Knowledge (XXG)

Luneburg lens

Source πŸ“

314: 31: 614: 108: 573: 579: 1123: 526:. The challenge is to find the refractive index as a function of radius, given that a ray describes a circular path, and further to prove the focusing properties of the lens. The solution is given in the 1854 edition of the same journal. The problems and solutions were originally published anonymously, but the solution of this problem (and one other) were included in Niven's 858: 660:
A Luneburg lens antenna offers a number of advantages over a parabolic dish. Because the lens is spherically symmetric, the antenna can be steered by moving the feed around the lens, without having to bodily rotate the whole antenna. Again, because the lens is spherically symmetric, a single lens can
597:
can be made from a Luneburg lens by metallizing parts of its surface. Radiation from a distant radar transmitter is focussed onto the underside of the metallization on the opposite side of the lens; here it is reflected, and focussed back onto the radar station. A difficulty with this scheme is that
656:
must coincide with the point of focus, but since the phase centre is invariably somewhat inside the mouth of the horn, it cannot be brought right up against the surface of the lens. Consequently it is necessary to use a variety of Luneburg lens that focusses somewhat beyond its surface, rather than
1717:
is a constant for any given ray, but differs between rays passing at different distances from the centre of the lens. For rays passing through the centre, it is zero. In some special cases, such as for Maxwell's fish-eye, this first order equation can be further integrated to give a formula for
704:
For any spherically symmetric lens, each ray lies entirely in a plane passing through the centre of the lens. The initial direction of the ray defines a line which together with the centre-point of the lens identifies a plane bisecting the lens. Being a plane of symmetry of the lens, the
89:
lies at infinity, and the other on the opposite surface of the lens. J. Brown and A. S. Gutman subsequently proposed solutions which generate one internal focal point and one external focal point. These solutions are not unique; the set of solutions are defined by a set of
538:
In practice, Luneburg lenses are normally layered structures of discrete concentric shells, each of a different refractive index. These shells form a stepped refractive index profile that differs slightly from Luneburg's solution. This kind of lens is usually employed for
1510: 425: 1118:{\displaystyle T=\int _{(r_{1},\theta _{1})}^{(r_{2},\theta _{2})}{\frac {n(r)}{c}}{\sqrt {(r\,d\theta )^{2}+dr^{2}}}={\frac {1}{c}}\int _{\theta _{1}}^{\theta _{2}}n(r){\sqrt {r^{2}+\left({\frac {dr}{d\theta }}\right)^{2}}}\,d\theta ,} 1692: 275: 755:
asserts that the path that the ray takes between them is that which it can traverse in the least possible time. Given that the speed of light at any point in the lens is inversely proportional to the refractive index, and by
300:
is the radius of the lens. Because the refractive index at the surface is the same as that of the surrounding medium, no reflection occurs at the surface. Within the lens, the paths of the rays are arcs of
1309: 1373: 77:
of two given concentric spheres onto each other. There are an infinite number of refractive-index profiles that can produce this effect. The simplest such solution was proposed by
2154: 1799: 850: 804: 661:
be used with several feeds looking in widely different directions. In contrast, if multiple feeds are used with a parabolic reflector, all must be within a small angle of the
605:
visible during training operations, or to conceal their true radar signature. Unlike other types of radar reflectors, their shape doesn't affect the handling of the aircraft.
147: 746: 194: 692:. The arrangement halves the weight of the lens, and the ground plane provides a convenient means of support. However, the feed does partially obscure the lens when the 2063: 1776: 1736: 1581: 1334: 1210: 510: 331: 455: 1796: 1756: 1715: 1561: 1533: 1190: 1166: 1146: 475: 298: 170: 1589: 1381: 598:
metallized regions block the entry or exit of radiation on that part of the lens, but the non-metallized regions result in a blind-spot on the opposite side.
202: 709:
of the refractive index has no component perpendicular to this plane to cause the ray to deviate either to one side of it or the other. In the plane, the
512:. The lens images each point on the spherical surface to the opposite point on the surface. Within the lens, the paths of the rays are arcs of circles. 522: 1540: 119:
Each point on the surface of an ideal Luneburg lens is the focal point for parallel radiation incident on the opposite side. Ideally, the
2116: 2182: 586: 321:
Maxwell's fish-eye lens is also an example of the generalized Luneburg lens. The fish-eye, which was first fully described by
2146: 1227: 2239: 2234: 693: 688:. This uses just one hemisphere of a Luneburg lens, with the cut surface of the sphere resting on a reflecting metal 59: 638:, but uses the lens rather than a parabolic reflector as the main focusing element. As with the dish antenna, a 673:
systems, dish antennas suffer from the feed and its supporting structure partially obscuring the main element (
1339: 1536: 757: 601:
Removable Luneburg lens type radar reflectors are sometimes attached to military aircraft in order to make
2147:"This strange mod to the F-35 kills its stealth near Russian defenses – and there's good reason for that" 809: 763: 2057: 1876: 1169: 613: 149:
of the material composing the lens falls from 2 at its center to 1 at its surface (or equivalently, the
752: 634:
A Luneburg lens can be used as the basis of a high-gain radio antenna. This antenna is comparable to a
2029: 1947: 1912: 1213: 624: 520:
The properties of this lens are described in one of a number of set problems or puzzles in the 1853
317:
Cross-section of Maxwell's fish-eye lens, with blue shading representing increasing refractive index
670: 644:
to the receiver or from the transmitter is placed at the focus, the feed typically consisting of a
325:
in 1854 (and therefore pre-dates Luneburg's solution), has a refractive index varying according to
322: 125: 120: 51: 34:
Cross-section of the standard Luneburg lens, with blue shading proportional to the refractive index
2008:"Maxwell's fisheye lens as efficient power coupler between dissimilar photonic crystal waveguides" 2045: 2019: 1963: 1821: 719: 175: 477:
is the radius of the lens's spherical surface. The index of refraction at the lens's surface is
420:{\displaystyle n(r)={\sqrt {\epsilon _{r}}}={\frac {n_{0}}{1+\left({\frac {r}{R}}\right)^{2}}},} 2178: 2124: 2077: 1217: 714: 710: 544: 2172: 1761: 1721: 1566: 1212:
along the path of the ray. This type of minimization problem has been extensively studied in
1195: 480: 2100: 2037: 1984: 1955: 1920: 602: 150: 677:); in common with other refracting systems, the Luneburg lens antenna avoids this problem. 433: 2229: 1889: 1845: 112: 78: 1687:{\displaystyle d\theta ={\frac {h}{r{\sqrt {{\big (}n(r){\big )}^{2}r^{2}-h^{2}}}}}\,dr.} 2033: 1951: 1916: 1505:{\displaystyle n(r){\sqrt {r'^{2}+r^{2}}}-n(r){\frac {r'^{2}}{\sqrt {r'^{2}+r^{2}}}}=h,} 1314: 1781: 1741: 1700: 1546: 1518: 1221: 1175: 1151: 1131: 617: 594: 460: 313: 283: 155: 86: 82: 58:
decreases radially from the center to the outer surface. They can be made for use with
270:{\displaystyle n={\sqrt {\epsilon _{r}}}={\sqrt {2-\left({\frac {r}{R}}\right)^{2}}},} 2223: 1967: 666: 63: 2049: 551:
calibration standards. Cylindrical analogues of the Luneburg lens are also used for
751:
Given any two points on a ray (such as the point of entry and exit from the lens),
689: 662: 649: 645: 639: 635: 578: 2168: 2041: 556: 552: 67: 17: 2213: 2207: 2201: 2007: 81:
in 1944. Luneburg's solution for the refractive index creates two conjugate
1811: 653: 540: 107: 30: 706: 620: 91: 85:
outside the lens. The solution takes a simple and explicit form if one
1938:
Morgan, S. P. (1958). "General solution of the Luneburg lens problem".
302: 1959: 1924: 2202:
Animation of propagation through a Luneburg Lens (Dielectric Antenna)
2024: 73:
For certain index profiles, the lens will form perfect geometrical
1816: 612: 548: 312: 106: 74: 29: 2214:
Animation of a Half Maxwell's Fish-Eye Lens (Dielectric Antenna)
1852:. Providence, Rhode Island: Brown University. pp. 189–213. 1758:. In general it provides the relative rates of change of 457:
is the index of refraction at the center of the lens and
1344: 1216:, and a ready-made solution exists in the form of the 657:
the classic lens with the focus lying on the surface.
530:, which was published 11 years after Maxwell's death. 1784: 1764: 1744: 1724: 1703: 1592: 1569: 1549: 1521: 1384: 1342: 1317: 1230: 1198: 1178: 1154: 1134: 861: 812: 766: 722: 483: 463: 436: 334: 286: 205: 178: 158: 128: 1985:"Solutions of problems (prob. 3, vol. VIII. p. 188)" 1790: 1770: 1750: 1730: 1709: 1686: 1575: 1555: 1527: 1504: 1367: 1328: 1304:{\displaystyle L(r,r')=n(r){\sqrt {r'^{2}+r^{2}}}} 1303: 1204: 1184: 1160: 1140: 1117: 844: 798: 740: 585:Luneburg reflectors (the marked protrusion) on an 504: 469: 449: 419: 292: 269: 188: 164: 141: 1824:also have a radially decreasing refractive index. 1148:is the speed of light in vacuum. Minimizing this 1903:Gutman, A. S. (1954). "Modified Luneberg Lens". 1802:to follow the path of the ray through the lens. 680:A variation on the Luneburg lens antenna is the 111:A Luneburg lens converts a point source into a 1979: 1977: 2082:The Cambridge and Dublin Mathematical Journal 1989:The Cambridge and Dublin Mathematical Journal 1635: 1615: 54:. A typical Luneburg lens's refractive index 8: 2102:The Scientific Papers of James Clerk Maxwell 2062:: CS1 maint: multiple names: authors list ( 1539:. This first-order differential equation is 1224:of this second-order equation. Substituting 528:The Scientific Papers of James Clerk Maxwell 2105:. New York: Dover Publications. p. 76. 1840: 1838: 2023: 1783: 1763: 1743: 1723: 1702: 1674: 1663: 1650: 1640: 1634: 1633: 1614: 1613: 1611: 1602: 1591: 1568: 1548: 1520: 1484: 1470: 1454: 1444: 1421: 1407: 1397: 1383: 1343: 1341: 1316: 1293: 1279: 1269: 1229: 1197: 1177: 1153: 1133: 1105: 1097: 1073: 1059: 1053: 1033: 1028: 1021: 1016: 1002: 991: 975: 964: 956: 935: 924: 911: 903: 893: 880: 872: 860: 833: 820: 811: 787: 774: 765: 760:, the time of transit between two points 721: 713:of the system makes it convenient to use 696:on the reflector is less than about 45Β°. 523:Cambridge and Dublin Mathematical Journal 494: 488: 482: 462: 441: 435: 405: 391: 373: 367: 356: 350: 333: 285: 256: 242: 229: 218: 212: 204: 179: 177: 157: 133: 127: 27:Spherically symmetric gradient-index lens 1817:BLITS (Ball Lens In The Space) satellite 1543:, that is it can be re-arranged so that 2006:Badri, S Hadi and Gilarlue, MM (2019). 1834: 1467: 1451: 1404: 1368:{\displaystyle {\tfrac {dr}{d\theta }}} 1276: 2208:Animation of a Maxwell's Fish-Eye Lens 2157:from the original on 25 December 2023. 2055: 1885: 1874: 115:when the source is placed at its edge. 669:(a form of de-focussing). Apart from 94:which must be evaluated numerically. 7: 543:, especially to construct efficient 845:{\displaystyle (r_{2},\theta _{2})} 799:{\displaystyle (r_{1},\theta _{1})} 682:hemispherical Luneburg lens antenna 748:to describe the ray's trajectory. 25: 2117:"Looking through a Luneburg Lens" 1220:, which immediately supplies the 2174:Antenna Handbook: Antenna theory 577: 571: 1629: 1623: 1563:only appears on one side, and 1441: 1435: 1394: 1388: 1266: 1260: 1251: 1234: 1172:determining the dependence of 1050: 1044: 972: 958: 947: 941: 930: 904: 899: 873: 839: 813: 793: 767: 735: 723: 344: 338: 1: 1850:Mathematical Theory of Optics 700:Path of a ray within the lens 630:, 1961, using a Luneburg lens 308: 142:{\displaystyle \epsilon _{r}} 50:) is a spherically symmetric 2123:. 2019-08-08. Archived from 1375:), into this identity gives 2145:Lockie, Alex (5 May 2017). 2042:10.1016/j.ijleo.2019.03.163 741:{\displaystyle (r,\theta )} 516:Publication and attribution 189:{\displaystyle {\sqrt {2}}} 2256: 686:Luneburg reflector antenna 60:electromagnetic radiation 2177:. Springer. p. 40. 1995:. Macmillan: 9–11. 1854. 102: 2088:. Macmillan: 188. 1853. 1771:{\displaystyle \theta } 1731:{\displaystyle \theta } 1576:{\displaystyle \theta } 1537:constant of integration 1205:{\displaystyle \theta } 505:{\displaystyle n_{0}/2} 309:Maxwell's fish-eye lens 1800:integrated numerically 1792: 1772: 1752: 1732: 1711: 1688: 1577: 1557: 1529: 1506: 1369: 1330: 1305: 1206: 1186: 1168:yields a second-order 1162: 1142: 1119: 846: 800: 742: 631: 506: 471: 451: 421: 318: 294: 271: 190: 166: 143: 116: 35: 2171:; Lee, S. W. (1993). 2018:. Elsevier: 566–570. 1793: 1773: 1753: 1733: 1712: 1689: 1578: 1558: 1530: 1507: 1370: 1331: 1306: 1207: 1187: 1170:differential equation 1163: 1143: 1120: 847: 801: 743: 616: 541:microwave frequencies 507: 472: 452: 450:{\displaystyle n_{0}} 422: 316: 295: 272: 191: 167: 144: 110: 33: 1822:Gravitational lenses 1782: 1762: 1742: 1722: 1701: 1590: 1567: 1547: 1519: 1382: 1340: 1315: 1228: 1214:Lagrangian mechanics 1196: 1176: 1152: 1132: 859: 810: 764: 720: 481: 461: 434: 332: 284: 203: 196:to 1), according to 176: 156: 126: 2099:Niven, ed. (1890). 2034:2019Optik.185..566B 1952:1958JAP....29.1358M 1917:1954JAP....25..855G 1583:only on the other: 1040: 934: 665:to avoid suffering 121:dielectric constant 103:Luneburg's solution 52:gradient-index lens 2240:Military deception 2235:Stealth technology 1863:Brown, J. (1953). 1788: 1768: 1748: 1728: 1707: 1684: 1573: 1553: 1525: 1502: 1365: 1363: 1329:{\displaystyle r'} 1326: 1301: 1202: 1182: 1158: 1138: 1115: 1012: 868: 842: 796: 753:Fermat's principle 738: 694:angle of incidence 632: 545:microwave antennas 502: 467: 447: 417: 319: 290: 267: 186: 162: 139: 117: 92:definite integrals 36: 1960:10.1063/1.1723441 1925:10.1063/1.1721757 1884:Missing or empty 1865:Wireless Engineer 1791:{\displaystyle r} 1751:{\displaystyle r} 1738:as a function of 1710:{\displaystyle h} 1672: 1669: 1556:{\displaystyle r} 1528:{\displaystyle h} 1491: 1490: 1427: 1362: 1299: 1218:Beltrami identity 1185:{\displaystyle r} 1161:{\displaystyle T} 1141:{\displaystyle c} 1103: 1091: 1010: 997: 954: 715:polar coordinates 711:circular symmetry 675:aperture blockage 609:Microwave antenna 470:{\displaystyle R} 412: 399: 362: 293:{\displaystyle R} 262: 250: 224: 184: 165:{\displaystyle n} 42:(original German 16:(Redirected from 2247: 2189: 2188: 2165: 2159: 2158: 2151:Business Insider 2142: 2136: 2135: 2133: 2132: 2113: 2107: 2106: 2096: 2090: 2089: 2074: 2068: 2067: 2061: 2053: 2027: 2003: 1997: 1996: 1981: 1972: 1971: 1946:(9): 1358–1368. 1935: 1929: 1928: 1900: 1894: 1893: 1887: 1882: 1880: 1872: 1860: 1854: 1853: 1842: 1797: 1795: 1794: 1789: 1777: 1775: 1774: 1769: 1757: 1755: 1754: 1749: 1737: 1735: 1734: 1729: 1716: 1714: 1713: 1708: 1693: 1691: 1690: 1685: 1673: 1671: 1670: 1668: 1667: 1655: 1654: 1645: 1644: 1639: 1638: 1619: 1618: 1612: 1603: 1582: 1580: 1579: 1574: 1562: 1560: 1559: 1554: 1534: 1532: 1531: 1526: 1511: 1509: 1508: 1503: 1492: 1489: 1488: 1476: 1475: 1474: 1461: 1460: 1459: 1458: 1445: 1428: 1426: 1425: 1413: 1412: 1411: 1398: 1374: 1372: 1371: 1366: 1364: 1361: 1353: 1345: 1335: 1333: 1332: 1327: 1325: 1310: 1308: 1307: 1302: 1300: 1298: 1297: 1285: 1284: 1283: 1270: 1250: 1211: 1209: 1208: 1203: 1191: 1189: 1188: 1183: 1167: 1165: 1164: 1159: 1147: 1145: 1144: 1139: 1124: 1122: 1121: 1116: 1104: 1102: 1101: 1096: 1092: 1090: 1082: 1074: 1064: 1063: 1054: 1039: 1038: 1037: 1027: 1026: 1025: 1011: 1003: 998: 996: 995: 980: 979: 957: 955: 950: 936: 933: 929: 928: 916: 915: 902: 898: 897: 885: 884: 851: 849: 848: 843: 838: 837: 825: 824: 805: 803: 802: 797: 792: 791: 779: 778: 747: 745: 744: 739: 603:stealth aircraft 581: 575: 574: 511: 509: 508: 503: 498: 493: 492: 476: 474: 473: 468: 456: 454: 453: 448: 446: 445: 426: 424: 423: 418: 413: 411: 410: 409: 404: 400: 392: 378: 377: 368: 363: 361: 360: 351: 299: 297: 296: 291: 276: 274: 273: 268: 263: 261: 260: 255: 251: 243: 230: 225: 223: 222: 213: 195: 193: 192: 187: 185: 180: 171: 169: 168: 163: 151:refractive index 148: 146: 145: 140: 138: 137: 21: 2255: 2254: 2250: 2249: 2248: 2246: 2245: 2244: 2220: 2219: 2198: 2193: 2192: 2185: 2167: 2166: 2162: 2144: 2143: 2139: 2130: 2128: 2121:www.eahison.com 2115: 2114: 2110: 2098: 2097: 2093: 2076: 2075: 2071: 2054: 2005: 2004: 2000: 1983: 1982: 1975: 1937: 1936: 1932: 1902: 1901: 1897: 1883: 1873: 1862: 1861: 1857: 1846:Luneburg, R. K. 1844: 1843: 1836: 1831: 1808: 1798:, which may be 1780: 1779: 1760: 1759: 1740: 1739: 1720: 1719: 1699: 1698: 1659: 1646: 1632: 1607: 1588: 1587: 1565: 1564: 1545: 1544: 1517: 1516: 1480: 1466: 1462: 1450: 1446: 1417: 1403: 1399: 1380: 1379: 1354: 1346: 1338: 1337: 1318: 1313: 1312: 1289: 1275: 1271: 1243: 1226: 1225: 1194: 1193: 1174: 1173: 1150: 1149: 1130: 1129: 1083: 1075: 1069: 1068: 1055: 1029: 1017: 987: 971: 937: 920: 907: 889: 876: 857: 856: 829: 816: 808: 807: 783: 770: 762: 761: 718: 717: 702: 611: 595:radar reflector 591: 590: 589: 583: 582: 576: 572: 565: 563:Radar reflector 536: 518: 484: 479: 478: 459: 458: 437: 432: 431: 387: 386: 379: 369: 352: 330: 329: 311: 282: 281: 238: 237: 214: 201: 200: 174: 173: 154: 153: 129: 124: 123: 113:collimated beam 105: 100: 79:Rudolf Luneburg 28: 23: 22: 18:Dielectric lens 15: 12: 11: 5: 2253: 2251: 2243: 2242: 2237: 2232: 2222: 2221: 2218: 2217: 2211: 2205: 2197: 2196:External links 2194: 2191: 2190: 2183: 2160: 2137: 2108: 2091: 2078:"Problems (3)" 2069: 1998: 1973: 1930: 1911:(7): 855–859. 1895: 1855: 1833: 1832: 1830: 1827: 1826: 1825: 1819: 1814: 1807: 1804: 1787: 1767: 1747: 1727: 1706: 1697:The parameter 1695: 1694: 1683: 1680: 1677: 1666: 1662: 1658: 1653: 1649: 1643: 1637: 1631: 1628: 1625: 1622: 1617: 1610: 1606: 1601: 1598: 1595: 1572: 1552: 1524: 1513: 1512: 1501: 1498: 1495: 1487: 1483: 1479: 1473: 1469: 1465: 1457: 1453: 1449: 1443: 1440: 1437: 1434: 1431: 1424: 1420: 1416: 1410: 1406: 1402: 1396: 1393: 1390: 1387: 1360: 1357: 1352: 1349: 1324: 1321: 1296: 1292: 1288: 1282: 1278: 1274: 1268: 1265: 1262: 1259: 1256: 1253: 1249: 1246: 1242: 1239: 1236: 1233: 1222:first integral 1201: 1181: 1157: 1137: 1126: 1125: 1114: 1111: 1108: 1100: 1095: 1089: 1086: 1081: 1078: 1072: 1067: 1062: 1058: 1052: 1049: 1046: 1043: 1036: 1032: 1024: 1020: 1015: 1009: 1006: 1001: 994: 990: 986: 983: 978: 974: 970: 967: 963: 960: 953: 949: 946: 943: 940: 932: 927: 923: 919: 914: 910: 906: 901: 896: 892: 888: 883: 879: 875: 871: 867: 864: 841: 836: 832: 828: 823: 819: 815: 795: 790: 786: 782: 777: 773: 769: 737: 734: 731: 728: 725: 701: 698: 610: 607: 584: 570: 569: 568: 567: 566: 564: 561: 535: 532: 517: 514: 501: 497: 491: 487: 466: 444: 440: 428: 427: 416: 408: 403: 398: 395: 390: 385: 382: 376: 372: 366: 359: 355: 349: 346: 343: 340: 337: 310: 307: 289: 278: 277: 266: 259: 254: 249: 246: 241: 236: 233: 228: 221: 217: 211: 208: 183: 161: 136: 132: 104: 101: 99: 96: 26: 24: 14: 13: 10: 9: 6: 4: 3: 2: 2252: 2241: 2238: 2236: 2233: 2231: 2228: 2227: 2225: 2215: 2212: 2209: 2206: 2203: 2200: 2199: 2195: 2186: 2184:9780442015930 2180: 2176: 2175: 2170: 2164: 2161: 2156: 2152: 2148: 2141: 2138: 2127:on 2021-09-27 2126: 2122: 2118: 2112: 2109: 2104: 2103: 2095: 2092: 2087: 2083: 2079: 2073: 2070: 2065: 2059: 2051: 2047: 2043: 2039: 2035: 2031: 2026: 2021: 2017: 2013: 2009: 2002: 1999: 1994: 1990: 1986: 1980: 1978: 1974: 1969: 1965: 1961: 1957: 1953: 1949: 1945: 1941: 1940:J. Appl. Phys 1934: 1931: 1926: 1922: 1918: 1914: 1910: 1906: 1905:J. Appl. Phys 1899: 1896: 1891: 1878: 1870: 1866: 1859: 1856: 1851: 1847: 1841: 1839: 1835: 1828: 1823: 1820: 1818: 1815: 1813: 1810: 1809: 1805: 1803: 1801: 1785: 1765: 1745: 1725: 1704: 1681: 1678: 1675: 1664: 1660: 1656: 1651: 1647: 1641: 1626: 1620: 1608: 1604: 1599: 1596: 1593: 1586: 1585: 1584: 1570: 1550: 1542: 1538: 1522: 1499: 1496: 1493: 1485: 1481: 1477: 1471: 1463: 1455: 1447: 1438: 1432: 1429: 1422: 1418: 1414: 1408: 1400: 1391: 1385: 1378: 1377: 1376: 1358: 1355: 1350: 1347: 1322: 1319: 1294: 1290: 1286: 1280: 1272: 1263: 1257: 1254: 1247: 1244: 1240: 1237: 1231: 1223: 1219: 1215: 1199: 1179: 1171: 1155: 1135: 1112: 1109: 1106: 1098: 1093: 1087: 1084: 1079: 1076: 1070: 1065: 1060: 1056: 1047: 1041: 1034: 1030: 1022: 1018: 1013: 1007: 1004: 999: 992: 988: 984: 981: 976: 968: 965: 961: 951: 944: 938: 925: 921: 917: 912: 908: 894: 890: 886: 881: 877: 869: 865: 862: 855: 854: 853: 834: 830: 826: 821: 817: 788: 784: 780: 775: 771: 759: 754: 749: 732: 729: 726: 716: 712: 708: 699: 697: 695: 691: 687: 683: 678: 676: 672: 668: 664: 658: 655: 651: 647: 643: 642: 637: 629: 628: 622: 619: 615: 608: 606: 604: 599: 596: 588: 580: 562: 560: 558: 554: 550: 546: 542: 533: 531: 529: 525: 524: 515: 513: 499: 495: 489: 485: 464: 442: 438: 414: 406: 401: 396: 393: 388: 383: 380: 374: 370: 364: 357: 353: 347: 341: 335: 328: 327: 326: 324: 315: 306: 304: 287: 264: 257: 252: 247: 244: 239: 234: 231: 226: 219: 215: 209: 206: 199: 198: 197: 181: 159: 152: 134: 130: 122: 114: 109: 97: 95: 93: 88: 84: 80: 76: 71: 69: 65: 64:visible light 61: 57: 53: 49: 47: 41: 40:Luneburg lens 32: 19: 2216:from YouTube 2210:from YouTube 2204:from YouTube 2173: 2163: 2150: 2140: 2129:. Retrieved 2125:the original 2120: 2111: 2101: 2094: 2085: 2081: 2072: 2058:cite journal 2015: 2011: 2001: 1992: 1988: 1943: 1939: 1933: 1908: 1904: 1898: 1886:|title= 1877:cite journal 1868: 1864: 1858: 1849: 1696: 1514: 1127: 750: 703: 690:ground plane 685: 681: 679: 674: 663:optical axis 659: 650:phase centre 646:horn antenna 640: 636:dish antenna 633: 626: 600: 592: 557:laser diodes 537: 534:Applications 527: 521: 519: 429: 320: 279: 118: 72: 55: 45: 43: 39: 37: 1336:represents 555:light from 553:collimating 172:falls from 87:focal point 68:radio waves 48:neburg lens 2224:Categories 2131:2021-04-05 2025:1904.01242 1829:References 758:Pythagoras 627:Victorious 2169:Lo, Y. T. 1968:119949981 1812:Ball lens 1766:θ 1726:θ 1657:− 1597:θ 1571:θ 1541:separable 1430:− 1359:θ 1200:θ 1110:θ 1088:θ 1031:θ 1019:θ 1014:∫ 969:θ 922:θ 891:θ 870:∫ 831:θ 785:θ 733:θ 654:feed horn 625:HMS  354:ϵ 235:− 216:ϵ 131:ϵ 2155:Archived 2050:91184610 1848:(1944). 1806:See also 1468:′ 1452:′ 1405:′ 1323:′ 1277:′ 1248:′ 707:gradient 621:3D radar 618:Type 984 303:ellipses 2030:Bibcode 1948:Bibcode 1913:Bibcode 1311:(where 652:of the 323:Maxwell 98:Designs 2230:Lenses 2181:  2048:  1966:  1871:: 250. 1515:where 1128:where 671:offset 648:. The 430:where 280:where 75:images 2046:S2CID 2020:arXiv 2012:Optik 1964:S2CID 1535:is a 549:radar 62:from 2179:ISBN 2064:link 1890:help 1778:and 806:and 667:coma 641:feed 587:F-35 547:and 83:foci 2038:doi 2016:185 1956:doi 1921:doi 1192:on 852:is 684:or 623:on 66:to 2226:: 2153:. 2149:. 2119:. 2084:. 2080:. 2060:}} 2056:{{ 2044:. 2036:. 2028:. 2014:. 2010:. 1991:. 1987:. 1976:^ 1962:. 1954:. 1944:29 1942:. 1919:. 1909:25 1907:. 1881:: 1879:}} 1875:{{ 1869:30 1867:. 1837:^ 593:A 559:. 305:. 70:. 38:A 2187:. 2134:. 2086:8 2066:) 2052:. 2040:: 2032:: 2022:: 1993:9 1970:. 1958:: 1950:: 1927:. 1923:: 1915:: 1892:) 1888:( 1786:r 1746:r 1705:h 1682:. 1679:r 1676:d 1665:2 1661:h 1652:2 1648:r 1642:2 1636:) 1630:) 1627:r 1624:( 1621:n 1616:( 1609:r 1605:h 1600:= 1594:d 1551:r 1523:h 1500:, 1497:h 1494:= 1486:2 1482:r 1478:+ 1472:2 1464:r 1456:2 1448:r 1442:) 1439:r 1436:( 1433:n 1423:2 1419:r 1415:+ 1409:2 1401:r 1395:) 1392:r 1389:( 1386:n 1356:d 1351:r 1348:d 1320:r 1295:2 1291:r 1287:+ 1281:2 1273:r 1267:) 1264:r 1261:( 1258:n 1255:= 1252:) 1245:r 1241:, 1238:r 1235:( 1232:L 1180:r 1156:T 1136:c 1113:, 1107:d 1099:2 1094:) 1085:d 1080:r 1077:d 1071:( 1066:+ 1061:2 1057:r 1051:) 1048:r 1045:( 1042:n 1035:2 1023:1 1008:c 1005:1 1000:= 993:2 989:r 985:d 982:+ 977:2 973:) 966:d 962:r 959:( 952:c 948:) 945:r 942:( 939:n 931:) 926:2 918:, 913:2 909:r 905:( 900:) 895:1 887:, 882:1 878:r 874:( 866:= 863:T 840:) 835:2 827:, 822:2 818:r 814:( 794:) 789:1 781:, 776:1 772:r 768:( 736:) 730:, 727:r 724:( 500:2 496:/ 490:0 486:n 465:R 443:0 439:n 415:, 407:2 402:) 397:R 394:r 389:( 384:+ 381:1 375:0 371:n 365:= 358:r 348:= 345:) 342:r 339:( 336:n 288:R 265:, 258:2 253:) 248:R 245:r 240:( 232:2 227:= 220:r 210:= 207:n 182:2 160:n 135:r 56:n 46:ΓΌ 44:L 20:)

Index

Dielectric lens
A circle, shaded sky blue at the center, fading to white at the edge. A bundle of parallel red lines enters from the upper right and converges to a point at the opposite edge of the circle. Another bundle does the same from the upper left.
gradient-index lens
electromagnetic radiation
visible light
radio waves
images
Rudolf Luneburg
foci
focal point
definite integrals
Numerical simulation of a Luneburg lens illuminated by a point source at varying positions.
collimated beam
dielectric constant
refractive index
ellipses
A circle, shaded sky blue at the center, fading to white at the edge. A bundle of red curves emanate from a point on the circumference and re-converge at a point at the opposite edge of the circle. Another bundle does the same from the upper left.
Maxwell
Cambridge and Dublin Mathematical Journal
microwave frequencies
microwave antennas
radar
collimating
laser diodes

F-35
radar reflector
stealth aircraft

Type 984

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑