Knowledge (XXG)

Dieter Vollhardt

Source 📝

64:
DMFT provides an exact description of the quantum dynamics of correlated lattice systems with local interaction, but neglects spatial correlations. It has provided fundamental insights into the properties of correlated electronic systems. The combination of the DMFT with material-specific approaches,
43:
such as transition metals (e.g. iron or vanadium) and their oxides, i.e. materials with electrons in open d- and f-shells. The properties of these systems are determined by the Coulomb repulsion between the electrons which makes these electrons strongly correlated. The repulsion has the tendency to
115:
2022 Eugene Feenberg Medal in Many-Body Physics "for their groundbreaking development of a novel quantum many-body theory of correlated electron systems, the dynamical mean-field theory, and in particular for their application of this approach to explain and predict the properties of correlated
48:
cannot describe these systems adequately. In 1989 Vollhardt and his doctoral student Walter Metzner introduced electronic models with local interaction (Hubbard model) on a lattice with infinitely many nearest neighbors, which
111:
2020 Fellow of the American Physical Society "for pioneering contributions in condensed matter theory, in particular on strongly correlated electron systems, on disordered quantum systems, and on the superfluid phases of
101:"in recognition of his significant contributions to the derivation of a new mean-field theory of correlated quantum systems and to the understanding of many-body problems in the quantum theory of condensed matter" 542: 501: 105: 547: 552: 537: 44:
localize electrons. This leads to a multitude of phenomena such as the Mott-Hubbard metal insulator transition. Conventional band theory or
57:
then developed into the DMFT. The DMFT may be viewed as a self-consistent, field-theoretical generalization of a quantum impurity model by
446: 98: 204: 462:
Georges, Antoine (1996). "Dynamical mean-field theory of strongly correlated fermion systems and the limit of infinite dimensions".
442:
K. Held, I. A. Nekrasov, G. Keller, V. Eyert, N. Blümer, A. K. McMahan, R. T. Scalettar, T. Pruschke, V. I. Anisimov, D. Vollhardt,
408:
Georges, Antoine (1996). "Dynamical mean-field theory of strongly correlated fermion systems and the limit of infinite dimensions".
496: 90:"for the development and application of the dynamical mean field theory" (together with A. Georges, G. Kotliar, W. Metzner) 70: 40: 36: 319: 221: 87: 66: 45: 532: 58: 24: 254: 170: 131: 527: 471: 417: 374: 331: 233: 185: 146: 255:"A Diagrammic, Self-Consistent Treatment of the Anderson Localization Problem in d ≤ 2 Dimensions" 287: 512:, Editors: E. Pavarini, E. Koch, D. Vollhardt, A. Lichtenstein, Forschungszentrum Jülich (2011) 390: 347: 83: 443: 69:, led to a new computational scheme, often referred to as LDA+DMFT, for the investigation of 479: 425: 382: 339: 269: 241: 193: 154: 94: 505: 450: 54: 50: 475: 421: 378: 335: 237: 189: 150: 61:, where the mean-field describes the coupling of the impurity to an "electronic bath". 521: 294:"Dieter Vollhardt - Superfluid Helium-3: From very low Temperatures to the Big Bang" 343: 293: 483: 429: 386: 273: 245: 209:, in: Enrico Fermi Course 121, Broglia, Schrieffer (ed.), North Holland 1994 20: 394: 351: 159: 171:"Strongly correlated materials: Insights from dynamical mean field theory" 216:, Taylor and Francis 1990, corrected reprint by Dover Publications 2013 197: 365:
Georges, Antoine (1992). "Hubbard model in infinite dimensions".
119:
2024 Honorary Doctorate of the University of Warsaw, Poland
116:
electron materials (together with A. Georges, G. Kotliar)
65:
such as the "Local Density Approximation" (LDA) to the
498:
The LDA+DMFT approach to strongly correlated materials
132:"Dynamical mean-field theory for correlated electrons" 222:"Normal He 3 : an almost localized Fermi liquid" 320:"Correlated Lattice Fermions in d = ∞ Dimensions" 206:Strong-coupling approaches to correlated Fermions 8: 23:and Professor of Theoretical Physics at the 444:Psi-k Newsletter No. 56 (April 2003), p. 65 508:, Lecture Notes of the Autumn School 2011 158: 106:Academy of Sciences of the Czech Republic 543:Fellows of the American Physical Society 35:Vollhardt is one of the founders of the 310: 288:Homepage at the University of Augsburg 104:2011 Ernst Mach Honorary Medal of the 19:(born September 8, 1951) is a German 7: 108:"for Merit in the Physical Sciences" 300:. Joshua Heath. February 25, 2021. 14: 548:Winners of the Max Planck Medal 553:20th-century German physicists 538:21st-century German physicists 1: 214:Superfluid Phases of Helium 3 71:strongly correlated materials 41:strongly correlated materials 37:Dynamical Mean-Field Theory 569: 344:10.1103/PhysRevLett.62.324 220:Vollhardt, Dieter (1984). 464:Reviews of Modern Physics 410:Reviews of Modern Physics 226:Reviews of Modern Physics 88:European Physical Society 67:density functional theory 46:density functional theory 484:10.1103/RevModPhys.68.13 430:10.1103/RevModPhys.68.13 387:10.1103/PhysRevB.45.6479 318:Metzner, Walter (1989). 274:10.1103/PhysRevB.22.4666 246:10.1103/RevModPhys.56.99 169:Gabriel Kotliar (2004). 324:Physical Review Letters 99:German Physical Society 253:Vollhardt, D. (1980). 160:10.1002/andp.201100250 130:Vollhardt, D. (2011). 25:University of Augsburg 124:Selected publications 476:1996RvMP...68...13G 422:1996RvMP...68...13G 379:1992PhRvB..45.6479G 336:1989PhRvL..62..324M 238:1984RvMP...56...99V 212:with Peter Wölfle, 190:2004PhT....57c..53K 151:2012AnP...524....1V 504:2013-10-05 at the 449:2006-10-09 at the 139:Annalen der Physik 59:Philip W. Anderson 510:Hands-on LDA+DMFT 373:(12): 6479–6483. 367:Physical Review B 262:Physical Review B 198:10.1063/1.1712502 84:Europhysics Prize 560: 513: 494: 488: 487: 459: 453: 440: 434: 433: 405: 399: 398: 362: 356: 355: 315: 301: 277: 259: 249: 201: 175: 164: 162: 136: 95:Max Planck medal 17:Dieter Vollhardt 568: 567: 563: 562: 561: 559: 558: 557: 518: 517: 516: 506:Wayback Machine 495: 491: 461: 460: 456: 451:Wayback Machine 441: 437: 407: 406: 402: 364: 363: 359: 317: 316: 312: 308: 292: 284: 257: 252: 219: 173: 168: 134: 129: 126: 79: 77:Selected awards 55:Antoine Georges 51:Gabriel Kotliar 33: 31:Scientific work 12: 11: 5: 566: 564: 556: 555: 550: 545: 540: 535: 530: 520: 519: 515: 514: 489: 454: 435: 400: 357: 330:(3): 324–327. 309: 307: 304: 303: 302: 290: 283: 282:External links 280: 279: 278: 250: 217: 210: 202: 165: 125: 122: 121: 120: 117: 113: 109: 102: 91: 78: 75: 32: 29: 13: 10: 9: 6: 4: 3: 2: 565: 554: 551: 549: 546: 544: 541: 539: 536: 534: 533:Living people 531: 529: 526: 525: 523: 511: 507: 503: 500: 499: 493: 490: 485: 481: 477: 473: 470:(1): 13–125. 469: 465: 458: 455: 452: 448: 445: 439: 436: 431: 427: 423: 419: 416:(1): 13–125. 415: 411: 404: 401: 396: 392: 388: 384: 380: 376: 372: 368: 361: 358: 353: 349: 345: 341: 337: 333: 329: 325: 321: 314: 311: 305: 299: 295: 291: 289: 286: 285: 281: 275: 271: 267: 263: 256: 251: 247: 243: 239: 235: 232:(1): 99–120. 231: 227: 223: 218: 215: 211: 208: 207: 203: 199: 195: 191: 187: 183: 179: 178:Physics Today 172: 166: 161: 156: 152: 148: 144: 140: 133: 128: 127: 123: 118: 114: 110: 107: 103: 100: 96: 92: 89: 85: 81: 80: 76: 74: 72: 68: 62: 60: 56: 52: 47: 42: 38: 30: 28: 26: 22: 18: 509: 497: 492: 467: 463: 457: 438: 413: 409: 403: 370: 366: 360: 327: 323: 313: 297: 268:(10): 4666. 265: 261: 229: 225: 213: 205: 181: 177: 142: 138: 63: 34: 16: 15: 528:1951 births 145:(1): 1–19. 39:(DMFT) for 522:Categories 306:References 184:(3): 53. 112:helium-3" 21:physicist 502:Archived 447:Archived 395:10000408 352:10040203 472:Bibcode 418:Bibcode 375:Bibcode 332:Bibcode 298:YouTube 234:Bibcode 186:Bibcode 147:Bibcode 97:of the 86:of the 393:  350:  258:(PDF) 174:(PDF) 167:with 135:(PDF) 93:2010 82:2006 391:PMID 348:PMID 53:and 480:doi 426:doi 383:doi 340:doi 270:doi 242:doi 194:doi 155:doi 143:524 524:: 478:. 468:68 466:. 424:. 414:68 412:. 389:. 381:. 371:45 369:. 346:. 338:. 328:62 326:. 322:. 296:. 266:22 264:. 260:. 240:. 230:56 228:. 224:. 192:. 182:57 180:. 176:. 153:. 141:. 137:. 73:. 27:. 486:. 482:: 474:: 432:. 428:: 420:: 397:. 385:: 377:: 354:. 342:: 334:: 276:. 272:: 248:. 244:: 236:: 200:. 196:: 188:: 163:. 157:: 149::

Index

physicist
University of Augsburg
Dynamical Mean-Field Theory
strongly correlated materials
density functional theory
Gabriel Kotliar
Antoine Georges
Philip W. Anderson
density functional theory
strongly correlated materials
Europhysics Prize
European Physical Society
Max Planck medal
German Physical Society
Academy of Sciences of the Czech Republic
"Dynamical mean-field theory for correlated electrons"
Bibcode
2012AnP...524....1V
doi
10.1002/andp.201100250
"Strongly correlated materials: Insights from dynamical mean field theory"
Bibcode
2004PhT....57c..53K
doi
10.1063/1.1712502
Strong-coupling approaches to correlated Fermions
"Normal He 3 : an almost localized Fermi liquid"
Bibcode
1984RvMP...56...99V
doi

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.