Knowledge (XXG)

Vacuum solution (general relativity)

Source đź“ť

36: 552:, so we must expect the gravitational field itself to possess energy, and it does. However, determining the precise location of this gravitational field energy is technically problematical in general relativity, by its very nature of the clean separation into a universal gravitational interaction and "all the rest". 555:
The fact that the gravitational field itself possesses energy yields a way to understand the nonlinearity of the Einstein field equation: this gravitational field energy itself produces more gravity. (This is described as "the gravity of gravity", or by saying that "gravity gravitates".) This means
337: 712:
Several of the families mentioned here, members of which are obtained by solving an appropriate linear or nonlinear, real or complex partial differential equation, turn out to be very closely related, in perhaps surprising ways.
425: 733: 53: 498: 542: 208: 856: 768: 100: 72: 837: 183: 79: 636: 119: 86: 609:(Robert M. Kerns and Walter J. Wild 1982) (a Schwarzschild object immersed in an ambient "almost uniform" gravitational field), 68: 57: 198:
vanishes. This follows from the fact that these two second rank tensors stand in a kind of dual relationship; they are the
832:. Cambridge monographs on mathematical physics (2nd ed.). Cambridge, UK ; New York: Cambridge University Press. 349: 603:(a famous counterexample describing the exterior gravitational field of an isolated object with strange properties), 156:
also vanishes identically, so that no matter or non-gravitational fields are present. These are distinct from the
46: 616: 153: 93: 721: 435: 149: 630: 343: 157: 622: 612: 576: 169: 165: 161: 606: 544:
in a vacuum region, it might seem that according to general relativity, vacuum regions must contain no
445: 588: 758: 694: 600: 572: 431: 141: 683: 738: 717: 705: 676: 133: 665: 654: 585:(which is a model developed by E. A. Milne describing an empty universe which has no curvature) 833: 824: 801: 511: 332:{\displaystyle G_{ab}=R_{ab}-{\frac {R}{2}}\,g_{ab},\;\;R_{ab}=G_{ab}-{\frac {G}{2}}\,g_{ab}} 793: 687: 763: 698: 145: 645:(An anisotropic solution, used to study gravitational chaos in three or more dimensions). 639:(the circularly polarized sinusoidal gravitational wave, another famous counterexample). 679:(Frederick J. Ernst 1968) (the family of all stationary axisymmetric vacuum solutions), 615:(two Kerr objects sharing the same axis of rotation, but held apart by unphysical zero 549: 439: 850: 642: 626: 164:
in addition to the gravitational field. Vacuum solutions are also distinct from the
658: 195: 594: 582: 35: 672:
1925) (the family of all cylindrically symmetric nonrotating vacuum solutions),
194:
It is a mathematical fact that the Einstein tensor vanishes if and only if the
17: 708:(Robert H. Gowdy) (cosmological models constructed using gravitational waves), 669: 442:
plus terms built out of the Ricci tensor: the Weyl and Riemann tensors agree,
805: 179:
in a Lorentzian manifold is a region in which the Einstein tensor vanishes.
560:
according to general relativity than it is according to Newton's theory.
172:
term (and thus, the lambdavacuums can be taken as cosmological models).
797: 781: 545: 591:(which describes the spacetime geometry around a spherical mass), 701:) (the family of all colliding gravitational plane wave models), 690:) (the family of all cylindrically symmetric vacuum solutions), 649:
These all belong to one or more general families of solutions:
29: 619:"cables" going out to suspension points infinitely removed), 568:
Well-known examples of explicit vacuum solutions include:
168:, where the only term in the stress–energy tensor is the 597:(which describes the geometry around a rotating object), 182:
Vacuum solutions are a special case of the more general
500:, in some region if and only if it is a vacuum region. 556:
that the gravitational field outside the Sun is a bit
734:
Introduction to the mathematics of general relativity
514: 448: 352: 211: 60:. Unsourced material may be challenged and removed. 536: 492: 420:{\displaystyle R={R^{a}}_{a},\;\;G={G^{a}}_{a}=-R} 419: 331: 27:Lorentzian manifold with vanishing Einstein tensor 769:Max Planck Institute for Gravitational Physics 716:In addition to these, we also have the vacuum 661:) (the family of all static vacuum solutions), 430:A third equivalent condition follows from the 826:Exact solutions of Einstein's field equations 8: 382: 381: 272: 271: 519: 513: 475: 453: 447: 402: 395: 390: 372: 365: 360: 351: 320: 315: 305: 293: 277: 259: 254: 244: 232: 216: 210: 120:Learn how and when to remove this message 69:"Vacuum solution" general relativity 782:"Zur Theorie binärer Gravitationsfelder" 148:vanishes identically. According to the 750: 548:. But the gravitational field can do 857:Exact solutions in general relativity 575:(which describes empty space with no 184:exact solutions in general relativity 7: 58:adding citations to reliable sources 25: 493:{\displaystyle R_{abcd}=C_{abcd}} 34: 45:needs additional citations for 160:, which take into account the 1: 823:Stephani, Hans, ed. (2003). 873: 780:Beck, Guido (1925-12-01). 722:gravitational plane waves 617:active gravitational mass 759:"The gravity of gravity" 637:Oszváth–SchĂĽcking vacuum 537:{\displaystyle T^{ab}=0} 436:Riemann curvature tensor 158:electrovacuum solutions 150:Einstein field equation 786:Zeitschrift fĂĽr Physik 757:Markus Pössel (2007), 538: 494: 421: 333: 166:lambdavacuum solutions 152:, this means that the 577:cosmological constant 539: 495: 440:Weyl curvature tensor 422: 334: 190:Equivalent conditions 170:cosmological constant 162:electromagnetic field 720:, which include the 631:colliding plane wave 589:Schwarzschild vacuum 512: 504:Gravitational energy 446: 350: 209: 154:stress–energy tensor 54:improve this article 623:Khan–Penrose vacuum 573:Minkowski spacetime 432:Ricci decomposition 142:Lorentzian manifold 798:10.1007/BF01328358 739:Topological defect 718:pp-wave spacetimes 613:double Kerr vacuum 534: 490: 417: 329: 175:More generally, a 134:general relativity 839:978-0-521-46136-8 607:Kerns–Wild vacuum 313: 252: 130: 129: 122: 104: 16:(Redirected from 864: 843: 831: 810: 809: 777: 771: 755: 629:1971) (a simple 625:(K. A. Khan and 543: 541: 540: 535: 527: 526: 499: 497: 496: 491: 489: 488: 467: 466: 438:as a sum of the 426: 424: 423: 418: 407: 406: 401: 400: 399: 377: 376: 371: 370: 369: 338: 336: 335: 330: 328: 327: 314: 306: 301: 300: 285: 284: 267: 266: 253: 245: 240: 239: 224: 223: 125: 118: 114: 111: 105: 103: 62: 38: 30: 21: 872: 871: 867: 866: 865: 863: 862: 861: 847: 846: 840: 829: 822: 819: 814: 813: 779: 778: 774: 764:Einstein Online 756: 752: 747: 730: 699:George Szekeres 601:Taub–NUT vacuum 566: 515: 510: 509: 506: 471: 449: 444: 443: 391: 389: 361: 359: 348: 347: 316: 289: 273: 255: 228: 212: 207: 206: 202:of each other: 192: 146:Einstein tensor 138:vacuum solution 126: 115: 109: 106: 63: 61: 51: 39: 28: 23: 22: 18:Vacuum solution 15: 12: 11: 5: 870: 868: 860: 859: 849: 848: 845: 844: 838: 818: 815: 812: 811: 792:(1): 713–728. 772: 749: 748: 746: 743: 742: 741: 736: 729: 726: 710: 709: 702: 695:Szekeres vacua 691: 680: 673: 662: 647: 646: 640: 634: 620: 610: 604: 598: 592: 586: 580: 565: 562: 533: 530: 525: 522: 518: 505: 502: 487: 484: 481: 478: 474: 470: 465: 462: 459: 456: 452: 416: 413: 410: 405: 398: 394: 388: 385: 380: 375: 368: 364: 358: 355: 340: 339: 326: 323: 319: 312: 309: 304: 299: 296: 292: 288: 283: 280: 276: 270: 265: 262: 258: 251: 248: 243: 238: 235: 231: 227: 222: 219: 215: 191: 188: 128: 127: 42: 40: 33: 26: 24: 14: 13: 10: 9: 6: 4: 3: 2: 869: 858: 855: 854: 852: 841: 835: 828: 827: 821: 820: 816: 807: 803: 799: 795: 791: 788:(in German). 787: 783: 776: 773: 770: 766: 765: 760: 754: 751: 744: 740: 737: 735: 732: 731: 727: 725: 723: 719: 714: 707: 703: 700: 696: 692: 689: 688:JĂĽrgen Ehlers 685: 681: 678: 674: 671: 667: 663: 660: 656: 652: 651: 650: 644: 643:Kasner metric 641: 638: 635: 632: 628: 627:Roger Penrose 624: 621: 618: 614: 611: 608: 605: 602: 599: 596: 593: 590: 587: 584: 581: 578: 574: 571: 570: 569: 563: 561: 559: 553: 551: 547: 531: 528: 523: 520: 516: 503: 501: 485: 482: 479: 476: 472: 468: 463: 460: 457: 454: 450: 441: 437: 433: 428: 414: 411: 408: 403: 396: 392: 386: 383: 378: 373: 366: 362: 356: 353: 345: 324: 321: 317: 310: 307: 302: 297: 294: 290: 286: 281: 278: 274: 268: 263: 260: 256: 249: 246: 241: 236: 233: 229: 225: 220: 217: 213: 205: 204: 203: 201: 200:trace reverse 197: 189: 187: 185: 180: 178: 177:vacuum region 173: 171: 167: 163: 159: 155: 151: 147: 143: 139: 135: 124: 121: 113: 102: 99: 95: 92: 88: 85: 81: 78: 74: 71: â€“  70: 66: 65:Find sources: 59: 55: 49: 48: 43:This article 41: 37: 32: 31: 19: 825: 789: 785: 775: 762: 753: 715: 711: 684:Ehlers vacua 659:Hermann Weyl 648: 567: 557: 554: 507: 429: 341: 199: 196:Ricci tensor 193: 181: 176: 174: 137: 131: 116: 110:October 2023 107: 97: 90: 83: 76: 64: 52:Please help 47:verification 44: 706:Gowdy vacua 677:Ernst vacua 595:Kerr vacuum 583:Milne model 745:References 670:Guido Beck 666:Beck vacua 655:Weyl vacua 342:where the 80:newspapers 806:0044-3328 412:− 303:− 242:− 851:Category 728:See also 564:Examples 558:stronger 817:Sources 633:model), 434:of the 94:scholar 836:  804:  546:energy 508:Since 344:traces 144:whose 96:  89:  82:  75:  67:  830:(PDF) 140:is a 101:JSTOR 87:books 834:ISBN 802:ISSN 704:the 693:the 682:the 675:the 664:the 653:the 550:work 346:are 136:, a 73:news 794:doi 132:In 56:by 853:: 800:. 790:33 784:. 767:, 761:, 724:. 427:. 186:. 842:. 808:. 796:: 697:( 686:( 668:( 657:( 579:) 532:0 529:= 524:b 521:a 517:T 486:d 483:c 480:b 477:a 473:C 469:= 464:d 461:c 458:b 455:a 451:R 415:R 409:= 404:a 397:a 393:G 387:= 384:G 379:, 374:a 367:a 363:R 357:= 354:R 325:b 322:a 318:g 311:2 308:G 298:b 295:a 291:G 287:= 282:b 279:a 275:R 269:, 264:b 261:a 257:g 250:2 247:R 237:b 234:a 230:R 226:= 221:b 218:a 214:G 123:) 117:( 112:) 108:( 98:· 91:· 84:· 77:· 50:. 20:)

Index

Vacuum solution

verification
improve this article
adding citations to reliable sources
"Vacuum solution" general relativity
news
newspapers
books
scholar
JSTOR
Learn how and when to remove this message
general relativity
Lorentzian manifold
Einstein tensor
Einstein field equation
stress–energy tensor
electrovacuum solutions
electromagnetic field
lambdavacuum solutions
cosmological constant
exact solutions in general relativity
Ricci tensor
traces
Ricci decomposition
Riemann curvature tensor
Weyl curvature tensor
energy
work
Minkowski spacetime

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑