Knowledge

Depth (ring theory)

Source đź“ť

997:
and the depth of a module over a commutative Noetherian local ring are complementary to each other. This is the content of the Auslander–Buchsbaum formula, which is not only of fundamental theoretical importance, but also provides an effective way to compute the depth of a module. Suppose that
554: 1216: 116: 848: 1345: 1389: 1268: 1047: 963: 919: 759: 625: 601: 1461: 145: 895: 1507: 370: 307: 1481: 1365: 1312: 1292: 1244: 1107: 1087: 1067: 1016: 983: 939: 868: 799: 779: 728: 689: 669: 645: 577: 438: 414: 390: 347: 327: 284: 261: 241: 221: 201: 169: 446: 1119: 1543: 1509:) with an embedded double point at the origin, has depth zero at the origin, but dimension one: this gives an example of a ring which is not 1568: 1110: 48: 1392: 1531: 36:. Although depth can be defined more generally, the most common case considered is the case of modules over a commutative 1588: 57: 802: 699: 695: 264: 1510: 648: 1583: 1563:. Cambridge Studies in Advanced Mathematics, 39. Cambridge University Press, Cambridge, 1993. xii+403 pp. 807: 1317: 1370: 1249: 1028: 994: 944: 900: 740: 606: 582: 44: 33: 1023: 735: 172: 21: 17: 1401: 29: 1564: 1539: 1271: 124: 1553: 873: 1549: 1535: 171:. Depth is used to define classes of rings and modules with good properties, for example, 148: 37: 1486: 549:{\displaystyle \mathrm {depth} _{I}(M)=\min\{i:\operatorname {Ext} ^{i}(R/I,M)\neq 0\}.} 352: 289: 1523: 1466: 1350: 1297: 1277: 1229: 1092: 1072: 1052: 1001: 968: 924: 853: 784: 764: 713: 674: 654: 630: 562: 423: 399: 375: 332: 312: 269: 246: 226: 206: 186: 154: 1577: 1019: 731: 40: 1211:{\displaystyle \mathrm {pd} _{R}(M)+\mathrm {depth} (M)=\mathrm {depth} (R).} 698:, the depth can also be characterized using the notion of a 43:. In this case, the depth of a module is related with its 1528:
Commutative algebra with a view toward algebraic geometry
1391:). This means, essentially, that the closed point is an 51:. A more elementary property of depth is the inequality 1489: 1469: 1404: 1373: 1353: 1320: 1300: 1280: 1252: 1232: 1122: 1095: 1075: 1055: 1031: 1004: 971: 947: 927: 903: 876: 856: 810: 787: 767: 743: 716: 677: 657: 633: 609: 585: 565: 449: 426: 402: 378: 355: 335: 315: 292: 272: 249: 229: 209: 189: 157: 127: 60: 1274:, or, equivalently, when there is a nonzero element 1501: 1475: 1455: 1383: 1359: 1339: 1306: 1286: 1262: 1238: 1210: 1101: 1081: 1061: 1041: 1010: 977: 957: 933: 913: 889: 862: 842: 793: 773: 753: 722: 683: 663: 639: 619: 595: 571: 548: 432: 408: 384: 364: 341: 321: 301: 278: 255: 235: 215: 195: 163: 139: 110: 1246:has depth zero if and only if its maximal ideal 486: 111:{\displaystyle \mathrm {depth} (M)\leq \dim(M),} 8: 540: 489: 1488: 1468: 1435: 1423: 1403: 1375: 1374: 1372: 1352: 1325: 1324: 1319: 1299: 1279: 1254: 1253: 1251: 1231: 1179: 1150: 1132: 1124: 1121: 1094: 1074: 1054: 1033: 1032: 1030: 1003: 970: 949: 948: 946: 926: 905: 904: 902: 881: 875: 855: 834: 815: 809: 786: 766: 745: 744: 742: 715: 676: 656: 632: 611: 610: 608: 587: 586: 584: 564: 559:By definition, the depth of a local ring 517: 502: 468: 451: 448: 425: 401: 377: 354: 334: 314: 291: 271: 248: 228: 208: 188: 156: 126: 61: 59: 1089:-module. If the projective dimension of 175:and modules, for which equality holds. 1483:is a field), which represents a line ( 7: 1226:A commutative Noetherian local ring 1534:, vol. 150, Berlin, New York: 1376: 1326: 1255: 1034: 950: 906: 843:{\displaystyle x_{1},\ldots ,x_{n}} 746: 627:-depth as a module over itself. If 612: 588: 1340:{\displaystyle x{\mathfrak {m}}=0} 1192: 1189: 1186: 1183: 1180: 1163: 1160: 1157: 1154: 1151: 1128: 1125: 464: 461: 458: 455: 452: 74: 71: 68: 65: 62: 14: 1559:Winfried Bruns; JĂĽrgen Herzog, 1384:{\displaystyle {\mathfrak {m}}} 1263:{\displaystyle {\mathfrak {m}}} 1042:{\displaystyle {\mathfrak {m}}} 958:{\displaystyle {\mathfrak {m}}} 914:{\displaystyle {\mathfrak {m}}} 754:{\displaystyle {\mathfrak {m}}} 620:{\displaystyle {\mathfrak {m}}} 596:{\displaystyle {\mathfrak {m}}} 286:-module with the property that 1450: 1428: 1420: 1408: 1202: 1196: 1173: 1167: 1144: 1138: 989:Depth and projective dimension 531: 511: 480: 474: 102: 96: 84: 78: 1: 1532:Graduate Texts in Mathematics 671:is equal to the dimension of 329:. (That is, some elements of 28:is an important invariant of 1456:{\displaystyle k/(x^{2},xy)} 1018:is a commutative Noetherian 730:is a commutative Noetherian 1111:Auslander–Buchsbaum formula 416:, also commonly called the 49:Auslander–Buchsbaum formula 1605: 801:-module. Then all maximal 651:local ring, then depth of 309:is properly contained in 1069:is a finitely generated 781:is a finitely generated 921:, have the same length 203:be a commutative ring, 1503: 1477: 1457: 1398:For example, the ring 1385: 1361: 1341: 1308: 1288: 1264: 1240: 1212: 1103: 1083: 1063: 1043: 1012: 979: 959: 935: 915: 891: 864: 844: 795: 775: 755: 724: 685: 665: 641: 621: 597: 573: 550: 434: 410: 386: 366: 343: 323: 303: 280: 257: 237: 217: 197: 165: 141: 140:{\displaystyle \dim M} 112: 1504: 1478: 1458: 1386: 1362: 1342: 1309: 1289: 1265: 1241: 1213: 1104: 1084: 1064: 1044: 1013: 980: 960: 936: 916: 892: 890:{\displaystyle x_{i}} 865: 845: 796: 776: 756: 725: 686: 666: 642: 622: 598: 579:with a maximal ideal 574: 551: 435: 411: 387: 367: 344: 324: 304: 281: 258: 238: 218: 198: 166: 142: 113: 1561:Cohen–Macaulay rings 1487: 1467: 1402: 1371: 1351: 1318: 1298: 1278: 1250: 1230: 1120: 1109:is finite, then the 1093: 1073: 1053: 1029: 1002: 995:projective dimension 969: 945: 925: 901: 874: 854: 808: 785: 765: 741: 714: 675: 655: 631: 607: 583: 563: 447: 424: 400: 376: 353: 333: 313: 290: 270: 247: 227: 207: 187: 173:Cohen-Macaulay rings 155: 125: 58: 45:projective dimension 1589:Commutative algebra 1502:{\displaystyle x=0} 1499: 1473: 1453: 1393:embedded component 1381: 1357: 1337: 1304: 1284: 1260: 1236: 1208: 1099: 1079: 1059: 1039: 1008: 975: 955: 931: 911: 887: 860: 840: 791: 771: 751: 720: 681: 661: 637: 617: 593: 569: 546: 430: 406: 382: 365:{\displaystyle IM} 362: 339: 319: 302:{\displaystyle IM} 299: 276: 265:finitely generated 253: 233: 213: 193: 161: 137: 108: 1545:978-0-387-94269-8 1476:{\displaystyle k} 1360:{\displaystyle x} 1307:{\displaystyle R} 1287:{\displaystyle x} 1239:{\displaystyle R} 1102:{\displaystyle M} 1082:{\displaystyle R} 1062:{\displaystyle M} 1022:with the maximal 1011:{\displaystyle R} 978:{\displaystyle M} 934:{\displaystyle n} 863:{\displaystyle M} 803:regular sequences 794:{\displaystyle R} 774:{\displaystyle M} 734:with the maximal 723:{\displaystyle R} 684:{\displaystyle R} 664:{\displaystyle R} 640:{\displaystyle R} 572:{\displaystyle R} 440:, is defined as 433:{\displaystyle M} 409:{\displaystyle M} 385:{\displaystyle I} 342:{\displaystyle M} 322:{\displaystyle M} 279:{\displaystyle R} 256:{\displaystyle M} 236:{\displaystyle R} 216:{\displaystyle I} 196:{\displaystyle R} 164:{\displaystyle M} 1596: 1556: 1508: 1506: 1505: 1500: 1482: 1480: 1479: 1474: 1462: 1460: 1459: 1454: 1440: 1439: 1427: 1390: 1388: 1387: 1382: 1380: 1379: 1366: 1364: 1363: 1358: 1346: 1344: 1343: 1338: 1330: 1329: 1313: 1311: 1310: 1305: 1293: 1291: 1290: 1285: 1272:associated prime 1269: 1267: 1266: 1261: 1259: 1258: 1245: 1243: 1242: 1237: 1222:Depth zero rings 1217: 1215: 1214: 1209: 1195: 1166: 1137: 1136: 1131: 1108: 1106: 1105: 1100: 1088: 1086: 1085: 1080: 1068: 1066: 1065: 1060: 1048: 1046: 1045: 1040: 1038: 1037: 1017: 1015: 1014: 1009: 984: 982: 981: 976: 964: 962: 961: 956: 954: 953: 940: 938: 937: 932: 920: 918: 917: 912: 910: 909: 896: 894: 893: 888: 886: 885: 869: 867: 866: 861: 849: 847: 846: 841: 839: 838: 820: 819: 800: 798: 797: 792: 780: 778: 777: 772: 760: 758: 757: 752: 750: 749: 729: 727: 726: 721: 700:regular sequence 694:By a theorem of 690: 688: 687: 682: 670: 668: 667: 662: 646: 644: 643: 638: 626: 624: 623: 618: 616: 615: 602: 600: 599: 594: 592: 591: 578: 576: 575: 570: 555: 553: 552: 547: 521: 507: 506: 473: 472: 467: 439: 437: 436: 431: 415: 413: 412: 407: 391: 389: 388: 383: 371: 369: 368: 363: 348: 346: 345: 340: 328: 326: 325: 320: 308: 306: 305: 300: 285: 283: 282: 277: 262: 260: 259: 254: 242: 240: 239: 234: 222: 220: 219: 214: 202: 200: 199: 194: 170: 168: 167: 162: 146: 144: 143: 138: 117: 115: 114: 109: 77: 1604: 1603: 1599: 1598: 1597: 1595: 1594: 1593: 1574: 1573: 1546: 1536:Springer-Verlag 1524:Eisenbud, David 1522: 1519: 1485: 1484: 1465: 1464: 1431: 1400: 1399: 1369: 1368: 1349: 1348: 1316: 1315: 1296: 1295: 1276: 1275: 1248: 1247: 1228: 1227: 1224: 1123: 1118: 1117: 1091: 1090: 1071: 1070: 1051: 1050: 1027: 1026: 1000: 999: 991: 967: 966: 943: 942: 923: 922: 899: 898: 877: 872: 871: 852: 851: 830: 811: 806: 805: 783: 782: 763: 762: 739: 738: 712: 711: 708: 673: 672: 653: 652: 629: 628: 605: 604: 581: 580: 561: 560: 498: 450: 445: 444: 422: 421: 398: 397: 374: 373: 351: 350: 331: 330: 311: 310: 288: 287: 268: 267: 245: 244: 225: 224: 205: 204: 185: 184: 181: 153: 152: 149:Krull dimension 123: 122: 56: 55: 12: 11: 5: 1602: 1600: 1592: 1591: 1586: 1576: 1575: 1572: 1571: 1557: 1544: 1518: 1515: 1511:Cohen–Macaulay 1498: 1495: 1492: 1472: 1452: 1449: 1446: 1443: 1438: 1434: 1430: 1426: 1422: 1419: 1416: 1413: 1410: 1407: 1378: 1356: 1336: 1333: 1328: 1323: 1303: 1283: 1257: 1235: 1223: 1220: 1219: 1218: 1207: 1204: 1201: 1198: 1194: 1191: 1188: 1185: 1182: 1178: 1175: 1172: 1169: 1165: 1162: 1159: 1156: 1153: 1149: 1146: 1143: 1140: 1135: 1130: 1127: 1098: 1078: 1058: 1036: 1007: 990: 987: 974: 952: 930: 908: 884: 880: 859: 837: 833: 829: 826: 823: 818: 814: 790: 770: 748: 719: 707: 706:Theorem (Rees) 704: 680: 660: 649:Cohen-Macaulay 636: 614: 590: 568: 557: 556: 545: 542: 539: 536: 533: 530: 527: 524: 520: 516: 513: 510: 505: 501: 497: 494: 491: 488: 485: 482: 479: 476: 471: 466: 463: 460: 457: 454: 429: 405: 381: 361: 358: 338: 318: 298: 295: 275: 252: 232: 212: 192: 180: 177: 160: 151:of the module 136: 133: 130: 119: 118: 107: 104: 101: 98: 95: 92: 89: 86: 83: 80: 76: 73: 70: 67: 64: 13: 10: 9: 6: 4: 3: 2: 1601: 1590: 1587: 1585: 1584:Module theory 1582: 1581: 1579: 1570: 1569:0-521-41068-1 1566: 1562: 1558: 1555: 1551: 1547: 1541: 1537: 1533: 1529: 1525: 1521: 1520: 1516: 1514: 1512: 1496: 1493: 1490: 1470: 1447: 1444: 1441: 1436: 1432: 1424: 1417: 1414: 1411: 1405: 1396: 1394: 1354: 1334: 1331: 1321: 1301: 1281: 1273: 1233: 1221: 1205: 1199: 1176: 1170: 1147: 1141: 1133: 1116: 1115: 1114: 1112: 1096: 1076: 1056: 1025: 1021: 1005: 996: 988: 986: 972: 941:equal to the 928: 882: 878: 870:, where each 857: 835: 831: 827: 824: 821: 816: 812: 804: 788: 768: 737: 733: 717: 710:Suppose that 705: 703: 701: 697: 692: 678: 658: 650: 634: 566: 543: 537: 534: 528: 525: 522: 518: 514: 508: 503: 499: 495: 492: 483: 477: 469: 443: 442: 441: 427: 419: 403: 395: 379: 359: 356: 336: 316: 296: 293: 273: 266: 250: 230: 210: 190: 178: 176: 174: 158: 150: 134: 131: 128: 105: 99: 93: 90: 87: 81: 54: 53: 52: 50: 46: 42: 39: 35: 31: 27: 23: 19: 1560: 1527: 1397: 1367:annihilates 1225: 992: 709: 693: 558: 417: 393: 372:.) Then the 223:an ideal of 182: 147:denotes the 120: 25: 15: 897:belongs to 349:are not in 22:homological 18:commutative 1578:Categories 1517:References 1347:(that is, 1314:such that 1020:local ring 965:-depth of 732:local ring 696:David Rees 179:Definition 41:local ring 38:Noetherian 825:… 535:≠ 509:⁡ 132:⁡ 94:⁡ 88:≤ 24:algebra, 1526:(1995), 1554:1322960 1463:(where 1113:states 603:is its 47:by the 34:modules 1567:  1552:  1542:  1270:is an 121:where 1024:ideal 736:ideal 647:is a 418:grade 394:depth 30:rings 26:depth 1565:ISBN 1540:ISBN 1049:and 993:The 850:for 761:and 243:and 183:Let 32:and 20:and 1294:of 500:Ext 487:min 420:of 396:of 129:dim 91:dim 16:In 1580:: 1550:MR 1548:, 1538:, 1530:, 1513:. 1395:. 985:. 702:. 691:. 263:a 1497:0 1494:= 1491:x 1471:k 1451:) 1448:y 1445:x 1442:, 1437:2 1433:x 1429:( 1425:/ 1421:] 1418:y 1415:, 1412:x 1409:[ 1406:k 1377:m 1355:x 1335:0 1332:= 1327:m 1322:x 1302:R 1282:x 1256:m 1234:R 1206:. 1203:) 1200:R 1197:( 1193:h 1190:t 1187:p 1184:e 1181:d 1177:= 1174:) 1171:M 1168:( 1164:h 1161:t 1158:p 1155:e 1152:d 1148:+ 1145:) 1142:M 1139:( 1134:R 1129:d 1126:p 1097:M 1077:R 1057:M 1035:m 1006:R 973:M 951:m 929:n 907:m 883:i 879:x 858:M 836:n 832:x 828:, 822:, 817:1 813:x 789:R 769:M 747:m 718:R 679:R 659:R 635:R 613:m 589:m 567:R 544:. 541:} 538:0 532:) 529:M 526:, 523:I 519:/ 515:R 512:( 504:i 496:: 493:i 490:{ 484:= 481:) 478:M 475:( 470:I 465:h 462:t 459:p 456:e 453:d 428:M 404:M 392:- 380:I 360:M 357:I 337:M 317:M 297:M 294:I 274:R 251:M 231:R 211:I 191:R 159:M 135:M 106:, 103:) 100:M 97:( 85:) 82:M 79:( 75:h 72:t 69:p 66:e 63:d

Index

commutative
homological
rings
modules
Noetherian
local ring
projective dimension
Auslander–Buchsbaum formula
Krull dimension
Cohen-Macaulay rings
finitely generated
Cohen-Macaulay
David Rees
regular sequence
local ring
ideal
regular sequences
projective dimension
local ring
ideal
Auslander–Buchsbaum formula
associated prime
embedded component
Cohen–Macaulay
Eisenbud, David
Graduate Texts in Mathematics
Springer-Verlag
ISBN
978-0-387-94269-8
MR

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑