Knowledge

Diffusive–thermal instability

Source 📝

90: 738: 912:(1944). Theory of Combustion and Detonation of Gases. In R. Sunyaev (Ed.), Selected Works of Yakov Borisovich Zeldovich, Volume I: Chemical Physics and Hydrodynanics (pp. 162-232). Princeton: Princeton University Press. 175: 379: 437: 851: 486: 204: 816: 586: 993:
Clavin, P., & Searby, G. (2016). Combustion waves and fronts in flows: flames, shocks, detonations, ablation fronts and explosion of stars. Cambridge University Press.
246: 105:
etc., the analysis usually neglects effects due to the thermal expansion of the gas mixture by assuming a constant density model. Such an approximation is referred to as
966:
Kim, J. S., & Lee, S. R. (1999). Diffusional-thermal instability in strained diffusion flames with unequal Lewis numbers. Combustion Theory and Modelling, 3(1), 123.
295: 939:
Kim, J. S. (1997). Linear analysis of diffusional-thermal instability in diffusion flames with Lewis numbers close to unity. Combustion Theory and Modelling, 1(1), 13.
557: 266: 533: 509: 781: 761: 224: 957:
Kim, J. S. (1996). Diffusional-thermal instability of diffusion flames in the premixed-flame regime. Combustion science and technology, 118(1-3), 27-48.
975:
Barenblatt, G. I., Zeldovich Ya. B., Istratov, A. G. (1962). On diffusional-thermal stability of a laminar flame. J. Appl. Mech. Tech. Phys., 4, 21-26.
948:
Kim, J. S., Williams, F. A., & Ronney, P. D. (1996). Diffusional-thermal instability of diffusion flames. Journal of Fluid mechanics, 327, 273-301.
594: 930:
Joulin, G., & Clavin, P. (1979). Linear stability analysis of nonadiabatic flames: diffusional-thermal model. Combustion and Flame, 35, 139-153.
49:
and arises because of the difference in the diffusion coefficient values for the fuel and heat transport, characterized by non-unity values of
1018: 124: 884: 303: 879: 121:
and A. G. Istratov in 1962. With a one-step chemistry model and assuming the perturbations to a steady planar flame in the form
102: 98: 921:
Sivashinsky, G. I. (1977). Diffusional-thermal theory of cellular flames. Combustion Science and Technology, 15(3-4), 137-145.
387: 894: 889: 1008: 821: 442: 180: 38: 786: 562: 588:
would determine the stability character. The stability margins are given by the following equations
1013: 70: 229: 114: 78: 57:
explaining chemical morphogenesis, although the mechanism was first discovered in the context of
271: 89: 542: 251: 17: 536: 518: 118: 62: 46: 491: 874: 766: 746: 209: 54: 42: 1002: 853:
The first curve separates the region of stable mode from the region corresponding to
512: 50: 733:{\displaystyle 8k^{2}+l+2=0,\quad 256k^{4}+(-6l^{2}+32l+256)k^{2}-l^{2}+8l+32=0} 74: 58: 69:
flames. Quantitative stability theory for premixed flames were developed by
66: 268:
is the temporal growth rate of the disturbance, the dispersion relation
170:{\displaystyle e^{i\mathbf {k} \cdot \mathbf {x} _{\bot }+\omega t}} 88: 97:
To neglect the influences by hydrodynamic instabilities such as
374:{\displaystyle 2\Gamma ^{2}(\Gamma -1)+l(\Gamma -1-2\omega )=0} 53:. The instability mechanism that arises here is the same as in 65:
in 1944 to explain the cellular structures appearing in lean
206:
is the transverse coordinate system perpendicular to flame,
857:, whereas the second condition indicates the presence of 984:
Williams, F. A. (2018). Combustion theory. CRC Press.
824: 789: 769: 749: 597: 565: 545: 521: 494: 445: 390: 306: 274: 254: 232: 212: 183: 127: 783:
plane. The first curve is associated with condition
539:. This relation provides in general three roots for 432:{\displaystyle \Gamma ={\sqrt {1+4\omega +4k^{2}}}} 77:(1979) and for diffusion flames by Jong S. Kim and 845: 810: 775: 755: 732: 580: 551: 527: 503: 480: 431: 373: 289: 260: 240: 218: 198: 169: 297:for one-reactant flames is given implicitly by 8: 834: 828: 799: 793: 575: 569: 823: 788: 768: 748: 703: 690: 662: 640: 605: 596: 564: 544: 520: 493: 470: 444: 421: 397: 389: 314: 305: 273: 253: 233: 231: 211: 190: 185: 182: 150: 145: 136: 132: 126: 905: 85:Dispersion relation for premixed flames 846:{\displaystyle \Im \{\omega \}\neq 0.} 481:{\displaystyle l\equiv (Le-1)/\beta } 93:Diffusive-thermal instability diagram 7: 199:{\displaystyle \mathbf {x} _{\bot }} 248:is the perturbation wavevector and 825: 790: 566: 391: 344: 323: 311: 191: 151: 25: 811:{\displaystyle \Im \{\omega \}=0} 234: 186: 146: 137: 632: 581:{\displaystyle \Re \{\omega \}} 107:diffusive-thermal approximation 818:, whereas on the second curve 683: 649: 559:in which the one with maximum 467: 452: 362: 341: 332: 320: 284: 278: 113:which was first introduced by 111:thermo-diffusive approximation 1: 885:Kuramoto–Sivashinsky equation 743:describing two curves in the 31:Diffusive–thermal instability 18:Diffusive-thermal instability 241:{\displaystyle \mathbf {k} } 35:thermo–diffusive instability 27:Instrinsic flame instability 1019:Fluid dynamic instabilities 895:Double diffusive convection 880:Darrieus–Landau instability 103:Rayleigh–Taylor instability 99:Darrieus–Landau instability 39:intrinsic flame instability 1035: 290:{\displaystyle \omega (k)} 552:{\displaystyle \omega } 261:{\displaystyle \omega } 73:(1977), Guy Joulin and 890:Clavin–Garcia equation 847: 812: 777: 757: 734: 582: 553: 529: 528:{\displaystyle \beta } 505: 482: 433: 375: 291: 262: 242: 220: 200: 171: 94: 863:pulsating instability 848: 813: 778: 758: 735: 583: 554: 530: 506: 483: 434: 376: 292: 263: 243: 221: 201: 172: 92: 855:cellular instability 822: 787: 767: 747: 595: 563: 543: 519: 492: 443: 388: 304: 272: 252: 230: 210: 181: 125: 41:that occurs both in 71:Gregory Sivashinsky 843: 808: 773: 753: 730: 578: 549: 525: 504:{\displaystyle Le} 501: 478: 429: 371: 287: 258: 238: 216: 196: 167: 115:Grigory Barenblatt 95: 79:Forman A. Williams 55:Turing instability 776:{\displaystyle k} 756:{\displaystyle l} 427: 219:{\displaystyle t} 16:(Redirected from 1026: 994: 991: 985: 982: 976: 973: 967: 964: 958: 955: 949: 946: 940: 937: 931: 928: 922: 919: 913: 910: 852: 850: 849: 844: 817: 815: 814: 809: 782: 780: 779: 774: 762: 760: 759: 754: 739: 737: 736: 731: 708: 707: 695: 694: 667: 666: 645: 644: 610: 609: 587: 585: 584: 579: 558: 556: 555: 550: 537:Zeldovich number 534: 532: 531: 526: 515:of the fuel and 510: 508: 507: 502: 487: 485: 484: 479: 474: 438: 436: 435: 430: 428: 426: 425: 398: 380: 378: 377: 372: 319: 318: 296: 294: 293: 288: 267: 265: 264: 259: 247: 245: 244: 239: 237: 225: 223: 222: 217: 205: 203: 202: 197: 195: 194: 189: 176: 174: 173: 168: 166: 165: 155: 154: 149: 140: 47:diffusion flames 21: 1034: 1033: 1029: 1028: 1027: 1025: 1024: 1023: 999: 998: 997: 992: 988: 983: 979: 974: 970: 965: 961: 956: 952: 947: 943: 938: 934: 929: 925: 920: 916: 911: 907: 903: 871: 820: 819: 785: 784: 765: 764: 745: 744: 699: 686: 658: 636: 601: 593: 592: 561: 560: 541: 540: 517: 516: 490: 489: 441: 440: 417: 386: 385: 310: 302: 301: 270: 269: 250: 249: 228: 227: 208: 207: 184: 179: 178: 144: 128: 123: 122: 119:Yakov Zeldovich 87: 63:Yakov Zeldovich 43:premixed flames 28: 23: 22: 15: 12: 11: 5: 1032: 1030: 1022: 1021: 1016: 1011: 1009:Fluid dynamics 1001: 1000: 996: 995: 986: 977: 968: 959: 950: 941: 932: 923: 914: 904: 902: 899: 898: 897: 892: 887: 882: 877: 875:Turing pattern 870: 867: 842: 839: 836: 833: 830: 827: 807: 804: 801: 798: 795: 792: 772: 752: 741: 740: 729: 726: 723: 720: 717: 714: 711: 706: 702: 698: 693: 689: 685: 682: 679: 676: 673: 670: 665: 661: 657: 654: 651: 648: 643: 639: 635: 631: 628: 625: 622: 619: 616: 613: 608: 604: 600: 577: 574: 571: 568: 548: 524: 500: 497: 477: 473: 469: 466: 463: 460: 457: 454: 451: 448: 424: 420: 416: 413: 410: 407: 404: 401: 396: 393: 382: 381: 370: 367: 364: 361: 358: 355: 352: 349: 346: 343: 340: 337: 334: 331: 328: 325: 322: 317: 313: 309: 286: 283: 280: 277: 257: 236: 215: 193: 188: 164: 161: 158: 153: 148: 143: 139: 135: 131: 86: 83: 26: 24: 14: 13: 10: 9: 6: 4: 3: 2: 1031: 1020: 1017: 1015: 1012: 1010: 1007: 1006: 1004: 990: 987: 981: 978: 972: 969: 963: 960: 954: 951: 945: 942: 936: 933: 927: 924: 918: 915: 909: 906: 900: 896: 893: 891: 888: 886: 883: 881: 878: 876: 873: 872: 868: 866: 864: 860: 856: 840: 837: 831: 805: 802: 796: 770: 750: 727: 724: 721: 718: 715: 712: 709: 704: 700: 696: 691: 687: 680: 677: 674: 671: 668: 663: 659: 655: 652: 646: 641: 637: 633: 629: 626: 623: 620: 617: 614: 611: 606: 602: 598: 591: 590: 589: 572: 546: 538: 522: 514: 498: 495: 475: 471: 464: 461: 458: 455: 449: 446: 422: 418: 414: 411: 408: 405: 402: 399: 394: 368: 365: 359: 356: 353: 350: 347: 338: 335: 329: 326: 315: 307: 300: 299: 298: 281: 275: 255: 226:is the time, 213: 162: 159: 156: 141: 133: 129: 120: 116: 112: 108: 104: 100: 91: 84: 82: 81:(1996,1997). 80: 76: 72: 68: 64: 60: 56: 52: 51:Lewis numbers 48: 44: 40: 36: 32: 19: 989: 980: 971: 962: 953: 944: 935: 926: 917: 908: 862: 858: 854: 742: 513:Lewis number 383: 110: 106: 96: 34: 30: 29: 75:Paul Clavin 1014:Combustion 1003:Categories 901:References 59:combustion 859:traveling 838:≠ 832:ω 826:ℑ 797:ω 791:ℑ 697:− 653:− 573:ω 567:ℜ 547:ω 523:β 476:β 462:− 450:≡ 409:ω 392:Γ 360:ω 354:− 348:− 345:Γ 327:− 324:Γ 312:Γ 276:ω 256:ω 192:⊥ 160:ω 152:⊥ 142:⋅ 869:See also 177:, where 67:hydrogen 861:and/or 535:is the 511:is the 45:and in 384:where 37:is an 763:vs. 681:256 634:256 109:or 61:by 33:or 1005:: 865:. 841:0. 722:32 672:32 488:, 439:, 117:, 101:, 835:} 829:{ 806:0 803:= 800:} 794:{ 771:k 751:l 728:0 725:= 719:+ 716:l 713:8 710:+ 705:2 701:l 692:2 688:k 684:) 678:+ 675:l 669:+ 664:2 660:l 656:6 650:( 647:+ 642:4 638:k 630:, 627:0 624:= 621:2 618:+ 615:l 612:+ 607:2 603:k 599:8 576:} 570:{ 499:e 496:L 472:/ 468:) 465:1 459:e 456:L 453:( 447:l 423:2 419:k 415:4 412:+ 406:4 403:+ 400:1 395:= 369:0 366:= 363:) 357:2 351:1 342:( 339:l 336:+ 333:) 330:1 321:( 316:2 308:2 285:) 282:k 279:( 235:k 214:t 187:x 163:t 157:+ 147:x 138:k 134:i 130:e 20:)

Index

Diffusive-thermal instability
intrinsic flame instability
premixed flames
diffusion flames
Lewis numbers
Turing instability
combustion
Yakov Zeldovich
hydrogen
Gregory Sivashinsky
Paul Clavin
Forman A. Williams

Darrieus–Landau instability
Rayleigh–Taylor instability
Grigory Barenblatt
Yakov Zeldovich
Lewis number
Zeldovich number
Turing pattern
Darrieus–Landau instability
Kuramoto–Sivashinsky equation
Clavin–Garcia equation
Double diffusive convection
Categories
Fluid dynamics
Combustion
Fluid dynamic instabilities

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.