Knowledge (XXG)

Differential rotation

Source 📝

25: 724:
would have to resolve this entire range of scales in each of the three dimensions. Consequently, all solar differential rotation models must involve some approximations regarding momentum and heat transport by turbulent motions that are not explicitly computed. Thus, modeling approaches can be classified as either mean-field models or large-eddy simulations according to the approximations.
706: 723:
The highly turbulent nature of solar convection and anisotropies induced by rotation complicate the dynamics of modeling. Molecular dissipation scales on the Sun are at least six orders of magnitude smaller than the depth of the convective envelope. A direct numerical simulation of solar convection
294:
Gradients in angular rotation caused by angular momentum redistribution within the convective layers of a star are expected to be a main driver for generating the large-scale magnetic field, through magneto-hydrodynamical (dynamo) mechanisms in the outer envelopes. The interface between these two
246:
measurements of solar "p-modes" it is possible to deduce the differential rotation. The Sun has very many acoustic modes that oscillate in the interior simultaneously, and the inversion of their frequencies can yield the rotation of the solar interior. This varies with both depth and (especially)
719:
On the Sun, the study of oscillations revealed that rotation is roughly constant within the whole radiative interior and variable with radius and latitude within the convective envelope. The Sun has an equatorial rotation speed of ~2 km/s; its differential rotation implies that the angular
226:
in stars which is a movement of mass, due to steep temperature gradients from the core outwards. This mass carries a portion of the star's angular momentum, thus redistributing the angular velocity, possibly even far enough out for the star to lose angular velocity in
277:
TVLM 513-46546, astronomers were able to measure subtle changes in the arrival times of the radio waves. These measurements demonstrate that the radio waves can arrive 1–2 seconds sooner or later in a systematic fashion over a number of years. On the Sun,
685: 312:
Solar differential rotation causes shear at the so-called tachocline. This is a region where rotation changes from differential in the convection zone to nearly solid-body rotation in the interior, at 0.71 solar radii from the center.
742:
Disk galaxies do not rotate like solid bodies, but rather rotate differentially. The rotation speed as a function of radius is called a rotation curve, and is often interpreted as a measurement of the mass profile of a galaxy, as:
470: 377: 583: 239:
There are many ways to measure and calculate differential rotation in stars to see if different latitudes have different angular velocities. The most obvious is tracking spots on the stellar surface.
282:
are common sources of radio flares. The researchers concluded that this effect was best explained by active regions emerging and disappearing at different latitudes, such as occurs during the solar
809: 590: 535: 1129:
http://www.astro.physik.uni-goettingen.de/~areiners/DiffRot/interactive.htm A simulation of the effects of differential rotation on stellar absorption-line profiles by Ansgar Reiners
720:
velocity decreases with increased latitude. The poles make one rotation every 34.3 days and the equator every 25.05 days, as measured relative to distant stars (sidereal rotation).
404: 907: 851: 270:
at the equator and poles. See also plot 2. Solar differential rotation is also seen in magnetograms, images showing the strength and location of solar magnetic fields.
490: 927: 871: 1023:
Wolszczan, A.; Route, M. (10 June 2014). "Timing Analysis of the Periodic Radio and Optical Brightness Variations of the Ultracool Dwarf, TVLM 513-46546".
709:
Internal rotation in the Sun, showing differential rotation in the outer convective region and almost uniform rotation in the central radiative region.
324: 222:
that they form from into rotating motion as they coalesce. Given this average rotation of the whole body, internal differential rotation is caused by
543: 273:
It may be possible to measure the differential of stars that regularly emit flares of radio emission. Using 7 years of observations of the M9
42: 1102: 746: 409: 258:
is the angle between the line of sight and the rotation axis, permitting the study of the rotational velocity's line-of-sight component v
298:
The inner differential rotation is one part of the mixing processes in stars, mixing the materials and the heat/energy of the stars.
108: 89: 61: 215: 206:
reported that the Sun had different rotational periods at the poles and at the equator, in good agreement with modern values.
1148: 295:
regions is where angular rotation gradients are strongest and thus where dynamo processes are expected to be most efficient.
68: 46: 122: 75: 1153: 503: 1134:
explanation of increased angular velocity at equatorial latitude due to overshoot of mass arriving from heated core
540:
The relative differential rotation rate is the ratio of the rotational shear to the rotation rate at the equator:
57: 35: 943: 587:
The Doppler rotation rate in the Sun (measured from Doppler-shifted absorption lines), can be approximated as:
1128: 472:
is the difference in angular velocity between pole and equator, called the strength of the rotational shear.
680:{\displaystyle {\frac {\Omega }{2\pi }}=(451.5-65.3\cos ^{2}\theta -66.7\cos ^{4}\theta )\,\mathrm {nHz} } 978: 493: 1042: 990: 82: 1058: 1032: 382: 302: 263: 203: 160: 144: 877: 817: 1158: 1098: 537:
is the lap time, i.e. the time it takes for the equator to do a full lap more than the poles.
1112: 1079: 1050: 998: 953: 274: 136: 132: 1109:
On the feasibility of the detection of differential rotation in stellar absorption profiles
1108: 1083: 475: 306: 243: 219: 191: 1046: 994: 938: 912: 856: 737: 714: 199: 156: 1142: 1062: 1054: 1002: 231:. Differential rotation thus depends on temperature differences in adjacent regions. 948: 228: 172: 148: 1116: 1133: 283: 24: 301:
Differential rotation affects stellar optical absorption-line spectra through
223: 733: 250:
The broadened shapes of absorption lines in the optical spectrum depend on v
168: 195: 140: 958: 705: 321:
For observed sunspots, the differential rotation can be calculated as:
279: 180: 465:{\displaystyle \Delta \Omega =(\Omega _{0}-\Omega _{\mathrm {pole} })} 131:
is seen when different parts of a rotating object move with different
1095:
Stellar Photospheres; The Observations and Analysis of: Third Edition
184: 164: 1037: 704: 152: 147:
of the body and/or in time. This indicates that the object is not
372:{\displaystyle \Omega =\Omega _{0}-\Delta \Omega \sin ^{2}\Psi } 176: 18: 578:{\displaystyle \alpha ={\frac {\Delta \Omega }{\Omega _{0}}}} 804:{\displaystyle v_{c}(R)={\sqrt {\frac {GM(<R)}{R}}}} 915: 880: 859: 820: 749: 593: 546: 506: 478: 412: 385: 327: 214:
Stars and planets rotate in the first place because
171:
usually show differential rotation; examples in the
49:. Unsourced material may be challenged and removed. 921: 901: 865: 845: 803: 679: 577: 529: 484: 464: 398: 371: 266:of the line shapes, using equation (2) below for v 1078:Annu. Rev. Astron. Astrophys. 2003. 41:599–643 530:{\displaystyle {\frac {2\pi }{\Delta \Omega }}} 691:is the co-latitude (measured from the poles). 8: 1107:A. Reiners, J. H. M. M. Schmitt, (2002), 979:"Magnetic reversals of Jupiter and Saturn" 1097:, chapter 8, Cambridge University Press, 1036: 914: 909:is the total mass enclosed within radius 879: 858: 825: 819: 772: 754: 748: 666: 665: 650: 628: 594: 592: 567: 553: 545: 507: 505: 477: 443: 442: 429: 411: 406:is the rotation rate at the equator, and 390: 384: 357: 338: 326: 109:Learn how and when to remove this message 500:The reciprocal of the rotational shear 969: 1084:10.1146/annurev.astro.41.011802.094848 218:turns random drifting of parts of the 7: 47:adding citations to reliable sources 673: 670: 667: 596: 564: 559: 556: 521: 518: 479: 453: 450: 447: 444: 439: 426: 416: 413: 387: 366: 350: 347: 335: 328: 305:caused by lines being differently 14: 1088:The Internal Rotation of the Sun 977:Hathaway, David H. (July 1986). 853:is the rotation speed at radius 216:conservation of angular momentum 23: 34:needs additional citations for 893: 884: 837: 831: 791: 782: 766: 760: 662: 612: 459: 422: 1: 496:, measured from the equator. 1003:10.1016/0019-1035(86)90177-6 309:across the stellar surface. 123:Differential rotation matrix 16:Variations in rotation rates 399:{\displaystyle \Omega _{0}} 1175: 1117:10.1051/0004-6361:20011801 1111:, A&A 384 (1) 155–162 1055:10.1088/0004-637X/788/1/23 731: 712: 262:. This is calculated from 120: 1025:The Astrophysical Journal 902:{\displaystyle M(<R),} 846:{\displaystyle v_{c}(R),} 121:Not to be confused with 58:"Differential rotation" 923: 903: 867: 847: 805: 710: 681: 579: 531: 486: 466: 400: 373: 190:Around the year 1610, 1149:Astrophysics concepts 924: 904: 868: 848: 806: 708: 682: 580: 532: 494:heliographic latitude 487: 485:{\displaystyle \Psi } 467: 401: 374: 129:Differential rotation 913: 878: 857: 818: 747: 591: 544: 504: 476: 410: 383: 325: 43:improve this article 1047:2014ApJ...788...23W 995:1986Icar...67...88H 200:rotation of the Sun 198:and calculated the 1154:Co-orbital objects 919: 899: 863: 843: 801: 711: 677: 575: 527: 482: 462: 396: 369: 264:Fourier transforms 244:helioseismological 204:Christoph Scheiner 133:angular velocities 1103:978-0-521-85186-2 922:{\displaystyle R} 866:{\displaystyle R} 799: 798: 607: 573: 525: 155:objects, such as 137:rates of rotation 119: 118: 111: 93: 1166: 1067: 1066: 1040: 1020: 1014: 1013: 1011: 1009: 974: 954:Stellar rotation 944:Giovanni Cassini 928: 926: 925: 920: 908: 906: 905: 900: 872: 870: 869: 864: 852: 850: 849: 844: 830: 829: 810: 808: 807: 802: 800: 794: 774: 773: 759: 758: 690: 686: 684: 683: 678: 676: 655: 654: 633: 632: 608: 606: 595: 584: 582: 581: 576: 574: 572: 571: 562: 554: 536: 534: 533: 528: 526: 524: 516: 508: 491: 489: 488: 483: 471: 469: 468: 463: 458: 457: 456: 434: 433: 405: 403: 402: 397: 395: 394: 378: 376: 375: 370: 362: 361: 343: 342: 159:, this leads to 114: 107: 103: 100: 94: 92: 51: 27: 19: 1174: 1173: 1169: 1168: 1167: 1165: 1164: 1163: 1139: 1138: 1125: 1093:David F. Gray, 1075: 1073:Further reading 1070: 1022: 1021: 1017: 1007: 1005: 976: 975: 971: 967: 935: 911: 910: 876: 875: 855: 854: 821: 816: 815: 775: 750: 745: 744: 740: 730: 717: 703: 698: 688: 646: 624: 599: 589: 588: 563: 555: 542: 541: 517: 509: 502: 501: 474: 473: 438: 425: 408: 407: 386: 381: 380: 353: 334: 323: 322: 319: 307:Doppler-shifted 303:line broadening 292: 275:ultracool dwarf 269: 261: 253: 237: 220:molecular cloud 212: 192:Galileo Galilei 157:accretion disks 139:) at different 126: 115: 104: 98: 95: 52: 50: 40: 28: 17: 12: 11: 5: 1172: 1170: 1162: 1161: 1156: 1151: 1141: 1140: 1137: 1136: 1131: 1124: 1123:External links 1121: 1120: 1119: 1105: 1091: 1074: 1071: 1069: 1068: 1015: 968: 966: 963: 962: 961: 956: 951: 946: 941: 939:Solar rotation 934: 931: 930: 929: 918: 898: 895: 892: 889: 886: 883: 873: 862: 842: 839: 836: 833: 828: 824: 797: 793: 790: 787: 784: 781: 778: 771: 768: 765: 762: 757: 753: 738:Oort constants 729: 726: 715:Solar rotation 702: 699: 697: 694: 693: 692: 675: 672: 669: 664: 661: 658: 653: 649: 645: 642: 639: 636: 631: 627: 623: 620: 617: 614: 611: 605: 602: 598: 585: 570: 566: 561: 558: 552: 549: 538: 523: 520: 515: 512: 481: 461: 455: 452: 449: 446: 441: 437: 432: 428: 424: 421: 418: 415: 393: 389: 368: 365: 360: 356: 352: 349: 346: 341: 337: 333: 330: 318: 315: 291: 288: 280:active regions 267: 259: 254:sin(i), where 251: 236: 233: 211: 208: 117: 116: 31: 29: 22: 15: 13: 10: 9: 6: 4: 3: 2: 1171: 1160: 1157: 1155: 1152: 1150: 1147: 1146: 1144: 1135: 1132: 1130: 1127: 1126: 1122: 1118: 1114: 1110: 1106: 1104: 1100: 1096: 1092: 1089: 1085: 1081: 1077: 1076: 1072: 1064: 1060: 1056: 1052: 1048: 1044: 1039: 1034: 1030: 1026: 1019: 1016: 1004: 1000: 996: 992: 988: 984: 980: 973: 970: 964: 960: 957: 955: 952: 950: 947: 945: 942: 940: 937: 936: 932: 916: 896: 890: 887: 881: 874: 860: 840: 834: 826: 822: 814: 813: 812: 795: 788: 785: 779: 776: 769: 763: 755: 751: 739: 735: 728:Disk galaxies 727: 725: 721: 716: 707: 700: 695: 659: 656: 651: 647: 643: 640: 637: 634: 629: 625: 621: 618: 615: 609: 603: 600: 586: 568: 550: 547: 539: 513: 510: 499: 498: 497: 495: 435: 430: 419: 391: 363: 358: 354: 344: 339: 331: 317:Surface level 316: 314: 310: 308: 304: 299: 296: 289: 287: 285: 284:sunspot cycle 281: 276: 271: 265: 257: 248: 245: 240: 234: 232: 230: 229:stellar winds 225: 221: 217: 209: 207: 205: 201: 197: 193: 188: 186: 182: 178: 174: 170: 166: 162: 158: 154: 150: 146: 142: 138: 134: 130: 124: 113: 110: 102: 99:December 2009 91: 88: 84: 81: 77: 74: 70: 67: 63: 60: –  59: 55: 54:Find sources: 48: 44: 38: 37: 32:This article 30: 26: 21: 20: 1094: 1087: 1028: 1024: 1018: 1006:. Retrieved 989:(1): 88–95. 986: 982: 972: 949:Solar nebula 741: 722: 718: 320: 311: 300: 297: 293: 272: 255: 249: 241: 238: 213: 189: 175:include the 173:Solar System 128: 127: 105: 96: 86: 79: 72: 65: 53: 41:Please help 36:verification 33: 235:Measurement 202:. In 1630, 1143:Categories 965:References 732:See also: 713:See also: 247:latitude. 224:convection 169:protostars 69:newspapers 1063:119114679 1038:1404.4682 1031:(1): 23. 734:Milky Way 660:θ 657:⁡ 641:− 638:θ 635:⁡ 619:− 604:π 597:Ω 565:Ω 560:Ω 557:Δ 548:α 522:Ω 519:Δ 514:π 480:Ψ 440:Ω 436:− 427:Ω 417:Ω 414:Δ 388:Ω 367:Ψ 364:⁡ 351:Ω 348:Δ 345:− 336:Ω 329:Ω 242:By doing 194:observed 141:latitudes 1159:Rotation 1008:25 April 933:See also 696:Examples 196:sunspots 165:Galaxies 161:shearing 1043:Bibcode 991:Bibcode 959:Sunspot 492:is the 290:Effects 181:Jupiter 143:and/or 83:scholar 1101:  1061:  983:Icarus 811:where 687:where 379:where 185:Saturn 145:depths 85:  78:  71:  64:  56:  1059:S2CID 1033:arXiv 616:451.5 210:Cause 153:fluid 151:. In 149:rigid 90:JSTOR 76:books 1099:ISBN 1010:2024 888:< 786:< 736:and 644:66.7 622:65.3 183:and 167:and 135:(or 62:news 1113:doi 1080:doi 1051:doi 1029:788 999:doi 701:Sun 648:cos 626:cos 355:sin 268:rot 260:rot 252:rot 177:Sun 45:by 1145:: 1057:. 1049:. 1041:. 1027:. 997:. 987:67 985:. 981:. 286:. 187:. 179:, 163:. 1115:: 1090:" 1086:" 1082:: 1065:. 1053:: 1045:: 1035:: 1012:. 1001:: 993:: 917:R 897:, 894:) 891:R 885:( 882:M 861:R 841:, 838:) 835:R 832:( 827:c 823:v 796:R 792:) 789:R 783:( 780:M 777:G 770:= 767:) 764:R 761:( 756:c 752:v 689:θ 674:z 671:H 668:n 663:) 652:4 630:2 613:( 610:= 601:2 569:0 551:= 511:2 460:) 454:e 451:l 448:o 445:p 431:0 423:( 420:= 392:0 359:2 340:0 332:= 256:i 125:. 112:) 106:( 101:) 97:( 87:· 80:· 73:· 66:· 39:.

Index


verification
improve this article
adding citations to reliable sources
"Differential rotation"
news
newspapers
books
scholar
JSTOR
Learn how and when to remove this message
Differential rotation matrix
angular velocities
rates of rotation
latitudes
depths
rigid
fluid
accretion disks
shearing
Galaxies
protostars
Solar System
Sun
Jupiter
Saturn
Galileo Galilei
sunspots
rotation of the Sun
Christoph Scheiner

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.