Knowledge

Minilab

Source πŸ“

295:
lines, before exposure using a scanning and modulated set of red, green and blue laser beams. After exposure by lasers, the paper passes through tanks, one containing a developer, the next a bleach/fixing agent (which may also be separate) and the next containing filtered rinsing water followed by tanks with conditioning chemicals, before being dried with hot air, ejected and sorted. The chemicals may be automatically mixed from a cardboard box containing the necessary chemicals in separate bottles. The minilab contains filters and heaters for the chemicals, and it discards used chemicals into a separate, single bottle. Minilabs may contain 2 or 4 magazines, each with a paper roll of different width. The laser beams are scanned across the paper using a rotating mirror octagon driven by a stepper motor. Each full rotation of the octagon exposes 8 lines on the paper. Sensors are used to synchronize the rotation of the octagon with the signals sent by the AOM drivers to modulate the lasers. The lasers and AOMs are inside a dust-tight enclosure. Dust outside the output window of the enclosure can affect image quality. The lasers may be heated and their temperature monitored.
207:
leader cards one or two at a time, to do this the end of the film is cut square, special chemical-resistant tape is used to attach the film to the leader card. The leader cards are then inserted into the film processor mechanism and are fed through the machine using sprockets in the card. The film goes through a developer, bleach, fix and stabilizer, then through a dryer. After the film is processed it is cut from the leader card and reunited with the processing envelope containing the customer details, and then from here the film goes forward for printing. Alternatively the film may be used immediately to expose silver halide photographic paper, shining a bright light through the film and into the paper using lenses for optical enlarging, which is then processed like film in a separate mechanism. Or the film may be digitally scanned using a CCD image sensor, corrected using software, and sent to a digital silver halide printer.
491: 337:, not to be confused with former Gretag Macbeth, went bankrupt in December, 2002. Subsequently, the minilab related assets were sold to the newly formed San Marco Imaging. The wholesale lab related assets were sold to KIS Photo Me Group. In 2006, Noritsu and Fuji announced a strategic alliance. Noritsu were for a short time manufacturing all of Fuji's minilab equipment until they discontinued production. Fujifilm resumed production of the Frontier LP5700R and this remains available as of Dec 2017. Fujifilm's inkjet minilab or dry lab products are sourced from Noritsu and increasingly from Epson who also supplies the older type print head to Noritsu. 506:
relatively wide colour gamut although colours may take a few hours to stabilise after printing while the ink fully dries. The second technology that can be used is "dye diffusion thermal transfer" or D2T2 technology. D2T2 is a three colour (Yellow, Cyan & Magenta) thermal process whereby the colour dyes are transferred from an ink ribbon onto, or rather into, the surface of a special paper substrate. "Dry labs" are becoming increasingly popular with users as they are cheaper and easier to maintain than wet labs.
231: 190:
cartridge) containing enough bleach, developer and fixing agents to be mixed automatically for an estimated amount of paper, eliminating the need to manually handle and mix chemicals. Minilab machines were used in stores to perform film processing and printing in a short period of time, usually less than one hour from start of film development to the end of printing, partly because it eliminated the need to send rolls of film and printed photos to and from a large central photo processing lab.
270:
being sent off to the printer, which may either expose the paper using lasers and then develop the paper, or be "dry" and essentially be a large inkjet printer. Those that develop the paper are known as Silver halide printers or minilabs. Dry inkjet minilabs are slower than their wet silver halide counterparts but consume less power, in part because dry minilabs do not need power to keep the development chemicals warm. Some minilabs may use light valves instead of lasers.
346: 133: 239: 36: 215:
so forth. Chemical exposure timing is a combination of film advance speed and the physical length of the serpentine film path immersed in the fluid. The fluid in the tanks is usually agitated, filtered and warmed to 100 Β°F (necessary for the C-41 process), and the fluid also needs periodic replacement. The Film processor also has a dryer, just like wet silver halide printers.
266:, bleach/fix, a wash, and dryer. The prints are then cut up and are collected in a bundle. From here a smaller machine is used to cut the negatives into fours and sleeved to protect them. An intermediate step that conditions the paper using conditioning chemicals may be carried out on the paper before it is dried. 202:
inside a chamber, slot side towards the inside of the machine pointing downwards at an angle of 45Β°, the chamber is closed and the film inside the rolls is pulled into the processing mechanism. In cases when the end of the film cannot be removed or if the film is damaged, the film can be removed using a
290:
Calibration may be performed using a stored profile that may vary depending on things such as the type of paper on the printer or with a calibrator, and the printer may also apply some form of color management. Printers making use of this process can make prints of images that have been scanned using
254:
The paper stock is usually a continuous roll which is cut according to the size requirements of the customer. Different image widths are handled using different roll widths, and each width is usually done as a batch process of images all the same size. The light-sensitive photographic paper stock can
214:
processor, where the film follows a serpentine path over many rollers. Each chemical processing step is done using a chemical immersion tank with replenishment to keep the chemicals fresh. Film advances down into the tank and then turns and rises up and out, then advances down into the next tank, and
140:
QSS-3301 digital minilab printer. To the left of the monitor is a separate film scanner that is on top of the minilab, but can also be placed anywhere close to it. It sends images from film into the computer through cables. Digital minilab printers have a computer and computer monitor that handle the
301:
Some minilabs have trays that move down; as the prints are made they are ejected from the machine; then a conveyor belt moves the prints sideways towards the tray, depositing them onto it. As soon as the tray has all the prints it needs it moves down and then an empty one drops on top of it, and the
282:
while others use laser diodes to generate the laser beams, or may use both. The printer may also print information onto the back of the paper for identification. Alternatively the laser beams may be modulated directly by varying the power sent to the laser diodes. Often the green and blue lasers are
277:
process that uses modulated red, green and blue laser beams (channels) to directly expose the photographic paper. The laser beams are often controlled (modulated) individually from one another using their own acousto-optical modulator (AOM) crystal, each of which is driven by its own AOM driver. The
201:
are pulled, this means all of the film is extracted from its roll. This can be done manually or by using a small machine that essentially uses tape to pull the film leader and all of the film out of the cassette. This small machine may be integrated into the film processor. If so, rolls are inserted
242:
An analog printer minilab receiving film. No computer is present, and the film "scanner" is mounted on and integrated with the minilab so it can not be moved separately to somewhere else and connected through cables, the "scanner" is actually an optical enlarger, however there are digital minilabs
505:
There are currently two technologies used by manufacturers as print engines for either professional or commercial "dry labs". Although not strictly "dry", the first technology is a dye based, four colour (Yellow, Cyan, Magenta & Black) inkjet system. Inkjet based dry labs output prints with a
286:
Light bleeding or other problems may occur when using this process; light bleeding results in color fringing. Light bleeding occurs due excessive amounts of laser light during exposure. Due to this Minilabs may use a variant of Grey Component Removal (GCR) to minimize exposure to laser light when
294:
Digital wet laser minilabs work in the following way: The paper is pulled from a light-tight box called a "magazine" containing a roll of paper and cut into sheets, or sheet paper may be used. After cutting an inkjet printer marks each sheet with up to 80 characters of information spread over 2
269:
Older minilab printers are analog (optical) and directly expose the paper by shining light through the film and into the paper using an optical enlarger, before developing the paper. Newer minilab printers are digital and first scan the film, whose pictures may then be digitally corrected before
206:
or a dark box. Before processing, a twin check number (a pair of stickers with a unique number) is manually put onto the film and the matching number onto the film processing envelope, so that after processing this film can be easily identified to the customers envelope. Films are spliced on the
313:
The first minilab, the QSS-1 (Quick Service System 1) was introduced by Noritsu in 1976. In 1979 Noritsu released the QSS-2, which for the first time allowed for photo processing, from film development to color printing in just 45 minutes. In 2002 Noritsu introduced the first dry minilab, using
218:
A single minilab can be built to allow many different film widths in one device, from APS films to professional wide format films, using a flexible leader to pull the film through the mechanism. The leader is as wide as the widest possible format, and films attached to it are supported by guide
189:
Despite their small size, minilab machines may use chemical processing just like larger dedicated photo processing labs, using processes such as CP-49E or RA-4 for photographic paper processing, and C-41 for film processing. All necessary processing chemicals may arrive in a box (replenishment
461:
Digital minilabs are generally too expensive for typical home use, but many retailers purchase or lease them to offer photo printing services to their customers. The resulting photographs have the same quality and durability as traditional photographs since the same chemical processes (e.g.
481:
printing instead of a chemical developing process. This allows them to be installed in smaller retail stores, print shops, and resort/tourist locations that could not justify an expensive, high throughput, wet minilab. Standard questions of inkjet quality and longevity apply.
302:
process repeats. This can be used to categorize prints, so that all prints belonging to an order are together. Other minilabs may use other mechanisms to categorize prints. This mechanism is called a sorter. Each tray has all the contents of a single order.
185:
A typical minilab consists of two machines, a film processor and a paper printer/processor. In some installations, these two components are integrated into a single machine. In addition, some digital minilabs are also equipped with photo-ordering kiosks.
317:
Analog silver halide minilabs were replaced by Digital laser silver halide minilabs, which were replaced by dry inkjet minilabs. Dry minilabs used to be more expensive to run than their wet counterparts, but that situation reversed in 2013.
502:"Dry lab" is a term that evolved in the professional and consumer segments of the photo printing industry to distinguish later, chemistry free (or "dry") photo printing systems from traditional, silver halide (or "wet") systems. 255:
be contained within light-tight packaging so that the minilab operator only needs to remove the old empty paper container and insert a full one, without needing to darken the room to prevent paper exposure.
314:
Epson's seven color inkjet piezoelectric printing head. It was significantly cheaper than its "wet" silver halide counterparts. In 1996 Fujifilm released the first digital minilab, the Frontier 1000.
163:, the demand for film development has decreased. This means that the larger labs capable of processing 30,000-40,000 films a day are going out of business, and more retailers are installing minilabs. 570: 298:
The final job is to put the negatives with the prints into a wallet and into the processing envelope. The order is then priced and placed into a rack or drawer waiting for the customer to collect.
369:. Photographs are input to the digital minilab using a built-in film scanner that captures images from negative and positive photographic films (including mounted slides), flatbed 156:
and printing system or machine, as opposed to large centralized photo developing labs. Many retail stores use film or digital minilabs to provide on-site photo finishing services.
291:
the printer's built-in CCD scanner, images that are in CDs, 3.25 inch floppy disks, ZIP disks or memory cards. More recent (~2005) minilabs may also function as network printers.
477:, which does not require the use of developer or fixer chemicals, and does not require moistening and then drying of the print. These machines are cheaper, smaller, and use 906: 247:
Most printer/processes are computer controlled. The front of the film is fed into the printing gate. Sensors see the film and forward the film to the first frame.
631: 566: 490: 283:
DPSS lasers. Lenses, diaphragms and mirrors are used to ensure that the laser beams are round and converged to ensure that the exposed image is in focus.
262:
is advanced each time and when there is sufficient frames printed the paper automatically advances into the paper processor. The paper passes through a
182:. With these chemical processes, films can be ready for collection in as little as 20 minutes, depending on the machine capabilities and the operator. 654: 725: 287:
printing shadows but not when printing solid colors. This printing process may need regular calibration to achieve the best possible results.
994: 553: 219:
rollers only. The leader may be gripped on each side between toothed drive belts following the same path as the film through the mechanism.
616: 878:"Fujifilm and Noritsu Koki to Form Global Alliance in Photofinishing Field Aiming to Enhance "Retail Printing" Services – Fujifilm Global" 812: 1019: 119: 833: 961: 783: 754: 935: 591: 57: 805:"Noritsu laser unit cleaning. Noritsu minilab laser exposure unit repaire and maintenance. Spare parts for Noritsu minilab" 914: 450: 855: 605: 251:
on the edge of the film are read by the printer and the film channel is selected accordingly to give the optimum result.
1089: 1074: 877: 1084: 100: 700: 635: 72: 619: 402: 442: 79: 53: 1058: 278:
AOM driver can often fail causing problems in the image produced by the printing process. Many minilabs use
46: 554:
https://www.fujifilm.com/products/photofinishing/brochures/pdf/digital_minilabs/frontier_lp5700_lp5500.pdf
418: 330: 263: 230: 86: 981: 650: 617:
http://usedminilab.kr.ec21.com/GC00023701/CA00023708/%EB%AF%B8%EB%8B%88%EB%9E%A9_(Noritsu_QSS-1912).html
515: 274: 1079: 405:, contrast, scene lighting color correction, sharpness and cropping. A set of scanning and modulated 721: 334: 68: 160: 998: 520: 414: 259: 345: 804: 132: 203: 417:
with the image, which is then processed by the minilab just as if it had been exposed from a
305:
An example of a digital minilab silver halide printer is the Noritsu QSS series of machines.
358: 592:
http://www.footprintsequipment.com/images/brochures/noritsu/filmprocessors/v30-v50-v100.pdf
429: 238: 153: 467: 386: 953: 775: 746: 606:
http://www.footprintsequipment.com/images/brochures/Noritsu/PrinterProcessors/2611.pdf
567:"A Look at Two Photofinishing Technologies and One Desktop Photo Printing Alternative" 1068: 530: 370: 366: 93: 175: 150: 620:
http://usedminilab.kr.ec21.com/GC00023701/CA00023705/λ―Έλ‹ˆλž©_(Noritsu_QSS-1501).html
525: 410: 382: 362: 248: 35: 1053: 17: 847: 428:. A minilab, such as a Doli DL 1210 has a print resolution of 520dpi, accepts 398: 279: 222:
An example of a film processor minilab is the Noritsu QSF series of machines.
885: 676: 425: 322: 696: 440:
formats, and can print up to 8in by 12in. The most popular brands include
495: 454: 198: 907:"Do Fuji and Noritsu Look Alike? Reason: They Really Are (Well, Almost)" 446: 390: 137: 466:) are used. This is often better than can be achieved by typical home 982:
http://www.doli.com.cn/download/online/en/1210%20Service%20Manual.pdf
478: 394: 378: 326: 747:"Noritsu QSS-3102-2 Digital . High capacity digital Noritsu minilab" 489: 406: 374: 344: 237: 229: 167: 463: 437: 433: 179: 171: 1041: 1035: 29: 1047: 936:"Frontier LP5700R | Fujifilm [United States]" 424:
The price of a digital minilab can reach up to $ 250,000
697:"Laserepair.info - laserepair Resources and Information" 333:
took over the renowned minilab branch of Agfa in 2006.
722:"Photolab Silver Halide Color Management – Onsight" 470:, and for smaller prints generally less expensive. 60:. Unsourced material may be challenged and removed. 1020:"Printing Press: Minilabs Adapt to Printing Needs" 776:"Noritsu QSS-34 Digital. Digital Noritsu minilab" 397:. The operator can make many corrections such as 141:images before printing, and controls the minilab 27:Photographic film developing and printing system 834:"Minilab Evolution: Smaller, Faster and Better" 565:McCormick-Goodhart, Mark (September 16, 2008). 995:"NewPhotoDigest | Dry minilabs are in demand" 8: 234:Fujifilm silver halide photo printer minilab 954:"Noritsu QSS-2901. Digital Noritsu minilab" 178:chemistry and the paper is processed using 258:Each frame is printed one at a time, the 120:Learn how and when to remove this message 131: 984:| Doli DL1210 Operation Manual, page 15 601: 599: 541: 321:By the end of 2005, two manufacturers, 848:"Inkjet prints now 'less than silver'" 632:"Dry Minilabs Replacing Silver Halide" 573:from the original on November 16, 2018 549: 547: 545: 1044:– Industry Site, Forum and User Group 7: 858:from the original on August 13, 2020 634:. September 23, 2017. Archived from 174:minilabs, films are processed using 58:adding citations to reliable sources 159:With the increase in popularity of 657:from the original on March 6, 2020 651:"Photo printing's slow transition" 25: 649:Shipton, Keith (March 16, 2018). 273:Printing is carried out using a 34: 964:from the original on 2020-01-18 815:from the original on 2020-08-13 786:from the original on 2020-01-18 757:from the original on 2020-08-14 728:from the original on 2020-08-11 703:from the original on 2020-01-18 45:needs additional citations for 1038:– Minilabs, Parts, Accessories 498:Frontier DL650 Pro dry minilab 365:processes to make prints from 1: 473:A new type of minilab is the 1048:Noritsu America Corporation 1106: 413:Array (MLVA) then exposes 409:beams, LCD/LED, or Micro 210:A minilab is typically a 243:with integrated scanners 638:on September 23, 2017. 499: 361:that uses traditional 350: 329:went out of business. 244: 235: 142: 516:Photographic printing 493: 363:chemical photographic 348: 275:Photographic printing 241: 233: 135: 1022:. September 6, 2019. 331:Minilab Factory GmbH 54:improve this article 1090:Japanese inventions 1075:Digital photography 161:digital photography 1085:1976 introductions 521:Photographic paper 500: 415:photographic paper 351: 260:photographic paper 245: 236: 143: 1054:FujiFilm Minilabs 836:. April 30, 2020. 677:"Laserepair.info" 130: 129: 122: 104: 16:(Redirected from 1097: 1036:Minilabworld.net 1024: 1023: 1016: 1010: 1009: 1007: 1006: 997:. Archived from 991: 985: 979: 973: 972: 970: 969: 950: 944: 943: 940:www.fujifilm.com 932: 926: 925: 923: 922: 913:. Archived from 903: 897: 896: 894: 893: 884:. Archived from 874: 868: 867: 865: 863: 854:. July 4, 2013. 844: 838: 837: 830: 824: 823: 821: 820: 801: 795: 794: 792: 791: 772: 766: 765: 763: 762: 743: 737: 736: 734: 733: 718: 712: 711: 709: 708: 693: 687: 686: 684: 683: 673: 667: 666: 664: 662: 646: 640: 639: 628: 622: 614: 608: 603: 594: 589: 583: 582: 580: 578: 562: 556: 551: 403:color saturation 359:computer printer 212:Roller Transport 125: 118: 114: 111: 105: 103: 62: 38: 30: 21: 1105: 1104: 1100: 1099: 1098: 1096: 1095: 1094: 1065: 1064: 1050:– Industry Site 1032: 1027: 1018: 1017: 1013: 1004: 1002: 993: 992: 988: 980: 976: 967: 965: 952: 951: 947: 934: 933: 929: 920: 918: 911:imaginginfo.com 905: 904: 900: 891: 889: 876: 875: 871: 861: 859: 846: 845: 841: 832: 831: 827: 818: 816: 803: 802: 798: 789: 787: 774: 773: 769: 760: 758: 745: 744: 740: 731: 729: 720: 719: 715: 706: 704: 695: 694: 690: 681: 679: 675: 674: 670: 660: 658: 648: 647: 643: 630: 629: 625: 615: 611: 604: 597: 590: 586: 576: 574: 564: 563: 559: 552: 543: 539: 512: 488: 468:inkjet printers 355:digital minilab 343: 341:Digital minilab 311: 228: 196: 126: 115: 109: 106: 63: 61: 51: 39: 28: 23: 22: 18:Digital minilab 15: 12: 11: 5: 1103: 1101: 1093: 1092: 1087: 1082: 1077: 1067: 1066: 1063: 1062: 1056: 1051: 1045: 1042:Photolab Forum 1039: 1031: 1030:External links 1028: 1026: 1025: 1011: 986: 974: 958:minilab.com.ua 945: 927: 898: 869: 852:Inside Imaging 839: 825: 809:minilab.com.ua 796: 780:minilab.com.ua 767: 751:minilab.com.ua 738: 713: 688: 668: 641: 623: 609: 595: 584: 557: 540: 538: 535: 534: 533: 528: 523: 518: 511: 508: 487: 484: 387:digital camera 367:digital images 342: 339: 335:Gretag Imaging 310: 307: 227: 224: 195: 194:Film processor 192: 128: 127: 42: 40: 33: 26: 24: 14: 13: 10: 9: 6: 4: 3: 2: 1102: 1091: 1088: 1086: 1083: 1081: 1078: 1076: 1073: 1072: 1070: 1060: 1057: 1055: 1052: 1049: 1046: 1043: 1040: 1037: 1034: 1033: 1029: 1021: 1015: 1012: 1001:on 2011-08-23 1000: 996: 990: 987: 983: 978: 975: 963: 959: 955: 949: 946: 941: 937: 931: 928: 917:on 2008-04-07 916: 912: 908: 902: 899: 888:on 2008-03-08 887: 883: 879: 873: 870: 857: 853: 849: 843: 840: 835: 829: 826: 814: 810: 806: 800: 797: 785: 781: 777: 771: 768: 756: 752: 748: 742: 739: 727: 723: 717: 714: 702: 698: 692: 689: 678: 672: 669: 656: 652: 645: 642: 637: 633: 627: 624: 621: 618: 613: 610: 607: 602: 600: 596: 593: 588: 585: 572: 568: 561: 558: 555: 550: 548: 546: 542: 536: 532: 531:Image editing 529: 527: 524: 522: 519: 517: 514: 513: 509: 507: 503: 497: 492: 485: 483: 480: 476: 471: 469: 465: 459: 457: 456: 452: 448: 444: 439: 435: 431: 427: 422: 420: 416: 412: 408: 404: 400: 396: 393:that accepts 392: 388: 384: 380: 377:that accepts 376: 372: 368: 364: 360: 356: 347: 340: 338: 336: 332: 328: 324: 319: 315: 308: 306: 303: 299: 296: 292: 288: 284: 281: 276: 271: 267: 265: 261: 256: 252: 250: 240: 232: 226:Photo printer 225: 223: 220: 216: 213: 208: 205: 200: 193: 191: 187: 183: 181: 177: 173: 169: 164: 162: 157: 155: 152: 148: 139: 134: 124: 121: 113: 102: 99: 95: 92: 88: 85: 81: 78: 74: 71: β€“  70: 66: 65:Find sources: 59: 55: 49: 48: 43:This article 41: 37: 32: 31: 19: 1061:– User Group 1014: 1003:. Retrieved 999:the original 989: 977: 966:. Retrieved 957: 948: 939: 930: 919:. Retrieved 915:the original 910: 901: 890:. Retrieved 886:the original 882:fujifilm.com 881: 872: 860:. Retrieved 851: 842: 828: 817:. Retrieved 808: 799: 788:. Retrieved 779: 770: 759:. Retrieved 750: 741: 730:. Retrieved 716: 705:. Retrieved 691: 680:. Retrieved 671: 659:. Retrieved 644: 636:the original 626: 612: 587: 575:. Retrieved 560: 504: 501: 474: 472: 460: 441: 423: 383:memory cards 354: 352: 349:Dry minilabs 320: 316: 312: 304: 300: 297: 293: 289: 285: 272: 268: 257: 253: 246: 221: 217: 211: 209: 197: 188: 184: 165: 158: 151:photographic 146: 144: 116: 110:January 2013 107: 97: 90: 83: 76: 64: 52:Please help 47:verification 44: 1080:Photography 1059:Minilabhelp 526:Photography 486:Dry minilab 411:Light Valve 280:DPSS lasers 199:35 mm films 149:is a small 1069:Categories 1005:2011-06-01 968:2020-08-14 921:2008-03-12 892:2008-03-12 862:August 13, 819:2020-08-13 790:2020-08-14 761:2020-08-14 732:2020-08-11 707:2020-08-13 682:2020-08-13 661:August 13, 577:August 13, 537:References 399:brightness 154:developing 80:newspapers 264:developer 69:"Minilab" 962:Archived 856:Archived 813:Archived 784:Archived 755:Archived 726:Archived 701:Archived 655:Archived 571:Archived 510:See also 496:Fujifilm 419:negative 371:scanners 249:DX codes 204:dark bag 475:dry lab 447:Noritsu 395:uploads 391:website 389:, or a 385:from a 379:CD-ROMs 309:History 147:minilab 138:Noritsu 94:scholar 479:inkjet 436:, and 327:Konica 96:  89:  82:  75:  67:  407:laser 375:kiosk 357:is a 168:Kodak 101:JSTOR 87:books 864:2020 663:2020 579:2020 464:RA-4 455:Fuji 453:and 451:Doli 438:TIFF 434:JPEG 373:, a 325:and 323:Agfa 180:RA-4 176:C41b 172:Agfa 170:and 73:news 443:KIS 430:BMP 426:USD 401:or 381:or 166:In 56:by 1071:: 960:. 956:. 938:. 909:. 880:. 850:. 811:. 807:. 782:. 778:. 753:. 749:. 724:. 699:. 653:. 598:^ 569:. 544:^ 494:A 458:. 449:, 445:, 432:, 421:. 353:A 145:A 136:A 1008:. 971:. 942:. 924:. 895:. 866:. 822:. 793:. 764:. 735:. 710:. 685:. 665:. 581:. 123:) 117:( 112:) 108:( 98:Β· 91:Β· 84:Β· 77:Β· 50:. 20:)

Index

Digital minilab

verification
improve this article
adding citations to reliable sources
"Minilab"
news
newspapers
books
scholar
JSTOR
Learn how and when to remove this message

Noritsu
photographic
developing
digital photography
Kodak
Agfa
C41b
RA-4
35 mm films
dark bag


DX codes
photographic paper
developer
Photographic printing
DPSS lasers

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑