter relativity, so the theory requires a separate condition to determine its value in relation to the measurement scale. 176:(ÎŒm), since that is how high typical structures are in their world, while their unit of distance could be the metre, because that is their body's horizontal extent. Such creatures would describe the basic symmetry of their world as 255:
with constant negative curvature. If they are not living on the plane, they can describe positions using dimensionless angles, the same parameters that describe rotations, so that translations and rotations are nominally unified.
188:, meaning that a two-dimensional rotation plus two extra parameters, the x-tilt and the y-tilt. The reason it is a semidirect product is that, when you rotate, the x-tilt and the y-tilt rotate into each other, since they form a 278:
De Sitter special relativity postulates that the empty space has de Sitter symmetry as a fundamental law of nature. This means that spacetime is slightly curved even in the absence of matter or energy. This residual
196:. In this world, the difference in height between two objects at the same x, y would be a rotationally invariant quantity unrelated to length and width. The z-coordinate is effectively separate from x and y. 203:. Then they would understand that z is really the same as x and y, since they can be mixed up by rotations. The SO(2) semidirect product R limit would be understood as the limit that the free parameter 2521:
Aldrovandi; Beltran Almeida; Mayor; Pereira; Adenier, Guillaume; Khrennikov, Andrei Yu.; Lahti, Pekka; Man'Ko, Vladimir I.; Nieuwenhuizen, Theo M. (2007). "de Sitter Relativity and Quantum Physics".
168:. This means that the Lorentz group mixes up space and time such that they cannot be disentangled, while the Galilean group treats time as a parameter with different units of measurement than space. 292:
to be determined by observation. Due to the small magnitude of the constant, special relativity with its Poincaré group is indistinguishable from de Sitter space for most practical purposes.
1640:
F. G. Gursey, "Introduction to the de Sitter group", Group Theoretical Concepts and Methods in Elementary Particle Physics edited by F. G. Gursey (Gordon and Breach, New York, 1965)
267:, the only option is that spacetime has a uniform scalar curvature. If the curvature is positive, the analog of the sphere case for the two-dimensional creatures, the spacetime is 443:, and is consequently valid at all energy scales. A relationship between doubly special relativity, de Sitter space and general relativity is described by Derek Wise. See also 93:
popularized it as a hypothetical road by which mathematicians could have guessed part of the structure of general relativity before it was discovered. The discovery of the
332: 2317:
U. Moschella (2006), "The de Sitter and anti-de Sitter sightseeing tour", in Einstein, 1905–2005 (T. Damour, O. Darrigol, B. Duplantier, and V. Rivesseau, eds.),
118:
suggested that spacetime curvature might not be due solely to gravity but he did not give any mathematical details of how this could be accomplished. In 1968
1253:
Licata, Ignazio; Leonardo Chiatti (2009). "The archaic universe: Big Bang, cosmological term, and the quantum origin of time in projective cosmology".
427:
Since the de Sitter group naturally incorporates an invariant length parameter, de Sitter relativity can be interpreted as an example of the so-called
535:
cosmological constant, on doubly special relativity and on the Newton–Hooke group and early work formulating special relativity with a de Sitter space
584: 2220:
J. Bros; H. Epstein; U. Moschella (1998). "Analyticity properties and thermal effects for general quantum field theory on de Sitter space–time".
1588:
Yu Tian; Han-Ying Guo; Chao-Guang Huang; Zhan Xu; Bin Zhou (2005). "Mechanics and Newton–Cartan-Like Gravity on the Newton–Hooke Space–time".
1200:
Yu Tian; Han-Ying Guo; Chao-Guang Huang; Zhan Xu; Bin Zhou (2004). "Mechanics and Newton–Cartan-Like Gravity on the Newton–Hooke Space–time".
565: 527:
In 1973 Eliano Pessa described how Fantappié–Arcidiacono projective relativity relates to earlier conceptions of projective relativity and to
946:
Aldrovandi, R.; BeltrĂĄn Almeida, J. P.; Pereira, J. G. (2007). "Some Implications of the Cosmological Constant to Fundamental Physics".
97:
has led to a revival of interest in de Sitter invariant theories, in conjunction with other speculative proposals for new physics, like
2604: 2585: 2151: 2089:
Han-Ying Guo; Chao-Guang Huang; Yu Tian; Zhan Xu; Bin Zhou (2007). "Snyder's Quantized Space–time and De Sitter Special Relativity".
1743: 2459:
S Cacciatori; V Gorini; A Kamenshchik; U Moschella (2008). "Conservation laws and scattering for de Sitter classical particles".
369:, meaning that when all velocities are small the Poincaré group "morphs" into the Galilean group. (This can be made precise with 409:
with a large cosmological constant for a short period of time, and this might eventually be tested in the existing or planned
1856:
Mu-Lin Yan; Neng-Chao Xiao; Wei Huang; Si Li (2007). "Hamiltonian Formalism of the de-Sitter Invariant Special Relativity".
444: 66:
The idea of de Sitter invariant relativity is to require that the laws of physics are not fundamentally invariant under the
1007:
R. Aldrovandi; J.P. Beltran Almeida; C.S.O. Mayor; J.G. Pereira (2007). "Lorentz Transformations in de Sitter Relativity".
2648: 2633: 2628: 2623: 36: 538:
In 2008 S. Cacciatori, V. Gorini and A. Kamenshchik published a paper about the kinematics of de Sitter relativity.
1364: 514: 428: 422: 242:
the surface of a sphere, when they come back to where they started, they find that they have been rotated by the
123: 98: 86: 56: 2638: 579: 358: 165: 134:
advocated this as an approach to making the mathematical structure of general relativity more self-evident.
1164: 189: 1137:
Aldrovandi; Barbosa; Crispino; Pereira (1999). "Non–Relativistic Spacetimes with Cosmological Constant".
2653: 1535:
G.W. Gibbons; C.E. Patricot (2003). "Newton–Hooke spacetimes, Hpp-waves and the cosmological constant".
335: 284: 260: 235: 94: 52: 1429:
R. Aldrovandi; J.P. Beltran Almeida; J.G. Pereira (2004). "Cosmological Term and Fundamental Physics".
199:
Eventually, experiments at large angles would convince the creatures that the symmetry of the world is
2540: 2478: 2431: 2375: 2340: 2292: 2239: 2186: 2108: 2055: 2002: 1928: 1875: 1822: 1765: 1708: 1663: 1607: 1554: 1501: 1448: 1395: 1319: 1272: 1219: 1156: 1103: 1050: 965: 912: 839: 792: 736: 688: 503: 20: 2273:
J. Bros; H. Epstein; U. Moschella (2008). "Lifetime of a massive particle in a de Sitter universe".
370: 2643: 1169: 528: 304: 280: 161: 149: 2366:
E. Benedetto (2009). "Fantappiù–Arcidiacono Spacetime and Its Consequences in Quantum Cosmology".
612: 2564: 2530: 2507: 2494: 2468: 2447: 2421: 2391: 2282: 2255: 2229: 2202: 2176: 2124: 2098: 2071: 2045: 2036:
Ashok Das; Otto C. W. Kong (2006). "Physics of Quantum Relativity through a Linear Realization".
2018: 1992: 1963: 1944: 1918: 1891: 1865: 1838: 1812: 1781: 1755: 1724: 1698: 1623: 1597: 1570: 1544: 1517: 1491: 1464: 1438: 1411: 1385: 1288: 1262: 1235: 1209: 1182: 1146: 1119: 1093: 1066: 1040: 1008: 989: 955: 928: 902: 808: 782: 752: 726: 247: 141: 71: 44: 499: 78: 2600: 2581: 2167:
J. Bros; U. Moschella (1996). "Two-point functions and quantum fields in de Sitter universe".
2147: 1347: 867: 410: 385: 378: 355: 317: 308: 272: 252: 137: 130:
was the most general group compatible with isotropy, homogeneity and boost invariance. Later,
67: 773:
R. Aldrovandi; J. G. Pereira (2009). "de Sitter Relativity: a New Road to Quantum Gravity?".
393:
be able to provide insight on the value of the cosmological constant, perhaps explaining the
259:
In relativity, if translations mix up nontrivially with rotations, but the universe is still
2556: 2548: 2486: 2439: 2383: 2348: 2300: 2247: 2194: 2116: 2063: 2010: 1936: 1883: 1830: 1773: 1716: 1671: 1615: 1562: 1509: 1456: 1403: 1337: 1327: 1280: 1227: 1174: 1111: 1058: 981: 973: 920: 857: 847: 800: 744: 696: 627: 478: 193: 1376:
R. Aldrovandi; J. G. Pereira (2009). "De Sitter Special Relativity: Effects on Cosmology".
717:
S. Cacciatori; V. Gorini; A. Kamenshchik (2008). "Special Relativity in the 21st century".
641: 506:
first published in 1954 by FantappiĂš and the same as another independent discovery in 1976.
1789: 1744:"Variation of the Fine-Structure Constant from the de Sitter Invariant Special Relativity" 1031:
R. Aldrovandi; J.P. BeltrĂĄn Almeida; J.G. Pereira (2007). "de Sitter Special Relativity".
637: 473: 406: 402: 343: 268: 231: 127: 110: 48: 40: 2014: 1482:
Giovanni Amelino-Camelia (2001). "Testable scenario for Relativity with minimum-length".
1115: 2544: 2490: 2482: 2435: 2379: 2344: 2296: 2243: 2190: 2112: 2059: 2006: 1940: 1932: 1879: 1826: 1769: 1712: 1667: 1611: 1558: 1505: 1452: 1399: 1323: 1276: 1223: 1160: 1107: 1054: 969: 916: 843: 796: 740: 692: 1689:
J. Kowalski-Glikman; S. Nowak (2003). "Doubly special relativity and de Sitter space".
862: 827: 571: 362: 145: 28: 1720: 1566: 1513: 1342: 1307: 924: 2617: 2498: 2395: 2128: 2022: 1983:
Gibbons, Gary W.; Gielen, Steffen (2009). "Deformed General Relativity and Torsion".
1948: 1895: 1887: 1785: 1675: 1627: 1521: 1468: 1292: 1239: 1178: 1062: 756: 608: 521: 374: 227: 153: 131: 90: 2451: 2206: 2075: 1842: 1728: 1574: 1415: 1186: 1123: 1070: 993: 932: 812: 632: 2568: 2259: 157: 60: 222:, where relativistic effects become observable "as good as at infinite velocity". 2412:
R. Aldrovandi; J. G. Pereira (2009). "Is Physics Asking for a New Kinematics?".
510: 394: 297: 119: 82: 2067: 1619: 1231: 498:"de Sitter relativity" is the same as the theory of "projective relativity" of 342:
than nowadays. It can also be viewed as a different approach to the problem of
2443: 2387: 2198: 2120: 1834: 1460: 1407: 1284: 804: 561: 366: 173: 156:. This is called a unification of space and time because the Lorentz group is 1777: 1308:"An extension of the concept of inertial frame and of Lorentz transformation" 389:
constant, the Poincaré group is a good approximation to the de Sitter group.
401:
a high energy experiment could modify the local structure of spacetime from
301: 264: 115: 32: 1351: 1332: 871: 748: 2251: 852: 554:
Early work on formulating a quantum theory in a de Sitter space includes:
81:
in 1954, the theory remained obscure until it was rediscovered in 1968 by
1760: 551:
There are quantized or quantum versions of de Sitter special relativity.
440: 339: 243: 226:
translations are to be similar to elements of the Lorentz group, then as
1923: 1909:
Yu Tian (2005). "De Sitter Thermodynamics from Diamonds's Temperature".
2560: 2287: 2103: 1870: 1703: 1602: 1549: 1496: 1214: 985: 907: 2552: 2506:
S Cacciatori (2009). "Conserved quantities for the Sitter particles".
2352: 2331:
Moschella U (2007). "Particles and fields on the de Sitter universe".
2304: 2234: 2181: 2050: 1817: 1443: 1151: 1098: 1045: 977: 960: 700: 436: 1962:
S. Mignemi (2008). "Triply special relativity from six dimensions".
1651: 679:
Henri Bacry; Jean-Marc LĂ©vy-Leblond (1968). "Possible Kinematics".
2535: 2512: 2473: 2426: 1997: 1968: 1390: 1267: 1013: 787: 731: 200: 177: 1803:
C G Bohmer; T Harko (2008). "Physics of dark energy particles".
432: 1084:
Wise (2010). "MacDowell–Mansouri Gravity and Cartan Geometry".
885:
Freydoon Mansouri (2002). "Non-Vanishing Cosmological Constant
338:
may come from the cosmological constant being larger near the
271:
and its symmetry group is the de Sitter group rather than the
16:
Special relativity formed using the SO(4,1) symmetry group
828:"On the Contraction of Groups and Their Representations" 451:
Newton–Hooke: de Sitter special relativity in the limit
2578:
Special Relativity: Will it Survive the Next 101 Years?
320: 1652:"Stability of gravity with a cosmological constant" 300:, but at least partly due to the kinematics of the 1742:Shao-Xia Chen; Neng-Chao Xiao; Mu-Lin Yan (2008). 655:W. de Sitter (1917). "On the curvature of space". 326: 47:, de Sitter space is a highly symmetrical special 2597:Projective Relativity, Cosmology, and Gravitation 493:History of de Sitter invariant special relativity 481:proportional to their distance from the origin. 2275:Transactions of the American Fisheries Society 1365:The De Sitter Universe and general relativity 1026: 1024: 27:is the speculative idea that the fundamental 8: 1255:International Journal of Theoretical Physics 674: 672: 670: 2534: 2511: 2472: 2425: 2414:International Journal of Modern Physics D 2286: 2233: 2180: 2102: 2049: 1996: 1967: 1922: 1869: 1816: 1759: 1702: 1601: 1548: 1495: 1442: 1389: 1341: 1331: 1266: 1213: 1168: 1150: 1097: 1044: 1012: 959: 906: 861: 851: 786: 768: 766: 730: 631: 319: 2576:Claus LĂ€mmerzahl; JĂŒrgen Ehlers (2005). 585:Quantum field theory in curved spacetime 517:published a paper on possible kinematics 140:'s unification of space and time within 2142:N. D. Birrell; P. C. W. Davies (1982). 893:-Dependence Of High Energy Processes". 712: 710: 603: 601: 599: 595: 95:accelerating expansion of the universe 25:de Sitter invariant special relativity 1858:Communications in Theoretical Physics 7: 547:Quantum de Sitter special relativity 2321:, Vol. 47, Basel: Birkhauser, 2006. 314:A modification of this idea allows 321: 14: 2319:Progress in Mathematical Physics 564: 384:Similarly, the de Sitter group 207:, the ratio of the height range 160:, while the Galilean group is a 1650:L. F. Abbott; S. Deser (1982). 681:Journal of Mathematical Physics 657:Proc. Roy. Acad. Sci. Amsterdam 633:10.1090/S0002-9904-1972-12971-9 238:would also be non-commutative. 2146:. Cambridge University Press. 2144:Quantum fields in curved space 2015:10.1088/0264-9381/26/13/135005 1911:Journal of High Energy Physics 1116:10.1088/0264-9381/27/15/155010 826:E. InönĂŒ; E.P. Wigner (1953). 1: 2595:Giuseppe Arcidiacono (1986). 2491:10.1088/0264-9381/25/7/075008 1985:Classical and Quantum Gravity 1941:10.1088/1126-6708/2005/06/045 1514:10.1016/S0370-2693(01)00506-8 1139:Classical and Quantum Gravity 1086:Classical and Quantum Gravity 925:10.1016/S0370-2693(02)02022-1 334:to change with time, so that 1676:10.1016/0550-3213(82)90049-9 43:. In the standard theory of 1721:10.1088/0264-9381/20/22/006 1567:10.1088/0264-9381/20/23/016 37:indefinite orthogonal group 2670: 2523:AIP Conference Proceedings 2420:(13 & 14): 2485–2493. 2333:AIP Conference Proceedings 2068:10.1103/PhysRevD.73.124029 1888:10.1088/0253-6102/48/1/007 1620:10.1103/PhysRevD.71.044030 1312:Proc. Natl. Acad. Sci. USA 1232:10.1103/PhysRevD.71.044030 1179:10.1088/0264-9381/16/2/013 1063:10.1088/0264-9381/24/6/002 948:AIP Conference Proceedings 832:Proc. Natl. Acad. Sci. USA 420: 307:, which would replace the 108: 2444:10.1142/S0218271808013972 2388:10.1007/s10773-009-9933-0 2199:10.1142/S0129055X96000123 2121:10.1007/s11467-007-0045-0 1835:10.1007/s10701-007-9199-4 1461:10.1142/S0218271804006279 1408:10.1134/S020228930904001X 1378:Gravitation and Cosmology 1285:10.1007/s10773-008-9874-z 889:, Phase Transitions, And 805:10.1007/s10701-008-9258-5 445:MacDowell–Mansouri action 429:doubly special relativity 423:Doubly special relativity 417:Doubly special relativity 99:doubly special relativity 1778:10.1177/0022343307082058 1658:(Submitted manuscript). 327:{\displaystyle \Lambda } 580:Noncommutative geometry 1805:Foundations of Physics 1333:10.1073/pnas.73.5.1418 1306:Dey, Anind K. (2001). 775:Foundations of Physics 749:10.1002/andp.200810321 613:"Missed opportunities" 524:further explored this. 515:Jean-Marc LĂ©vy-Leblond 328: 124:Jean-Marc LĂ©vy-Leblond 87:Jean-Marc LĂ©vy-Leblond 2252:10.1007/s002200050435 853:10.1073/pnas.39.6.510 329: 285:cosmological constant 53:cosmological constant 1431:Int. J. Mod. Phys. D 504:Giuseppe Arcidiacono 318: 211:to the length range 21:mathematical physics 2649:Riemannian geometry 2545:2007AIPC..962..175A 2483:2008CQGra..25g5008C 2461:Class. Quantum Grav 2436:2008IJMPD..17.2485A 2380:2009IJTP...48.1603B 2345:2007AIPC..910..396M 2297:2008JCAP...02..003B 2244:1998CMaPh.196..535B 2191:1996RvMaP...8..327B 2113:2007FrPhC...2..358G 2060:2006PhRvD..73l4029D 2007:2009CQGra..26m5005G 1933:2005JHEP...06..045T 1880:2007CoTPh..48...27Y 1827:2008FoPh...38..216B 1770:2008ChPhC..32..612C 1713:2003CQGra..20.4799K 1691:Class. Quantum Grav 1668:1982NuPhB.195...76A 1612:2005PhRvD..71d4030T 1559:2003CQGra..20.5225G 1537:Class. Quantum Grav 1506:2001PhLB..510..255A 1453:2004IJMPD..13.2241A 1400:2009GrCo...15..287A 1324:1976PNAS...73.1418K 1277:2009IJTP...48.1003L 1224:2005PhRvD..71d4030T 1161:1999CQGra..16..495A 1108:2010CQGra..27o5010W 1055:2007CQGra..24.1385A 1033:Class. Quantum Grav 970:2007AIPC..910..381A 917:2002PhLB..538..239M 844:1953PNAS...39..510I 797:2009FoPh...39....1A 741:2008AnP...520..728C 693:1968JMP.....9.1605B 620:Bull. Am. Math. Soc 529:Kaluza Klein theory 283:implies a positive 162:semi-direct product 150:Newtonian mechanics 51:, which requires a 2634:Physical cosmology 2629:General relativity 2624:Special relativity 2599:. Hadronic Press. 2222:Commun. Math. Phys 2091:Front. Phys. China 719:Annalen der Physik 395:cosmic coincidence 324: 248:parallel transport 142:special relativity 77:First proposed by 72:special relativity 45:general relativity 2553:10.1063/1.2827302 2353:10.1063/1.2752488 2305:10.1577/T07-141.1 1748:Chinese Physics C 1697:(22): 4799–4816. 1437:(10): 2241–2248. 1202:Physical Review D 978:10.1063/1.2752487 725:(9–10): 728–768. 701:10.1063/1.1664490 411:particle collider 379:group contraction 365:for low-velocity 253:Lobachevski plane 164:of rotations and 39:SO(4,1), that of 2661: 2610: 2591: 2572: 2538: 2517: 2515: 2502: 2476: 2455: 2429: 2400: 2399: 2374:(6): 1603–1621. 2368:Int J Theor Phys 2363: 2357: 2356: 2328: 2322: 2315: 2309: 2308: 2290: 2270: 2264: 2263: 2237: 2217: 2211: 2210: 2184: 2164: 2158: 2157: 2139: 2133: 2132: 2106: 2086: 2080: 2079: 2053: 2033: 2027: 2026: 2000: 1980: 1974: 1973: 1971: 1959: 1953: 1952: 1926: 1906: 1900: 1899: 1873: 1853: 1847: 1846: 1820: 1800: 1794: 1793: 1788:. Archived from 1763: 1761:astro-ph/0703110 1739: 1733: 1732: 1706: 1686: 1680: 1679: 1647: 1641: 1638: 1632: 1631: 1605: 1585: 1579: 1578: 1552: 1532: 1526: 1525: 1499: 1490:(1–4): 255–263. 1479: 1473: 1472: 1446: 1426: 1420: 1419: 1393: 1373: 1367: 1362: 1356: 1355: 1345: 1335: 1303: 1297: 1296: 1270: 1261:(4): 1003–1018. 1250: 1244: 1243: 1217: 1197: 1191: 1190: 1172: 1154: 1134: 1128: 1127: 1101: 1081: 1075: 1074: 1048: 1039:(6): 1385–1404. 1028: 1019: 1018: 1016: 1004: 998: 997: 963: 943: 937: 936: 910: 901:(3–4): 239–245. 892: 888: 882: 876: 875: 865: 855: 823: 817: 816: 790: 770: 761: 760: 734: 714: 705: 704: 676: 665: 664: 652: 646: 645: 635: 617: 605: 574: 569: 568: 479:fictitious force 471: 462:In the limit as 333: 331: 330: 325: 291: 221: 126:showed that the 2669: 2668: 2664: 2663: 2662: 2660: 2659: 2658: 2639:Quantum gravity 2614: 2613: 2607: 2594: 2588: 2575: 2520: 2505: 2458: 2411: 2408: 2406:Further reading 2403: 2365: 2364: 2360: 2330: 2329: 2325: 2316: 2312: 2272: 2271: 2267: 2219: 2218: 2214: 2169:Rev. Math. Phys 2166: 2165: 2161: 2154: 2141: 2140: 2136: 2088: 2087: 2083: 2035: 2034: 2030: 1982: 1981: 1977: 1961: 1960: 1956: 1924:gr-qc/0504040v3 1908: 1907: 1903: 1855: 1854: 1850: 1802: 1801: 1797: 1741: 1740: 1736: 1688: 1687: 1683: 1649: 1648: 1644: 1639: 1635: 1587: 1586: 1582: 1534: 1533: 1529: 1481: 1480: 1476: 1428: 1427: 1423: 1375: 1374: 1370: 1363: 1359: 1305: 1304: 1300: 1252: 1251: 1247: 1199: 1198: 1194: 1136: 1135: 1131: 1083: 1082: 1078: 1030: 1029: 1022: 1006: 1005: 1001: 945: 944: 940: 890: 886: 884: 883: 879: 825: 824: 820: 772: 771: 764: 716: 715: 708: 678: 677: 668: 654: 653: 649: 615: 607: 606: 597: 593: 570: 563: 560: 549: 500:Luigi FantappiĂš 495: 474:de Sitter group 463: 460: 425: 419: 407:de Sitter space 403:Minkowski space 352: 344:quantum gravity 316: 315: 287: 269:de Sitter space 232:non-commutative 216: 166:Galilean boosts 128:de Sitter group 113: 111:de Sitter space 107: 79:Luigi FantappiĂš 49:vacuum solution 41:de Sitter space 17: 12: 11: 5: 2667: 2665: 2657: 2656: 2651: 2646: 2641: 2636: 2631: 2626: 2616: 2615: 2612: 2611: 2606:978-0911767391 2605: 2592: 2587:978-3540345220 2586: 2573: 2518: 2503: 2456: 2407: 2404: 2402: 2401: 2358: 2323: 2310: 2288:hep-th/0612184 2265: 2228:(3): 535–570. 2212: 2175:(3): 327–392. 2159: 2153:978-0521233859 2152: 2134: 2104:hep-th/0607016 2097:(3): 358–363. 2081: 2044:(12): 124029. 2028: 1991:(13): 135005. 1975: 1954: 1901: 1871:hep-th/0512319 1848: 1811:(3): 216–227. 1795: 1792:on 2011-07-07. 1754:(8): 612–616. 1734: 1704:hep-th/0304101 1681: 1642: 1633: 1603:hep-th/0411004 1580: 1550:hep-th/0308200 1527: 1497:hep-th/0012238 1474: 1421: 1384:(4): 287–294. 1368: 1357: 1318:(5): 1418–21. 1298: 1245: 1215:hep-th/0411004 1192: 1170:10.1.1.339.919 1145:(2): 495–506. 1129: 1092:(15): 155010. 1076: 1020: 999: 938: 908:hep-th/0203150 877: 818: 762: 706: 666: 647: 626:(5): 635–652. 594: 592: 589: 588: 587: 582: 576: 575: 572:Physics portal 559: 556: 548: 545: 544: 543: 539: 536: 532: 525: 518: 507: 494: 491: 459: 449: 421:Main article: 418: 415: 377:'s concept of 363:Galilean group 356:PoincarĂ© group 351: 348: 323: 309:PoincarĂ© group 273:PoincarĂ© group 146:Galilean group 109:Main article: 106: 103: 68:PoincarĂ© group 59:of a constant 29:symmetry group 15: 13: 10: 9: 6: 4: 3: 2: 2666: 2655: 2652: 2650: 2647: 2645: 2642: 2640: 2637: 2635: 2632: 2630: 2627: 2625: 2622: 2621: 2619: 2608: 2602: 2598: 2593: 2589: 2583: 2579: 2574: 2570: 2566: 2562: 2558: 2554: 2550: 2546: 2542: 2537: 2532: 2528: 2524: 2519: 2514: 2509: 2504: 2500: 2496: 2492: 2488: 2484: 2480: 2475: 2470: 2467:(7): 075008. 2466: 2462: 2457: 2453: 2449: 2445: 2441: 2437: 2433: 2428: 2423: 2419: 2415: 2410: 2409: 2405: 2397: 2393: 2389: 2385: 2381: 2377: 2373: 2369: 2362: 2359: 2354: 2350: 2346: 2342: 2338: 2334: 2327: 2324: 2320: 2314: 2311: 2306: 2302: 2298: 2294: 2289: 2284: 2280: 2276: 2269: 2266: 2261: 2257: 2253: 2249: 2245: 2241: 2236: 2235:gr-qc/9801099 2231: 2227: 2223: 2216: 2213: 2208: 2204: 2200: 2196: 2192: 2188: 2183: 2182:gr-qc/9511019 2178: 2174: 2170: 2163: 2160: 2155: 2149: 2145: 2138: 2135: 2130: 2126: 2122: 2118: 2114: 2110: 2105: 2100: 2096: 2092: 2085: 2082: 2077: 2073: 2069: 2065: 2061: 2057: 2052: 2051:gr-qc/0603114 2047: 2043: 2039: 2032: 2029: 2024: 2020: 2016: 2012: 2008: 2004: 1999: 1994: 1990: 1986: 1979: 1976: 1970: 1965: 1958: 1955: 1950: 1946: 1942: 1938: 1934: 1930: 1925: 1920: 1916: 1912: 1905: 1902: 1897: 1893: 1889: 1885: 1881: 1877: 1872: 1867: 1863: 1859: 1852: 1849: 1844: 1840: 1836: 1832: 1828: 1824: 1819: 1818:gr-qc/0602081 1814: 1810: 1806: 1799: 1796: 1791: 1787: 1783: 1779: 1775: 1771: 1767: 1762: 1757: 1753: 1749: 1745: 1738: 1735: 1730: 1726: 1722: 1718: 1714: 1710: 1705: 1700: 1696: 1692: 1685: 1682: 1677: 1673: 1669: 1665: 1661: 1657: 1656:Nucl. Phys. B 1653: 1646: 1643: 1637: 1634: 1629: 1625: 1621: 1617: 1613: 1609: 1604: 1599: 1596:(4): 044030. 1595: 1591: 1584: 1581: 1576: 1572: 1568: 1564: 1560: 1556: 1551: 1546: 1542: 1538: 1531: 1528: 1523: 1519: 1515: 1511: 1507: 1503: 1498: 1493: 1489: 1485: 1484:Phys. Lett. B 1478: 1475: 1470: 1466: 1462: 1458: 1454: 1450: 1445: 1444:gr-qc/0405104 1440: 1436: 1432: 1425: 1422: 1417: 1413: 1409: 1405: 1401: 1397: 1392: 1387: 1383: 1379: 1372: 1369: 1366: 1361: 1358: 1353: 1349: 1344: 1339: 1334: 1329: 1325: 1321: 1317: 1313: 1309: 1302: 1299: 1294: 1290: 1286: 1282: 1278: 1274: 1269: 1264: 1260: 1256: 1249: 1246: 1241: 1237: 1233: 1229: 1225: 1221: 1216: 1211: 1207: 1203: 1196: 1193: 1188: 1184: 1180: 1176: 1171: 1166: 1162: 1158: 1153: 1152:gr-qc/9801100 1148: 1144: 1140: 1133: 1130: 1125: 1121: 1117: 1113: 1109: 1105: 1100: 1099:gr-qc/0611154 1095: 1091: 1087: 1080: 1077: 1072: 1068: 1064: 1060: 1056: 1052: 1047: 1046:gr-qc/0606122 1042: 1038: 1034: 1027: 1025: 1021: 1015: 1010: 1003: 1000: 995: 991: 987: 983: 979: 975: 971: 967: 962: 961:gr-qc/0702065 957: 953: 949: 942: 939: 934: 930: 926: 922: 918: 914: 909: 904: 900: 896: 895:Phys. Lett. B 881: 878: 873: 869: 864: 859: 854: 849: 845: 841: 838:(6): 510–24. 837: 833: 829: 822: 819: 814: 810: 806: 802: 798: 794: 789: 784: 780: 776: 769: 767: 763: 758: 754: 750: 746: 742: 738: 733: 728: 724: 720: 713: 711: 707: 702: 698: 694: 690: 686: 682: 675: 673: 671: 667: 662: 658: 651: 648: 643: 639: 634: 629: 625: 621: 614: 610: 609:Freeman Dyson 604: 602: 600: 596: 590: 586: 583: 581: 578: 577: 573: 567: 562: 557: 555: 552: 546: 540: 537: 533: 530: 526: 523: 522:Freeman Dyson 519: 516: 512: 508: 505: 501: 497: 496: 492: 490: 486: 482: 480: 475: 470: 466: 458: 454: 450: 448: 446: 442: 438: 434: 430: 424: 416: 414: 412: 408: 404: 398: 396: 390: 387: 382: 380: 376: 372: 368: 364: 360: 357: 349: 347: 345: 341: 337: 312: 310: 306: 303: 299: 298:vacuum energy 293: 290: 286: 282: 276: 274: 270: 266: 262: 257: 254: 249: 245: 239: 237: 233: 229: 223: 219: 214: 210: 206: 202: 197: 195: 191: 187: 181: 179: 175: 169: 167: 163: 159: 155: 154:Lorentz group 151: 147: 144:replaces the 143: 139: 135: 133: 132:Freeman Dyson 129: 125: 121: 117: 112: 104: 102: 100: 96: 92: 91:Freeman Dyson 88: 84: 80: 75: 73: 69: 64: 62: 58: 57:stress–energy 54: 50: 46: 42: 38: 34: 30: 26: 22: 2654:Group theory 2596: 2580:. Springer. 2577: 2526: 2522: 2464: 2460: 2417: 2413: 2371: 2367: 2361: 2336: 2332: 2326: 2318: 2313: 2278: 2274: 2268: 2225: 2221: 2215: 2172: 2168: 2162: 2143: 2137: 2094: 2090: 2084: 2041: 2038:Phys. Rev. D 2037: 2031: 1988: 1984: 1978: 1957: 1914: 1910: 1904: 1864:(1): 27–36. 1861: 1857: 1851: 1808: 1804: 1798: 1790:the original 1751: 1747: 1737: 1694: 1690: 1684: 1662:(1): 76–96. 1659: 1655: 1645: 1636: 1593: 1590:Phys. Rev. D 1589: 1583: 1543:(23): 5225. 1540: 1536: 1530: 1487: 1483: 1477: 1434: 1430: 1424: 1381: 1377: 1371: 1360: 1315: 1311: 1301: 1258: 1254: 1248: 1208:(4): 44030. 1205: 1201: 1195: 1142: 1138: 1132: 1089: 1085: 1079: 1036: 1032: 1002: 951: 947: 941: 898: 894: 880: 835: 831: 821: 778: 774: 722: 718: 687:(10): 1605. 684: 680: 660: 656: 650: 623: 619: 553: 550: 487: 483: 468: 464: 461: 456: 452: 426: 399: 391: 383: 353: 313: 294: 288: 277: 258: 240: 236:translations 224: 217: 212: 208: 204: 198: 192:and not two 185: 182: 170: 136: 114: 105:Introduction 76: 65: 63:to sustain. 61:scalar field 24: 18: 2561:11449/70009 2529:: 175–184. 2339:: 396–411. 2281:(6): 1879. 986:11449/69891 954:: 381–395. 781:(2): 1–19. 511:Henri Bacry 350:High energy 261:homogeneous 120:Henri Bacry 89:. In 1972, 83:Henri Bacry 2644:Kinematics 2618:Categories 1917:(6): 045. 663:: 229–243. 591:References 367:kinematics 174:micrometre 2536:0710.0610 2513:0909.1074 2499:118544579 2474:0710.0315 2427:0805.2584 2396:121015516 2129:119368124 2023:119296100 1998:0902.2001 1969:0807.2186 1949:119399508 1896:250880550 1786:143773103 1628:119378100 1522:119447462 1469:118889785 1391:0812.3438 1293:119262177 1268:0808.1339 1240:119378100 1165:CiteSeerX 1014:0709.3947 788:0711.2274 757:119191753 732:0807.3009 386:contracts 359:contracts 336:inflation 322:Λ 302:de Sitter 281:curvature 265:isotropic 152:with the 138:Minkowski 116:De Sitter 33:spacetime 2452:14403086 2207:17974712 2076:30161988 1843:16361512 1729:16875852 1575:26557629 1416:18473868 1352:16592318 1187:16691405 1124:16706599 1071:11703342 994:16631274 933:13986319 872:16589298 813:15298756 611:(1972). 558:See also 542:Torsion. 520:In 1972 509:In 1968 441:momentum 340:Big Bang 244:holonomy 2569:1178656 2541:Bibcode 2479:Bibcode 2432:Bibcode 2376:Bibcode 2341:Bibcode 2293:Bibcode 2260:2027732 2240:Bibcode 2187:Bibcode 2109:Bibcode 2056:Bibcode 2003:Bibcode 1929:Bibcode 1876:Bibcode 1823:Bibcode 1766:Bibcode 1709:Bibcode 1664:Bibcode 1608:Bibcode 1555:Bibcode 1502:Bibcode 1449:Bibcode 1396:Bibcode 1320:Bibcode 1273:Bibcode 1220:Bibcode 1157:Bibcode 1104:Bibcode 1051:Bibcode 966:Bibcode 913:Bibcode 863:1063815 840:Bibcode 793:Bibcode 737:Bibcode 689:Bibcode 642:0522147 361:to the 194:scalars 55:or the 35:is the 2603:  2584:  2567:  2497:  2450:  2394:  2258:  2205:  2150:  2127:  2074:  2021:  1947:  1894:  1841:  1784:  1727:  1626:  1573:  1520:  1467:  1414:  1350:  1343:430307 1340:  1291:  1238:  1185:  1167:  1122:  1069:  992:  931:  870:  860:  811:  755:  640:  472:, the 437:energy 375:Wigner 228:boosts 190:vector 158:simple 2565:S2CID 2531:arXiv 2508:arXiv 2495:S2CID 2469:arXiv 2448:S2CID 2422:arXiv 2392:S2CID 2283:arXiv 2256:S2CID 2230:arXiv 2203:S2CID 2177:arXiv 2125:S2CID 2099:arXiv 2072:S2CID 2046:arXiv 2019:S2CID 1993:arXiv 1964:arXiv 1945:S2CID 1919:arXiv 1892:S2CID 1866:arXiv 1839:S2CID 1813:arXiv 1782:S2CID 1756:arXiv 1725:S2CID 1699:arXiv 1624:S2CID 1598:arXiv 1571:S2CID 1545:arXiv 1518:S2CID 1492:arXiv 1465:S2CID 1439:arXiv 1412:S2CID 1386:arXiv 1289:S2CID 1263:arXiv 1236:S2CID 1210:arXiv 1183:S2CID 1147:arXiv 1120:S2CID 1094:arXiv 1067:S2CID 1041:arXiv 1009:arXiv 990:S2CID 956:arXiv 929:S2CID 903:arXiv 809:S2CID 783:arXiv 753:S2CID 727:arXiv 616:(pdf) 371:Ä°nönĂŒ 305:group 201:SO(3) 178:SO(2) 2601:ISBN 2582:ISBN 2148:ISBN 1915:2005 1348:PMID 868:PMID 513:and 502:and 439:and 433:mass 373:and 354:The 263:and 230:are 122:and 85:and 2557:hdl 2549:doi 2527:962 2487:doi 2440:doi 2384:doi 2349:doi 2337:910 2301:doi 2279:137 2248:doi 2226:196 2195:doi 2117:doi 2064:doi 2011:doi 1937:doi 1884:doi 1831:doi 1774:doi 1717:doi 1672:doi 1660:195 1616:doi 1563:doi 1510:doi 1488:510 1457:doi 1404:doi 1338:PMC 1328:doi 1281:doi 1228:doi 1175:doi 1112:doi 1059:doi 982:hdl 974:doi 952:910 921:doi 899:538 858:PMC 848:doi 801:doi 745:doi 697:doi 628:doi 405:to 381:.) 246:of 220:→ ∞ 148:of 70:of 31:of 19:In 2620:: 2563:. 2555:. 2547:. 2539:. 2525:. 2493:. 2485:. 2477:. 2465:25 2463:. 2446:. 2438:. 2430:. 2418:17 2416:. 2390:. 2382:. 2372:48 2370:. 2347:. 2335:. 2299:. 2291:. 2277:. 2254:. 2246:. 2238:. 2224:. 2201:. 2193:. 2185:. 2171:. 2123:. 2115:. 2107:. 2093:. 2070:. 2062:. 2054:. 2042:73 2040:. 2017:. 2009:. 2001:. 1989:26 1987:. 1943:. 1935:. 1927:. 1913:. 1890:. 1882:. 1874:. 1862:48 1860:. 1837:. 1829:. 1821:. 1809:38 1807:. 1780:. 1772:. 1764:. 1752:32 1750:. 1746:. 1723:. 1715:. 1707:. 1695:20 1693:. 1670:. 1654:. 1622:. 1614:. 1606:. 1594:71 1592:. 1569:. 1561:. 1553:. 1541:20 1539:. 1516:. 1508:. 1500:. 1486:. 1463:. 1455:. 1447:. 1435:13 1433:. 1410:. 1402:. 1394:. 1382:15 1380:. 1346:. 1336:. 1326:. 1316:73 1314:. 1310:. 1287:. 1279:. 1271:. 1259:48 1257:. 1234:. 1226:. 1218:. 1206:71 1204:. 1181:. 1173:. 1163:. 1155:. 1143:16 1141:. 1118:. 1110:. 1102:. 1090:27 1088:. 1065:. 1057:. 1049:. 1037:24 1035:. 1023:^ 988:. 980:. 972:. 964:. 950:. 927:. 919:. 911:. 897:. 866:. 856:. 846:. 836:39 834:. 830:. 807:. 799:. 791:. 779:39 777:. 765:^ 751:. 743:. 735:. 723:17 721:. 709:^ 695:. 683:. 669:^ 661:20 659:. 638:MR 636:. 624:78 622:. 618:. 598:^ 467:â‰Ș 455:â‰Ș 447:. 435:, 413:. 346:. 311:. 275:. 234:, 209:ÎŒm 101:. 23:, 2609:. 2590:. 2571:. 2559:: 2551:: 2543:: 2533:: 2516:. 2510:: 2501:. 2489:: 2481:: 2471:: 2454:. 2442:: 2434:: 2424:: 2398:. 2386:: 2378:: 2355:. 2351:: 2343:: 2307:. 2303:: 2295:: 2285:: 2262:. 2250:: 2242:: 2232:: 2209:. 2197:: 2189:: 2179:: 2173:8 2156:. 2131:. 2119:: 2111:: 2101:: 2095:2 2078:. 2066:: 2058:: 2048:: 2025:. 2013:: 2005:: 1995:: 1972:. 1966:: 1951:. 1939:: 1931:: 1921:: 1898:. 1886:: 1878:: 1868:: 1845:. 1833:: 1825:: 1815:: 1776:: 1768:: 1758:: 1731:. 1719:: 1711:: 1701:: 1678:. 1674:: 1666:: 1630:. 1618:: 1610:: 1600:: 1577:. 1565:: 1557:: 1547:: 1524:. 1512:: 1504:: 1494:: 1471:. 1459:: 1451:: 1441:: 1418:. 1406:: 1398:: 1388:: 1354:. 1330:: 1322:: 1295:. 1283:: 1275:: 1265:: 1242:. 1230:: 1222:: 1212:: 1189:. 1177:: 1159:: 1149:: 1126:. 1114:: 1106:: 1096:: 1073:. 1061:: 1053:: 1043:: 1017:. 1011:: 996:. 984:: 976:: 968:: 958:: 935:. 923:: 915:: 905:: 891:Λ 887:Λ 874:. 850:: 842:: 815:. 803:: 795:: 785:: 759:. 747:: 739:: 729:: 703:. 699:: 691:: 685:9 644:. 630:: 531:. 469:c 465:v 457:c 453:v 289:Λ 218:c 213:m 205:ÎŒ 186:R

Index

mathematical physics
symmetry group
spacetime
indefinite orthogonal group
de Sitter space
general relativity
vacuum solution
cosmological constant
stress–energy
scalar field
Poincaré group
special relativity
Luigi FantappiĂš
Henri Bacry
Jean-Marc LĂ©vy-Leblond
Freeman Dyson
accelerating expansion of the universe
doubly special relativity
de Sitter space
De Sitter
Henri Bacry
Jean-Marc LĂ©vy-Leblond
de Sitter group
Freeman Dyson
Minkowski
special relativity
Galilean group
Newtonian mechanics
Lorentz group
simple

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑