Knowledge (XXG)

Dehn twist

Source 📝

62: 439: 1242: 423: 1054: 17: 792: 526: 686: 883: 21: 913: 378: 18: 173: 1197: 1128: 20: 270: 226: 819: 590: 560: 697: 1383: 1357: 1324: 1223: 1291: 442:
The automorphism on the fundamental group of the torus induced by the self-homeomorphism of the Dehn twist along one of the generators of the torus.
1326:
explicit curves generate the mapping class group (this is called by the punning name "Lickorish twist theorem"); this number was later improved by
467: 19: 1434: 602: 1262: 1401: 831: 1049:{\displaystyle {T_{a}}_{\ast }:\pi _{1}\left(\mathbb {T} ^{2}\right)\to \pi _{1}\left(\mathbb {T} ^{2}\right):\mapsto \left} 304: 1388:
Lickorish also obtained an analogous result for non-orientable surfaces, which require not only Dehn twists, but also "
1500: 130: 1426: 1505: 1327: 1133: 1070: 593: 106: 794:
of the annulus, through the homeomorphisms of the annulus to an open cylinder to the neighborhood of
94: 1270: 451: 61: 1297:
later rediscovered this result with a simpler proof and in addition showed that Dehn twists along
787:{\displaystyle \left(e^{i\theta },t\right)\mapsto \left(e^{i\left(\theta +2\pi t\right)},t\right)} 438: 231: 201: 1461: 1294: 904: 797: 568: 538: 46: 30: 1430: 114: 1418: 1406: 1362: 1060: 565:
Given the choice of gluing homeomorphism in the figure, a tubular neighborhood of the curve
1485: 1472: 1456: 1482: 1469: 1453: 1449: 1389: 1333: 1300: 422: 1477:
W. B. R. Lickorish, "A finite set of generators for the homotopy group of a 2-manifold",
1202: 1241: 592:
will look like a band linked around a doughnut. This neighborhood is homeomorphic to an
1276: 903:
A homeomorphism between topological spaces induces a natural isomorphism between their
195: 1494: 118: 82: 42: 110: 34: 25:
A positive Dehn twist applied to the cylinder modifies the green curve as shown.
1269:
classes of orientation-preserving homeomorphisms of any closed, oriented
1266: 1258: 50: 521:{\displaystyle \mathbb {T} ^{2}\cong \mathbb {R} ^{2}/\mathbb {Z} ^{2}.} 403: 1448:, Chelwood Gate, 1977), pp. 44–47, Lecture Notes in Math., 722, 1440:
Stephen P. Humphries, "Generators for the mapping class group," in:
447: 437: 421: 78: 60: 15: 426:
An example of a Dehn twist on the torus, along the closed curve
1464:, "A representation of orientable combinatorial 3-manifolds." 434:
is an edge of the fundamental polygon representing the torus.
681:{\displaystyle a(0;0,1)=\{z\in \mathbb {C} :0<|z|<1\}} 398:
Dehn twists can also be defined on a non-orientable surface
878:{\displaystyle T_{a}:\mathbb {T} ^{2}\to \mathbb {T} ^{2}} 65:
General Dehn twist on a compact surface represented by a
888:
This self homeomorphism acts on the closed curve along
1365: 1336: 1303: 1279: 1205: 1136: 1073: 916: 834: 800: 700: 605: 571: 541: 470: 307: 234: 204: 133: 1423:
Automorphisms of Surfaces After Nielsen and Thurston
892:. In the tubular neighborhood it takes the curve of 373:{\displaystyle f(s,t)=\left(se^{i2\pi t},t\right).} 1377: 1351: 1318: 1285: 1249:− 1 curves from the twist theorem, shown here for 1217: 1191: 1122: 1048: 877: 813: 786: 680: 584: 554: 520: 372: 264: 220: 167: 531:Let a closed curve be the line along the edge 168:{\displaystyle c\subset A\cong S^{1}\times I.} 8: 1385:, which he showed was the minimal number. 675: 633: 694:By extending to the torus the twisting map 290:to itself which is the identity outside of 1364: 1335: 1302: 1278: 1204: 1150: 1143: 1138: 1135: 1087: 1080: 1075: 1072: 1026: 992: 988: 987: 976: 959: 955: 954: 943: 930: 923: 918: 915: 869: 865: 864: 854: 850: 849: 839: 833: 805: 799: 742: 710: 699: 664: 656: 643: 642: 604: 576: 570: 546: 540: 509: 505: 504: 498: 492: 488: 487: 477: 473: 472: 469: 341: 306: 233: 209: 203: 150: 132: 1240: 821:, yields a Dehn twist of the torus by 1442:Topology of low-dimensional manifolds 7: 1261:that maps of this form generate the 907:. Therefore one has an automorphism 1192:{\displaystyle {T_{a}}_{\ast }()=} 1123:{\displaystyle {T_{a}}_{\ast }()=} 14: 1186: 1174: 1168: 1165: 1159: 1156: 1117: 1111: 1105: 1102: 1096: 1093: 1038: 1032: 1014: 1011: 1005: 969: 860: 730: 665: 657: 627: 609: 323: 311: 256: 241: 1: 1225:is the path travelled around 896:once along the curve of  402:, provided one starts with a 1479:Proc. Cambridge Philos. Soc. 265:{\displaystyle \theta \in ,} 221:{\displaystyle e^{i\theta }} 1481:60 (1964), 769–778. 1402:Fenchel–Nielsen coordinates 814:{\displaystyle \gamma _{a}} 585:{\displaystyle \gamma _{a}} 555:{\displaystyle \gamma _{a}} 1522: 1427:Cambridge University Press 1446:Proc. Second Sussex Conf. 1379: 1378:{\displaystyle g>1} 1353: 1320: 1287: 1254: 1219: 1193: 1124: 1050: 879: 815: 788: 691:in the complex plane. 682: 586: 556: 522: 443: 435: 374: 266: 222: 169: 70: 26: 1468:(2) 76 1962 531—540. 1380: 1354: 1321: 1288: 1244: 1220: 1194: 1125: 1067:in the torus. Notice 1051: 880: 816: 789: 683: 587: 557: 523: 441: 425: 375: 267: 223: 170: 64: 41:is a certain type of 24: 1421:, Steven A Bleiler, 1363: 1352:{\displaystyle 2g+1} 1334: 1328:Stephen P. Humphries 1319:{\displaystyle 3g-1} 1301: 1277: 1203: 1134: 1071: 1063:of the closed curve 914: 832: 798: 698: 603: 569: 539: 468: 406:simple closed curve 305: 232: 202: 131: 95:tubular neighborhood 1263:mapping class group 1257:It is a theorem of 1237:Mapping class group 1218:{\displaystyle b*a} 452:fundamental polygon 79:simple closed curve 1501:Geometric topology 1462:W. B. R. Lickorish 1375: 1349: 1316: 1295:W. B. R. Lickorish 1283: 1255: 1215: 1189: 1120: 1046: 905:fundamental groups 875: 811: 784: 678: 582: 552: 518: 444: 436: 370: 262: 218: 165: 117:of a circle and a 71: 43:self-homeomorphism 31:geometric topology 27: 1286:{\displaystyle g} 450:represented by a 430:, in blue, where 115:Cartesian product 49:(two-dimensional 22: 1513: 1452:, Berlin, 1979. 1419:Andrew J. Casson 1407:Lantern relation 1390:Y-homeomorphisms 1384: 1382: 1381: 1376: 1358: 1356: 1355: 1350: 1325: 1323: 1322: 1317: 1292: 1290: 1289: 1284: 1224: 1222: 1221: 1216: 1198: 1196: 1195: 1190: 1155: 1154: 1149: 1148: 1147: 1129: 1127: 1126: 1121: 1092: 1091: 1086: 1085: 1084: 1061:homotopy classes 1055: 1053: 1052: 1047: 1045: 1041: 1031: 1030: 1001: 997: 996: 991: 981: 980: 968: 964: 963: 958: 948: 947: 935: 934: 929: 928: 927: 884: 882: 881: 876: 874: 873: 868: 859: 858: 853: 844: 843: 820: 818: 817: 812: 810: 809: 793: 791: 790: 785: 783: 779: 772: 771: 770: 766: 729: 725: 718: 717: 687: 685: 684: 679: 668: 660: 646: 591: 589: 588: 583: 581: 580: 561: 559: 558: 553: 551: 550: 527: 525: 524: 519: 514: 513: 508: 502: 497: 496: 491: 482: 481: 476: 391:about the curve 379: 377: 376: 371: 366: 362: 355: 354: 286:be the map from 278: 271: 269: 268: 263: 227: 225: 224: 219: 217: 216: 174: 172: 171: 166: 155: 154: 23: 1521: 1520: 1516: 1515: 1514: 1512: 1511: 1510: 1491: 1490: 1415: 1398: 1361: 1360: 1332: 1331: 1299: 1298: 1275: 1274: 1239: 1201: 1200: 1139: 1137: 1132: 1131: 1076: 1074: 1069: 1068: 1059:where are the 1022: 1021: 1017: 986: 982: 972: 953: 949: 939: 919: 917: 912: 911: 863: 848: 835: 830: 829: 801: 796: 795: 750: 746: 738: 737: 733: 706: 705: 701: 696: 695: 601: 600: 572: 567: 566: 542: 537: 536: 503: 486: 471: 466: 465: 420: 337: 333: 329: 303: 302: 273: 230: 229: 205: 200: 199: 146: 129: 128: 59: 16: 12: 11: 5: 1519: 1517: 1509: 1508: 1506:Homeomorphisms 1503: 1493: 1492: 1489: 1488: 1475: 1459: 1438: 1414: 1411: 1410: 1409: 1404: 1397: 1394: 1374: 1371: 1368: 1348: 1345: 1342: 1339: 1315: 1312: 1309: 1306: 1282: 1238: 1235: 1214: 1211: 1208: 1188: 1185: 1182: 1179: 1176: 1173: 1170: 1167: 1164: 1161: 1158: 1153: 1146: 1142: 1119: 1116: 1113: 1110: 1107: 1104: 1101: 1098: 1095: 1090: 1083: 1079: 1057: 1056: 1044: 1040: 1037: 1034: 1029: 1025: 1020: 1016: 1013: 1010: 1007: 1004: 1000: 995: 990: 985: 979: 975: 971: 967: 962: 957: 952: 946: 942: 938: 933: 926: 922: 886: 885: 872: 867: 862: 857: 852: 847: 842: 838: 808: 804: 782: 778: 775: 769: 765: 762: 759: 756: 753: 749: 745: 741: 736: 732: 728: 724: 721: 716: 713: 709: 704: 689: 688: 677: 674: 671: 667: 663: 659: 655: 652: 649: 645: 641: 638: 635: 632: 629: 626: 623: 620: 617: 614: 611: 608: 579: 575: 549: 545: 529: 528: 517: 512: 507: 501: 495: 490: 485: 480: 475: 419: 416: 381: 380: 369: 365: 361: 358: 353: 350: 347: 344: 340: 336: 332: 328: 325: 322: 319: 316: 313: 310: 261: 258: 255: 252: 249: 246: 243: 240: 237: 215: 212: 208: 196:complex number 176: 175: 164: 161: 158: 153: 149: 145: 142: 139: 136: 58: 55: 33:, a branch of 13: 10: 9: 6: 4: 3: 2: 1518: 1507: 1504: 1502: 1499: 1498: 1496: 1487: 1484: 1480: 1476: 1474: 1471: 1467: 1466:Ann. of Math. 1463: 1460: 1458: 1455: 1451: 1447: 1443: 1439: 1436: 1435:0-521-34985-0 1432: 1428: 1424: 1420: 1417: 1416: 1412: 1408: 1405: 1403: 1400: 1399: 1395: 1393: 1391: 1386: 1372: 1369: 1366: 1346: 1343: 1340: 1337: 1329: 1313: 1310: 1307: 1304: 1296: 1280: 1272: 1268: 1264: 1260: 1252: 1248: 1243: 1236: 1234: 1232: 1228: 1212: 1209: 1206: 1183: 1180: 1177: 1171: 1162: 1151: 1144: 1140: 1114: 1108: 1099: 1088: 1081: 1077: 1066: 1062: 1042: 1035: 1027: 1023: 1018: 1008: 1002: 998: 993: 983: 977: 973: 965: 960: 950: 944: 940: 936: 931: 924: 920: 910: 909: 908: 906: 901: 899: 895: 891: 870: 855: 845: 840: 836: 828: 827: 826: 824: 806: 802: 780: 776: 773: 767: 763: 760: 757: 754: 751: 747: 743: 739: 734: 726: 722: 719: 714: 711: 707: 702: 692: 672: 669: 661: 653: 650: 647: 639: 636: 630: 624: 621: 618: 615: 612: 606: 599: 598: 597: 595: 577: 573: 563: 547: 543: 534: 515: 510: 499: 493: 483: 478: 464: 463: 462: 461: 457: 453: 449: 446:Consider the 440: 433: 429: 424: 417: 415: 413: 409: 405: 401: 396: 394: 390: 386: 367: 363: 359: 356: 351: 348: 345: 342: 338: 334: 330: 326: 320: 317: 314: 308: 301: 300: 299: 297: 293: 289: 285: 280: 276: 259: 253: 250: 247: 244: 238: 235: 213: 210: 206: 197: 193: 189: 185: 182:coordinates ( 181: 162: 159: 156: 151: 147: 143: 140: 137: 134: 127: 126: 125: 123: 120: 119:unit interval 116: 112: 108: 104: 100: 96: 92: 88: 84: 81:in a closed, 80: 76: 73:Suppose that 68: 63: 56: 54: 52: 48: 44: 40: 36: 32: 1478: 1465: 1445: 1441: 1422: 1387: 1256: 1250: 1246: 1230: 1226: 1064: 1058: 902: 897: 893: 889: 887: 822: 693: 690: 564: 532: 530: 459: 455: 445: 431: 427: 411: 407: 399: 397: 392: 388: 384: 382: 295: 291: 287: 283: 281: 274: 198:of the form 191: 187: 183: 179: 177: 121: 111:homeomorphic 102: 98: 90: 86: 74: 72: 66: 38: 28: 454:with edges 294:and inside 35:mathematics 1495:Categories 1413:References 389:Dehn twist 83:orientable 57:Definition 39:Dehn twist 1311:− 1293:surface. 1210:∗ 1181:∗ 1152:∗ 1089:∗ 1015:↦ 974:π 970:→ 941:π 932:∗ 861:→ 803:γ 761:π 752:θ 731:↦ 715:θ 640:∈ 574:γ 544:γ 484:≅ 349:π 254:π 239:∈ 236:θ 214:θ 157:× 144:≅ 138:⊂ 1450:Springer 1429:, 1988. 1396:See also 1259:Max Dehn 1199:, where 298:we have 277:∈ 190:) where 101:. Then 85:surface 51:manifold 1486:0171269 1473:0151948 1457:0547453 1267:isotopy 596:, say 594:annulus 535:called 418:Example 404:2-sided 113:to the 107:annulus 89:. Let 47:surface 1433:  1359:, for 105:is an 1271:genus 1245:The 3 1229:then 448:torus 387:is a 383:Then 228:with 194:is a 178:Give 93:be a 77:is a 69:-gon. 45:of a 1431:ISBN 1370:> 1253:= 3. 1130:and 670:< 654:< 458:and 395:. 282:Let 279:. 272:and 37:, a 1392:." 1330:to 1265:of 410:on 124:: 97:of 53:). 29:In 1497:: 1483:MR 1470:MR 1454:MR 1425:, 1233:. 900:. 825:. 562:. 414:. 186:, 109:, 1444:( 1437:. 1373:1 1367:g 1347:1 1344:+ 1341:g 1338:2 1314:1 1308:g 1305:3 1281:g 1273:- 1251:g 1247:g 1231:a 1227:b 1213:a 1207:b 1187:] 1184:a 1178:b 1175:[ 1172:= 1169:) 1166:] 1163:b 1160:[ 1157:( 1145:a 1141:T 1118:] 1115:a 1112:[ 1109:= 1106:) 1103:] 1100:a 1097:[ 1094:( 1082:a 1078:T 1065:x 1043:] 1039:) 1036:x 1033:( 1028:a 1024:T 1019:[ 1012:] 1009:x 1006:[ 1003:: 999:) 994:2 989:T 984:( 978:1 966:) 961:2 956:T 951:( 945:1 937:: 925:a 921:T 898:a 894:b 890:b 871:2 866:T 856:2 851:T 846:: 841:a 837:T 823:a 807:a 781:) 777:t 774:, 768:) 764:t 758:2 755:+ 748:( 744:i 740:e 735:( 727:) 723:t 720:, 712:i 708:e 703:( 676:} 673:1 666:| 662:z 658:| 651:0 648:: 644:C 637:z 634:{ 631:= 628:) 625:1 622:, 619:0 616:; 613:0 610:( 607:a 578:a 548:a 533:a 516:. 511:2 506:Z 500:/ 494:2 489:R 479:2 474:T 460:b 456:a 432:a 428:a 412:S 408:c 400:S 393:c 385:f 368:. 364:) 360:t 357:, 352:t 346:2 343:i 339:e 335:s 331:( 327:= 324:) 321:t 318:, 315:s 312:( 309:f 296:A 292:A 288:S 284:f 275:t 260:, 257:] 251:2 248:, 245:0 242:[ 211:i 207:e 192:s 188:t 184:s 180:A 163:. 160:I 152:1 148:S 141:A 135:c 122:I 103:A 99:c 91:A 87:S 75:c 67:n

Index

geometric topology
mathematics
self-homeomorphism
surface
manifold

simple closed curve
orientable
tubular neighborhood
annulus
homeomorphic
Cartesian product
unit interval
complex number
2-sided


torus
fundamental polygon
annulus
fundamental groups
homotopy classes

Max Dehn
mapping class group
isotopy
genus
W. B. R. Lickorish
Stephen P. Humphries
Y-homeomorphisms

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.