Knowledge (XXG)

Diffraction

Source đź“ť

510: 6434: 1758: 417:; based on that principle, as light travels through slits and boundaries, secondary point light sources are created near or along these obstacles, and the resulting diffraction pattern is going to be the intensity profile based on the collective interference of all these light sources that have different optical paths. In the quantum formalism, that is similar to considering the limited regions around the slits and boundaries from which photons are more likely to originate, and calculating the probability distribution (that is proportional to the resulting intensity of classical formalism). 713: 522: 4874: 761: 6446: 671: 566: 338: 474: 5035: 486: 753: 649: 745: 90: 5247:
take into account the fact that waves that arrive at the screen at the same time were emitted by the source at different times. The initial phase with which the source emits waves can change over time in an unpredictable way. This means that waves emitted by the source at times that are too far apart can no longer form a constant interference pattern since the relation between their phases is no longer time independent.
629: 1766: 4444:, and then collimating it with a second convex lens whose focal point is coincident with that of the first lens. The resulting beam has a larger diameter, and hence a lower divergence. Divergence of a laser beam may be reduced below the diffraction of a Gaussian beam or even reversed to convergence if the refractive index of the propagation media increases with the light intensity. This may result in a 498: 554: 40: 241: 6482: 679: 1985: 467:, this is already the case; water waves propagate only on the surface of the water. For light, we can often neglect one direction if the diffracting object extends in that direction over a distance far greater than the wavelength. In the case of light shining through small circular holes, we will have to take into account the full three-dimensional nature of the problem. 613: 3066: 3061: 6458: 6494: 4066: 3627: 6470: 4403: 4451:
When the wave front of the emitted beam has perturbations, only the transverse coherence length (where the wave front perturbation is less than 1/4 of the wavelength) should be considered as a Gaussian beam diameter when determining the divergence of the laser beam. If the transverse coherence length
400:
for the photon: the light and dark bands are the areas where the photons are more or less likely to be detected. The wavefunction is determined by the physical surroundings such as slit geometry, screen distance, and initial conditions when the photon is created. The wave nature of individual photons
840:
Similarly, the source just below the top of the slit will interfere destructively with the source located just below the middle of the slit at the same angle. We can continue this reasoning along the entire height of the slit to conclude that the condition for destructive interference for the entire
5246:
The description of diffraction relies on the interference of waves emanating from the same source taking different paths to the same point on a screen. In this description, the difference in phase between waves that took different paths is only dependent on the effective path length. This does not
1996: 776:
An illuminated slit that is wider than a wavelength produces interference effects in the space downstream of the slit. Assuming that the slit behaves as though it has a large number of point sources spaced evenly across the width of the slit interference effects can be calculated. The analysis of
5261:
If waves are emitted from an extended source, this can lead to incoherence in the transversal direction. When looking at a cross section of a beam of light, the length over which the phase is correlated is called the transverse coherence length. In the case of Young's double-slit experiment, this
4885:
The angular spacing of the features in the diffraction pattern is inversely proportional to the dimensions of the object causing the diffraction. In other words: The smaller the diffracting object, the 'wider' the resulting diffraction pattern, and vice versa. (More precisely, this is true of the
459:
It is possible to obtain a qualitative understanding of many diffraction phenomena by considering how the relative phases of the individual secondary wave sources vary, and, in particular, the conditions in which the phase difference equals half a cycle in which case waves will cancel one another
4725:
Two point sources will each produce an Airy pattern – see the photo of a binary star. As the point sources move closer together, the patterns will start to overlap, and ultimately they will merge to form a single pattern, in which case the two point sources cannot be resolved in the image. The
3830: 808:
We can find the angle at which a first minimum is obtained in the diffracted light by the following reasoning. The light from a source located at the top edge of the slit interferes destructively with a source located at the middle of the slit, when the path difference between them is equal to
3282: 2785: 5455: : It has illuminated for us another, fourth way, which we now make known and call "diffraction" , because we sometimes observe light break up; that is, that parts of the compound , separated by division, advance farther through the medium but in different , as we will soon show. 4782:
is a useful theorem stating that the diffraction pattern from an opaque body is identical to that from a hole of the same size and shape, but with differing intensities. This means that the interference conditions of a single obstruction would be the same as that of a single slit.
5254:. In order for interference to occur, the path length difference must be smaller than the coherence length. This is sometimes referred to as spectral coherence, as it is related to the presence of different frequency components in the wave. In the case of light emitted by an 4764:
is another diffraction phenomenon. It is a result of the superposition of many waves with different phases, which are produced when a laser beam illuminates a rough surface. They add together to give a resultant wave whose amplitude, and therefore intensity, varies randomly.
3409: 2845: 5447: : Nobis alius quartus modus illuxit, quem nunc proponimus, vocamusque; diffractionem, quia advertimus lumen aliquando diffringi, hoc est partes eius multiplici dissectione separatas per idem tamen medium in diversa ulterius procedere, eo modo, quem mox declarabimus. 1785: 3417: 3835: 5282:. These femtosecond-duration pulses will allow for the (potential) imaging of single biological macromolecules. Due to these short pulses, radiation damage can be outrun, and diffraction patterns of single biological macromolecules will be able to be obtained. 4822:
using a plane wave spectrum formulation. A generalization of the half-plane problem is the "wedge problem", solvable as a boundary value problem in cylindrical coordinates. The solution in cylindrical coordinates was then extended to the optical regime by
1226: 4491:. This is because a plane wave incident on a circular lens or mirror is diffracted as described above. The light is not focused to a point but forms an Airy disk having a central spot in the focal plane whose radius (as measured to the first null) is 5694:(Proposition 1. Light propagates or spreads not only in a straight line, by refraction, and by reflection, but also by a somewhat different fourth way: by diffraction.) On p. 187, Grimaldi also discusses the interference of light from two sources: 4923:
According to quantum theory every particle exhibits wave properties and can therefore diffract. Diffraction of electrons and neutrons is one of the powerful arguments in favor of quantum mechanics. The wavelength associated with a particle is the
1750: 5019:
has been observed for small particles, like electrons, neutrons, atoms, and even large molecules. The short wavelength of these matter waves makes them ideally suited to study the atomic crystal structure of solids, small molecules and proteins.
4182: 1801:
A diffraction grating is an optical component with a regular pattern. The form of the light diffracted by a grating depends on the structure of the elements and the number of elements present, but all gratings have intensity maxima at angles
2126: 3707: 2481: 4858: 5563:
Juffmann, Thomas; Milic, Adriana; MĂĽllneritsch, Michael; Asenbaum, Peter; Tsukernik, Alexander; TĂĽxen, Jens; Mayor, Marcel; Cheshnovsky, Ori; Arndt, Markus (25 March 2012). "Real-time single-molecule imaging of quantum interference".
1969:
The figure shows the light diffracted by 2-element and 5-element gratings where the grating spacings are the same; it can be seen that the maxima are in the same position, but the detailed structures of the intensities are different.
3147: 509: 3702: 768:
A long slit of infinitesimal width which is illuminated by light diffracts the light into a series of circular waves and the wavefront which emerges from the slit is a cylindrical wave of uniform intensity, in accordance with the
781:, these sources all have the same phase. Light incident at a given point in the space downstream of the slit is made up of contributions from each of these point sources and if the relative phases of these contributions vary by 1890: 4415:
is the spatial Fourier transform of the aperture shape, and this is a direct by-product of using the parallel-rays approximation, which is identical to doing a plane wave decomposition of the aperture plane fields (see
3154: 2657: 4696: 380:
of the individual waves so that the summed amplitude of the waves can have any value between zero and the sum of the individual amplitudes. Hence, diffraction patterns usually have a series of maxima and minima.
227:
The amount of diffraction depends on the size of the gap. Diffraction is greatest when the size of the gap is similar to the wavelength of the wave. In this case, when the waves pass through the gap they become
4730:
specifies that two point sources are considered "resolved" if the separation of the two images is at least the radius of the Airy disk, i.e. if the first minimum of one coincides with the maximum of the other.
2355: 3287: 1713: 5999: 1789: 5470: 1792: 1791: 1787: 1786: 804:
or more, we may expect to find minima and maxima in the diffracted light. Such phase differences are caused by differences in the path lengths over which contributing rays reach the point from the slit.
1793: 4440:
profile and has the lowest divergence for a given diameter. The smaller the output beam, the quicker it diverges. It is possible to reduce the divergence of a laser beam by first expanding it with one
1429: 4877:
The upper half of this image shows a diffraction pattern of He-Ne laser beam on an elliptic aperture. The lower half is its 2D Fourier transform approximately reconstructing the shape of the aperture.
521: 956: 309:
demonstrating interference from two closely spaced slits. Explaining his results by interference of the waves emanating from the two different slits, he deduced that light must propagate as waves.
1138: 541:
The effects of diffraction are often seen in everyday life. The most striking examples of diffraction are those that involve light; for example, the closely spaced tracks on a CD or DVD act as a
4734:
Thus, the larger the aperture of the lens compared to the wavelength, the finer the resolution of an imaging system. This is one reason astronomical telescopes require large objectives, and why
2597: 4174: 5262:
would mean that if the transverse coherence length is smaller than the spacing between the two slits, the resulting pattern on a screen would look like two single-slit diffraction patterns.
1102: 5787: 4119: 3056:{\displaystyle \Psi (r)\propto \iint \limits _{\mathrm {aperture} }\!\!E_{\mathrm {inc} }(x',y')~{\frac {e^{ik|\mathbf {r} -\mathbf {r} '|}}{4\pi |\mathbf {r} -\mathbf {r} '|}}\,dx'\,dy',} 5857:
Fresnel, Augustin-Jean (1818), "MĂ©moire sur la diffraction de la lumière" ("Memoir on the diffraction of light"), deposited 29 July 1818, "crowned" 15 March 1819, published in
4896:
When the diffracting object has a periodic structure, for example in a diffraction grating, the features generally become sharper. The third figure, for example, shows a comparison of a
4846: 883: 4962: 5104: 2014: 1790: 473: 4857: 4527: 2837: 1348: 2399: 1381: 3622:{\displaystyle \Psi (r)\propto {\frac {e^{ikr}}{4\pi r}}\iint \limits _{\mathrm {aperture} }\!\!E_{\mathrm {inc} }(x',y')e^{-ik(\mathbf {r} '\cdot \mathbf {\hat {r}} )}\,dx'\,dy'.} 2386: 5012:
of the particle (mass Ă— velocity for slow-moving particles). For example, a sodium atom traveling at about 300 m/s would have a de Broglie wavelength of about 50 picometres.
4061:{\displaystyle \Psi (r)\propto {\frac {e^{ikr}}{4\pi r}}\iint \limits _{\mathrm {aperture} }\!\!E_{\mathrm {inc} }(x',y')e^{-ik\sin \theta (\cos \phi x'+\sin \phi y')}\,dx'\,dy'.} 1003: 910: 841:
slit is the same as the condition for destructive interference between two narrow slits a distance apart that is half the width of the slit. The path difference is approximately
2626: 1743: 1594: 756:
Numerical approximation of diffraction pattern from a slit of width four wavelengths with an incident plane wave. The main central beam, nulls, and phase reversals are apparent.
1560: 5046:) in this diffraction pattern forms from the constructive interference of X-rays passing through a crystal. The data can be used to determine the crystal's atomic structure. 2531: 2197: 1532: 1480: 2648: 2278: 1917: 1053: 5058:. Bragg diffraction is a consequence of interference between waves reflecting from many different crystal planes. The condition of constructive interference is given by 1255: 836: 5486:
Wireless Communications: Principles and Practice, Prentice Hall communications engineering and emerging technologies series, T. S. Rappaport, Prentice Hall, 2002 pg 126
1310: 5124: 4547: 1814: 1023: 5265:
In the case of particles like electrons, neutrons, and atoms, the coherence length is related to the spatial extent of the wave function that describes the particle.
5205:) whose wavelength is on the order of (or much smaller than) the atomic spacing. The pattern produced gives information of the separations of crystallographic planes 5164: 1503: 135: 4637: 169:, of different points on the wavefront (or, equivalently, each wavelet) that travel by paths of different lengths to the registering surface. If there are multiple, 2256: 2224: 1282: 802: 596:- bright rings around the shadow of the observer. In contrast to the corona, glory requires the particles to be transparent spheres (like fog droplets), since the 5987: 5223: 5184: 5144: 5006: 4982: 4716: 4611: 4591: 4567: 3076: 2166: 2146: 1957: 1937: 1122: 976: 111: 3634: 2601:
This solution assumes that the delta function source is located at the origin. If the source is located at an arbitrary source point, denoted by the vector
2486: 282: 4650: 4398:{\displaystyle \Psi (r)\propto {\frac {e^{ikr}}{4\pi r}}\iint \limits _{\mathrm {aperture} }\!\!E_{\mathrm {inc} }(x',y')e^{-i(k_{x}x'+k_{y}y')}\,dx'\,dy',} 485: 372:. The wave displacement at any subsequent point is the sum of these secondary waves. When waves are added together, their sum is determined by the relative 3825:{\displaystyle \mathbf {\hat {r}} =\sin \theta \cos \phi \mathbf {\hat {x}} +\sin \theta ~\sin \phi ~\mathbf {\hat {y}} +\cos \theta \mathbf {\hat {z}} ,} 269:, 'to break into pieces', referring to light breaking up into different directions. The results of Grimaldi's observations were published posthumously in 2294: 497: 1603: 254:
might have observed diffraction in a broadening of the shadow. The effects of diffraction of light were first carefully observed and characterized by
1788: 4893:
The diffraction angles are invariant under scaling; that is, they depend only on the ratio of the wavelength to the size of the diffracting object.
5941:
in 1690; however, in the preface to his book, Huygens states that in 1678 he first communicated his book to the French Royal Academy of Sciences.)
4452:
in the vertical direction is higher than in horizontal, the laser beam divergence will be lower in the vertical direction than in the horizontal.
1028:
A similar argument can be used to show that if we imagine the slit to be divided into four, six, eight parts, etc., minima are obtained at angles
6117:
Kouyoumjian, R. G.; Pathak, P. H. (November 1974). "A uniform geometrical theory of diffraction for an edge in a perfectly conducting surface".
6409: 6433: 6261: 6234: 6209: 6182: 6032: 5654: 5507: 4467: 5935:(I have thus shown in what manner one can imagine that light propagates successively by spherical waves, … ) (Note: Huygens published his 915: 4803:
that strikes a sharp well-defined obstacle, such as a mountain range or the wall of a building. The knife-edge effect is explained by the
5764: 5698:(Proposition 22. Sometimes light, as a result of its transmission, renders dark a body's surface, previously illuminated by another .) 2536: 5924: 5692:"Propositio I. Lumen propagatur seu diffunditur non solum directe, refracte, ac reflexe, sed etiam alio quodam quarto modo, diffracte." 5913: 5683: 5434: 4124: 421: 302: 5397: 4900:
pattern with a pattern formed by five slits, both sets of slits having the same spacing, between the center of one slit and the next.
578:
This principle can be extended to engineer a grating with a structure such that it will produce any diffraction pattern desired; the
6157: 5547: 4845: 4828: 1058: 4073: 2230:. The smaller the aperture, the larger the spot size at a given distance, and the greater the divergence of the diffracted beams. 1757: 5696:"Propositio XXII. Lumen aliquando per sui communicationem reddit obscuriorem superficiem corporis aliunde, ac prius illustratam." 3277:{\displaystyle \psi (\mathbf {r} |\mathbf {r} ')={\frac {e^{ik|\mathbf {r} -\mathbf {r} '|}}{4\pi |\mathbf {r} -\mathbf {r} '|}},} 2780:{\displaystyle \psi (\mathbf {r} |\mathbf {r} ')={\frac {e^{ik|\mathbf {r} -\mathbf {r} '|}}{4\pi |\mathbf {r} -\mathbf {r} '|}}.} 4930: 1387: 401:(as opposed to wave properties only arising from the interactions between multitudes of photons) was implied by a low-intensity 5342: 5065: 166: 4494: 6267: 5228:
For completeness, Bragg diffraction is a limit for a large number of atoms with X-rays or neutrons, and is rarely valid for
4804: 770: 592:- a bright disc and rings around a bright light source like the sun or the moon. At the opposite point one may also observe 357: 146: 5278:
A new way to image single biological particles has emerged since the 2010s, utilising the bright X-rays generated by X-ray
1962:
The light diffracted by a grating is found by summing the light diffracted from each of the elements, and is essentially a
674:
View from the end of Millennium Bridge; Moon rising above the Southwark Bridge. Street lights are reflecting in the Thames.
463:
The simplest descriptions of diffraction are those in which the situation can be reduced to a two-dimensional problem. For
5933:"J'ay donc monstré de quelle façon l'on peut concevoir que la lumiere s'etend successivement par des ondes spheriques, … " 4836: 4412: 3404:{\displaystyle \psi (\mathbf {r} |\mathbf {r} ')={\frac {e^{ikr}}{4\pi r}}e^{-ik(\mathbf {r} '\cdot \mathbf {\hat {r}} )}} 364:. The propagation of a wave can be visualized by considering every particle of the transmitted medium on a wavefront as a 6424: 720:
Sound waves can diffract around objects, which is why one can still hear someone calling even when hiding behind a tree.
5327: 5312: 4807:, which states that a well-defined obstruction to an electromagnetic wave acts as a secondary source, and creates a new 712: 6519: 2494: 2393: 698:, that is diffraction off the meat fibers. All these effects are a consequence of the fact that light propagates as a 619: 589: 326: 5050:
Diffraction from a large three-dimensional periodic structure such as many thousands of atoms in a crystal is called
4461: 1434: 724: 667:
in camera or support struts in telescope; In normal vision, diffraction through eyelashes may produce such spikes.
635: 593: 5832:
Fresnel, Augustin-Jean (1816), "Mémoire sur la diffraction de la lumière" ("Memoir on the diffraction of light"),
844: 445: 414: 205: 181: 5258:, the coherence length is related to the lifetime of the excited state from which the atom made its transition. 4873: 690:
which is observed when laser light falls on an optically rough surface is also a diffraction phenomenon. When
298: 255: 75: 1221:{\displaystyle I(\theta )=I_{0}\,\operatorname {sinc} ^{2}\left({\frac {d\pi }{\lambda }}\sin \theta \right),} 2792: 6119: 5757: 5297: 4432:
changes as it propagates is determined by diffraction. When the entire emitted beam has a planar, spatially
1317: 1314:
which is also a normalization factor of the intensity profile that can be determined by an integration from
585: 361: 4742:(large aperture diameter compared to working distance) in order to obtain the highest possible resolution. 2360: 1353: 70:
of the obstacle/aperture. The diffracting object or aperture effectively becomes a secondary source of the
5352: 5332: 5317: 5193:
Bragg diffraction may be carried out using either electromagnetic radiation of very short wavelength like
4897: 4779: 4774: 1445: 1132: 981: 888: 670: 429: 402: 244:
Thomas Young's sketch of two-slit diffraction for water waves, which he presented to the Royal Society in
1507:
hence the wavefront emerging from the slit would resemble a cylindrical wave with azimuthal symmetry; If
5372: 5292: 5194: 4925: 1721: 1572: 1452: 1128: 739: 397: 337: 310: 6445: 565: 2003:
The far-field diffraction of a plane wave incident on a circular aperture is often referred to as the
1539: 760: 6514: 6294: 6061: 5796: 5583: 5392: 5347: 5229: 5202: 4918: 420:
There are various analytical models which allow the diffracted field to be calculated, including the
5836:, vol. 1, pp. 239–81 (March 1816); reprinted as "Deuxième MĂ©moire…" ("Second Memoir…") in 5468:"A History of Physics in its Elementary Branches, including the evolution of physical laboratories." 5034: 2500: 2171: 1995: 1562:
would have appreciable intensity, hence the wavefront emerging from the slit would resemble that of
645:
A shadow of a solid object, using light from a compact source, shows small fringes near its edges.
5715: 5402: 5279: 5241: 5198: 5055: 4914: 4488: 4433: 4411:
of the aperture distribution. Huygens' principle when applied to an aperture simply says that the
2651: 2604: 2490: 1779: 1597: 1511: 1459: 778: 542: 437: 294: 174: 170: 158: 5739: 5639:
Stationary Diffraction by Wedges : Method of Automorphic Functions on Complex Characteristics
5467: 2631: 2261: 2121:{\displaystyle I(\theta )=I_{0}\left({\frac {2J_{1}(ka\sin \theta )}{ka\sin \theta }}\right)^{2},} 6498: 6486: 6450: 6326: 6281:
Neutze, Richard; Wouts, Remco; van der Spoel, David; Weckert, Edgar; Hajdu, Janos (August 2000).
6087: 5878: 5814: 5615: 5573: 5377: 4832: 4739: 4735: 4727: 4644: 3151:
In the far field, wherein the parallel rays approximation can be employed, the Green's function,
2288: 1895: 1563: 1127:
There is no such simple argument to enable us to find the maxima of the diffraction pattern. The
1031: 660: 441: 433: 322: 197: 193: 5965: 1231: 813: 777:
this system is simplified if we consider light of a single wavelength. If the incident light is
752: 448:. Most configurations cannot be solved analytically, but can yield numerical solutions through 6401: 2489:.) By direct substitution, the solution to this equation can be readily shown to be the scalar 2476:{\displaystyle \nabla ^{2}\psi ={\frac {1}{r}}{\frac {\partial ^{2}}{\partial r^{2}}}(r\psi ).} 1289: 6375: 6318: 6310: 6257: 6230: 6205: 6178: 6153: 6028: 6022: 5937: 5894: 5890: 5874: 5866: 5761: 5650: 5607: 5599: 5543: 5503: 5407: 5322: 5307: 5109: 5051: 5029: 4819: 4532: 4470:
The Airy disk around each of the stars from the 2.56 m telescope aperture can be seen in this
4408: 4177: 2839:
is incident on the aperture, the field produced by this aperture distribution is given by the
1008: 648: 571:
Data is written on CDs as pits and lands; the pits on the surface act as diffracting elements.
385: 349: 293:) observed the diffraction patterns caused by a bird feather, which was effectively the first 251: 224:
and, therefore, undergoes diffraction (which is measurable at subatomic to molecular levels).
217: 142: 6049: 5841: 5149: 1488: 479:
Computer-generated intensity pattern formed on a screen by diffraction from a square aperture
120: 6462: 6365: 6357: 6302: 6128: 6099: 6069: 5845: 5804: 5782: 5680: 5642: 5591: 5535: 5431: 5251: 4824: 4616: 2840: 2389: 2388:
is the 3-dimensional delta function. The delta function has only radial dependence, so the
2281: 744: 716:
Circular waves generated by diffraction from the narrow entrance of a flooded coastal quarry
453: 185: 71: 5921: 2241: 2202: 1260: 784: 5995: 5928: 5917: 5768: 5687: 5474: 5438: 5302: 4985: 4757: 4751: 2227: 687: 410: 318: 314: 306: 270: 245: 83: 5709: 6416: 6298: 6065: 5800: 5733: 5587: 89: 62:
is the interference or bending of waves around the corners of an obstacle or through an
6438: 6370: 6345: 6090:(June 2013). "GTD, UTD, UAT, and STD: A Historical Revisit and Personal Observations". 5885:, American Book Company, 1900, pp. 81–144. (First published, as extracts only, in 5362: 5357: 5337: 5208: 5169: 5129: 5039: 4991: 4967: 4719: 4701: 4596: 4576: 4552: 4480: 4417: 2151: 2131: 1942: 1922: 1107: 961: 449: 321:, and thereby gave great support to the wave theory of light that had been advanced by 96: 5633:
Komech, Alexander; Merzon, Anatoli (2019), Komech, Alexander; Merzon, Anatoli (eds.),
1765: 161:
source (such as a laser) encounters a slit/aperture that is comparable in size to its
6508: 5818: 5539: 4761: 4472: 4445: 4437: 2284: 425: 373: 369: 4863:
Diffraction on a soft aperture, with a gradient of conductivity over the image width
4466: 628: 6474: 6330: 5823:. (Note: This lecture was presented before the Royal Society on 24 November 1803.) 5619: 5367: 5255: 406: 393: 365: 274: 5907: 3832:
the expression for the Fraunhofer region field from a planar aperture now becomes
39: 6251: 5497: 1885:{\displaystyle d\left(\sin {\theta _{m}}\pm \sin {\theta _{i}}\right)=m\lambda ,} 6395: 5783:"The Bakerian Lecture: Experiments and calculations relative to physical optics" 5646: 5382: 5016: 4910: 4811:. This new wavefront propagates into the geometric shadow area of the obstacle. 4477: 4441: 1963: 597: 553: 342: 240: 221: 213: 6073: 5250:
The length over which the phase in a beam of light is correlated is called the
656:) seen in the center of the shadow of a circular obstacle is due to diffraction 6171: 5752:
Letter from James Gregory to John Collins, dated 13 May 1673. Reprinted in:
5634: 5387: 4815: 1749: 1717:
The choice of plus/minus sign depends on the definition of the incident angle
695: 678: 653: 601: 579: 528: 229: 162: 31: 6314: 6103: 5603: 4808: 4800: 4487:
The ability of an imaging system to resolve detail is ultimately limited by
2008: 2004: 1979: 1600:), the intensity profile in the Fraunhofer regime (i.e. far field) becomes: 1441: 723:
Diffraction can also be a concern in some technical applications; it sets a
691: 464: 377: 313:
did more definitive studies and calculations of diffraction, made public in
201: 150: 114: 44: 6379: 6361: 6322: 6282: 6132: 5809: 5738:. London: Longman, Rees, Orme, Brown & Green and John Taylor. pp.  5611: 5428:
Physico mathesis de lumine, coloribus, et iride, aliisque annexis libri duo
157:. The characteristic bending pattern is most pronounced when a wave from a 5595: 3142:{\displaystyle \mathbf {r} '=x'\mathbf {\hat {x}} +y'\mathbf {\hat {y}} .} 1984: 17: 5009: 4640: 4570: 4176:
the Fraunhofer region field of the planar aperture assumes the form of a
3697:{\displaystyle \mathbf {r} '=x'\mathbf {\hat {x}} +y'\mathbf {\hat {y}} } 705:
Diffraction can occur with any kind of wave. Ocean waves diffract around
664: 63: 52: 4881:
Several qualitative observations can be made of diffraction in general:
612: 503:
Computational model of an interference pattern from two-slit diffraction
3065: 154: 82:
and was the first to record accurate observations of the phenomenon in
34:, the change in direction of a wave passing from one medium to another. 6350:
Philosophical Transactions of the Royal Society B: Biological Sciences
5232:
or with solid particles in the size range of less than 50 nanometers.
4691:{\displaystyle \theta \approx \sin \theta =1.22{\frac {\lambda }{D}},} 6306: 1596:
of the light onto the slit is non-zero (which causes a change in the
1005:
is the angle of incidence at which the minimum intensity occurs, and
389: 67: 6344:
Chapman, Henry N.; Caleman, Carl; Timneanu, Nicusor (17 July 2014).
4827:, who introduced the notion of diffraction coefficients through his 6469: 5677:
Physico-mathesis de lumine, coloribus, et iride, aliisque adnexis …
1769:
A diffraction pattern of a 633 nm laser through a grid of 150 slits
515:
Optical diffraction pattern (laser, analogous to X-ray diffraction)
388:
understanding of light propagation through a slit (or slits) every
51:
beam projected onto a plate after passing through a small circular
6283:"Potential for biomolecular imaging with femtosecond X-ray pulses" 5859:
Mémoires de l'Académie Royale des Sciences de l'Institut de France
5578: 5033: 4872: 4429: 3414:
The expression for the far-zone (Fraunhofer region) field becomes
3064: 2350:{\displaystyle \nabla ^{2}\psi +k^{2}\psi =\delta (\mathbf {r} ),} 1994: 1983: 1783: 1764: 1756: 1748: 1448:), that is, at a distance much larger than the width of the slit. 759: 751: 743: 711: 706: 677: 669: 647: 545:
to form the familiar rainbow pattern seen when looking at a disc.
336: 263: 239: 209: 189: 165:, as shown in the inserted image. This is due to the addition, or 88: 48: 38: 1999:
Diffraction pattern from a circular aperture at various distances
5920:(Leiden, Netherlands: Pieter van der Aa, 1690), Chapter 1. From 4887: 1708:{\displaystyle I(\theta )=I_{0}\,\operatorname {sinc} ^{2}\left} 699: 353: 290: 286: 5883:
The Wave Theory of Light: Memoirs by Huygens, Young and Fresnel
5054:. It is similar to what occurs when waves are scattered from a 4407:
In the far-field / Fraunhofer region, this becomes the spatial
491:
Generation of an interference pattern from two-slit diffraction
3073:
where the source point in the aperture is given by the vector
5754:
Correspondence of Scientific Men of the Seventeenth Century …
531:
are partially due to diffraction, according to some analyses.
413:. The quantum approach has some striking similarities to the 5641:, Cham: Springer International Publishing, pp. 15–17, 682:
Simulated diffraction spikes in hexagonal telescope mirrors
432:
approximation of the Kirchhoff equation (applicable to the
6396:
The Feynman Lectures on Physics Vol. I Ch. 30: Diffraction
6229:(4th ed.). United States of America: Addison Wesley. 5530:
Kokkotas, Kostas D. (2003). "Gravitational Wave Physics".
4722:
of the imaging lens (e.g., of a telescope's main mirror).
1424:{\displaystyle \operatorname {sinc} x={\frac {\sin x}{x}}} 559:
Pixels on smart phone screen acting as diffraction grating
5788:
Philosophical Transactions of the Royal Society of London
727:
to the resolution of a camera, telescope, or microscope.
2238:
The wave that emerges from a point source has amplitude
748:
2D Single-slit diffraction with width changing animation
6169:
Halliday, David; Resnick, Robert; Walker, Jerl (2005),
5711:
Memoires pour l'histoire des sciences et des beaux arts
5679:(Bologna ("Bonomia"), (Italy): Vittorio Bonati, 1665), 4613:) of the imaging optics; this is strictly accurate for 6250:
Ayahiko Ichimiya; Philip I. Cohen (13 December 2004).
1761:
Diffraction of a red laser using a diffraction grating
1753:
2-slit (top) and 5-slit diffraction of red laser light
1356: 1320: 951:{\displaystyle d\,\sin \theta _{\text{min}}=\lambda ,} 177:), a complex pattern of varying intensity can result. 6422: 5714:. Paris: Impr. de S. A. S.; Chez E. Ganeau. pp.  5502:. Springer Science & Business Media. p. 14. 5430:(Bologna ("Bonomia"), Italy: Vittorio Bonati, 1665), 5211: 5172: 5152: 5132: 5112: 5068: 4994: 4970: 4933: 4704: 4653: 4619: 4599: 4579: 4555: 4535: 4497: 4185: 4127: 4076: 3838: 3710: 3637: 3420: 3290: 3157: 3079: 2848: 2795: 2660: 2634: 2607: 2539: 2503: 2402: 2363: 2297: 2264: 2244: 2205: 2174: 2154: 2134: 2017: 1945: 1925: 1898: 1817: 1724: 1606: 1575: 1542: 1514: 1491: 1462: 1390: 1292: 1263: 1234: 1141: 1110: 1061: 1034: 1011: 984: 964: 918: 891: 847: 816: 787: 123: 99: 5879:"Fresnel's prize memoir on the diffraction of light" 5496:
Suryanarayana, C.; Norton, M. Grant (29 June 2013).
4835:
extended the (singular) Keller coefficients via the
730:
Other examples of diffraction are considered below.
663:
are diffraction patterns caused due to non-circular
5988:"Food Explainer: Why Is Some Deli Meat Iridescent?" 5873:, vol. 1 (Paris: Imprimerie ImpĂ©riale, 1866), 5840:, vol. 1 (Paris: Imprimerie ImpĂ©riale, 1866), 2592:{\displaystyle \psi (r)={\frac {e^{ikr}}{4\pi r}}.} 6170: 5217: 5178: 5158: 5138: 5118: 5098: 5000: 4976: 4956: 4710: 4690: 4631: 4605: 4585: 4561: 4541: 4521: 4397: 4168: 4113: 4060: 3824: 3696: 3621: 3403: 3276: 3141: 3055: 2831: 2779: 2642: 2620: 2591: 2525: 2475: 2380: 2349: 2272: 2250: 2218: 2191: 2160: 2140: 2120: 1951: 1931: 1911: 1884: 1737: 1707: 1588: 1554: 1526: 1497: 1474: 1423: 1375: 1342: 1304: 1276: 1249: 1220: 1116: 1096: 1047: 1017: 997: 970: 950: 904: 877: 830: 796: 129: 105: 93:Infinitely many points (three shown) along length 6048:Chiao, R. Y.; Garmire, E.; Townes, C. H. (1964). 4266: 4265: 3919: 3918: 3813: 3789: 3750: 3717: 3688: 3665: 3581: 3501: 3500: 3390: 3130: 3107: 2898: 2897: 1959:is an integer which can be positive or negative. 885:so that the minimum intensity occurs at an angle 145:, the diffraction phenomenon is described by the 6177:(7th ed.), USA: John Wiley and Sons, Inc., 5225:, allowing one to deduce the crystal structure. 4169:{\displaystyle k_{y}=k\sin \theta \sin \phi \,,} 638:, as seen from a plane on the underlying clouds. 5532:Encyclopedia of Physical Science and Technology 4814:Knife-edge diffraction is an outgrowth of the " 5756:, ed. Stephen Jordan Rigaud (Oxford, England: 3069:On the calculation of Fraunhofer region fields 1097:{\displaystyle d\,\sin \theta _{n}=n\lambda ,} 6195: 6193: 5952:The Mathematical Theory of Huygens' Principle 4799:is a truncation of a portion of the incident 4114:{\displaystyle k_{x}=k\sin \theta \cos \phi } 1919:is the angle at which the light is incident, 1484:the intensity will have little dependency on 325:and reinvigorated by Young, against Newton's 277:studied these effects and attributed them to 117:, producing a continuously varying intensity 8: 2628:and the field point is located at the point 2487:del in cylindrical and spherical coordinates 604:and internal reflection within the droplet. 6253:Reflection High-Energy Electron Diffraction 4643:case). In object space, the corresponding 1939:is the separation of grating elements, and 878:{\displaystyle {\frac {d\sin(\theta )}{2}}} 600:of the light that forms the glory involves 4957:{\displaystyle \lambda ={\frac {h}{p}}\,,} 1966:of diffraction and interference patterns. 764:Graph and image of single-slit diffraction 6369: 5808: 5760:, 1841), vol. 2, pp. 251–255, especially 5577: 5210: 5171: 5166:is the angle of the diffracted wave, and 5151: 5131: 5111: 5099:{\displaystyle m\lambda =2d\sin \theta ,} 5067: 4993: 4969: 4950: 4940: 4932: 4703: 4675: 4652: 4618: 4598: 4578: 4554: 4534: 4496: 4380: 4368: 4349: 4328: 4314: 4272: 4271: 4237: 4236: 4207: 4201: 4184: 4162: 4132: 4126: 4081: 4075: 4043: 4031: 3967: 3925: 3924: 3890: 3889: 3860: 3854: 3837: 3808: 3807: 3784: 3783: 3745: 3744: 3712: 3711: 3709: 3683: 3682: 3660: 3659: 3639: 3636: 3604: 3592: 3576: 3575: 3563: 3549: 3507: 3506: 3472: 3471: 3442: 3436: 3419: 3385: 3384: 3372: 3358: 3329: 3323: 3308: 3302: 3297: 3289: 3263: 3254: 3245: 3240: 3226: 3217: 3208: 3203: 3196: 3190: 3175: 3169: 3164: 3156: 3125: 3124: 3102: 3101: 3081: 3078: 3038: 3026: 3018: 3009: 3000: 2995: 2981: 2972: 2963: 2958: 2951: 2945: 2904: 2903: 2869: 2868: 2847: 2801: 2800: 2794: 2766: 2757: 2748: 2743: 2729: 2720: 2711: 2706: 2699: 2693: 2678: 2672: 2667: 2659: 2635: 2633: 2609: 2606: 2561: 2555: 2538: 2508: 2502: 2449: 2435: 2429: 2419: 2407: 2401: 2370: 2362: 2336: 2318: 2302: 2296: 2265: 2263: 2243: 2210: 2204: 2181: 2173: 2153: 2133: 2109: 2058: 2048: 2037: 2016: 1944: 1924: 1903: 1897: 1858: 1853: 1837: 1832: 1816: 1729: 1723: 1691: 1651: 1637: 1632: 1626: 1605: 1580: 1574: 1541: 1513: 1490: 1461: 1403: 1389: 1363: 1355: 1330: 1319: 1291: 1268: 1262: 1233: 1186: 1172: 1167: 1161: 1140: 1109: 1076: 1065: 1060: 1039: 1033: 1010: 989: 983: 963: 933: 922: 917: 896: 890: 848: 846: 820: 815: 786: 122: 98: 5146:is the distance between crystal planes, 4465: 2148:is the radius of the circular aperture, 1811:which are given by the grating equation 1284:is the intensity at the central maximum 220:also demonstrates that matter possesses 184:travels through a medium with a varying 153:as a collection of individual spherical 149:that treats each point in a propagating 6429: 5950:Baker, B.B. & Copson, E.T. (1939), 5499:X-Ray Diffraction: A Practical Approach 5419: 4841: 4522:{\displaystyle \Delta x=1.22\lambda N,} 4428:The way in which the beam profile of a 3411:as can be seen in the adjacent figure. 2832:{\displaystyle E_{\mathrm {inc} }(x,y)} 2497:(and using the physics time convention 1343:{\textstyle \theta =-{\frac {\pi }{2}}} 469: 6410:International Union of Crystallography 6144: 6142: 6092:IEEE Antennas and Propagation Magazine 6002:from the original on 10 September 2013 1376:{\textstyle \theta ={\frac {\pi }{2}}} 341:Single-slit diffraction in a circular 192:travels through a medium with varying 5865:(for 1821 & 1822, printed 1826), 4831:(GTD). In 1974, Prabhakar Pathak and 2381:{\displaystyle \delta (\mathbf {r} )} 2280:that is given by the solution of the 113:project phase contributions from the 7: 5986:Arumugam, Nadia (9 September 2013). 5871:Oeuvres complètes d'Augustin Fresnel 5838:Oeuvres complètes d'Augustin Fresnel 4851:Diffraction on a sharp metallic edge 2011:in intensity with angle is given by 998:{\displaystyle \theta _{\text{min}}} 905:{\displaystyle \theta _{\text{min}}} 356:propagate; this is described by the 6417:Using a cd as a diffraction grating 6024:Dynamic fields and waves of physics 5848:submitted on 15 October 1815.) 4549:is the wavelength of the light and 2654:(for arbitrary source location) as 2650:, then we may represent the scalar 1257:is the intensity at a given angle, 362:principle of superposition of waves 6270:from the original on 16 July 2017. 4498: 4279: 4276: 4273: 4259: 4256: 4253: 4250: 4247: 4244: 4241: 4238: 4186: 3932: 3929: 3926: 3912: 3909: 3906: 3903: 3900: 3897: 3894: 3891: 3839: 3514: 3511: 3508: 3494: 3491: 3488: 3485: 3482: 3479: 3476: 3473: 3421: 2911: 2908: 2905: 2891: 2888: 2885: 2882: 2879: 2876: 2873: 2870: 2849: 2808: 2805: 2802: 2442: 2432: 2404: 2299: 1738:{\displaystyle \theta _{\text{i}}} 1589:{\displaystyle \theta _{\text{i}}} 1440:This analysis applies only to the 440:approximation (applicable to the 352:diffraction arises because of how 25: 5635:"The Early Theory of Diffraction" 4829:geometrical theory of diffraction 2392:(a.k.a. scalar Laplacian) in the 1988:A computer-generated image of an 27:Phenomenon of the motion of waves 6492: 6480: 6468: 6456: 6444: 6432: 6346:"Diffraction before destruction" 6050:"Self-Trapping of Optical Beams" 5966:"Optical effects on spider webs" 5889:, vol. 11 (1819), pp.  5887:Annales de Chimie et de Physique 5834:Annales de Chimie et de Physique 5477:MacMillan Company, New York 1899 4856: 4844: 3810: 3786: 3747: 3714: 3685: 3662: 3640: 3578: 3564: 3387: 3373: 3309: 3298: 3255: 3246: 3218: 3209: 3176: 3165: 3127: 3104: 3082: 3010: 3001: 2973: 2964: 2789:Therefore, if an electric field 2758: 2749: 2721: 2712: 2679: 2668: 2636: 2610: 2371: 2337: 2266: 1555:{\displaystyle \theta \approx 0} 1383:and conservation of energy, and 1025:is the wavelength of the light. 627: 611: 582:on a credit card is an example. 564: 552: 520: 508: 496: 484: 472: 196:– all waves diffract, including 180:These effects also occur when a 5781:Thomas Young (1 January 1804). 5343:Dynamical theory of diffraction 4818:problem", originally solved by 1124:is an integer other than zero. 588:by small particles can cause a 66:into the region of geometrical 6256:. Cambridge University Press. 5540:10.1016/B0-12-227410-5/00300-8 5274:Diffraction before destruction 4363: 4321: 4307: 4285: 4195: 4189: 4026: 3986: 3960: 3938: 3848: 3842: 3587: 3559: 3542: 3520: 3430: 3424: 3396: 3368: 3317: 3303: 3294: 3264: 3241: 3227: 3204: 3184: 3170: 3161: 3019: 2996: 2982: 2959: 2939: 2917: 2858: 2852: 2826: 2814: 2767: 2744: 2730: 2707: 2687: 2673: 2664: 2549: 2543: 2526:{\displaystyle e^{-i\omega t}} 2467: 2458: 2375: 2367: 2341: 2333: 2192:{\displaystyle 2\pi /\lambda } 2082: 2064: 2027: 2021: 1697: 1666: 1616: 1610: 1244: 1238: 1151: 1145: 866: 860: 422:Kirchhoff diffraction equation 1: 6202:Introduction to Modern Optics 5398:Schaefer–Bergmann diffraction 4837:uniform theory of diffraction 4593:divided by aperture diameter 4413:far-field diffraction pattern 2621:{\displaystyle \mathbf {r} '} 1527:{\displaystyle d\gg \lambda } 1475:{\displaystyle d\ll \lambda } 586:Diffraction in the atmosphere 6402:"Scattering and diffraction" 5720:grimaldi diffraction 0–1800. 5328:Diffraction vs. interference 5313:Coherent diffraction imaging 4436:wave front, it approximates 2643:{\displaystyle \mathbf {r} } 2273:{\displaystyle \mathbf {r} } 1131:can be calculated using the 6152:(North-Holland, Amsterdam) 5732:Sir David Brewster (1831). 5647:10.1007/978-3-030-26699-8_2 5186:is an integer known as the 4456:Diffraction-limited imaging 4424:Propagation of a laser beam 2495:spherical coordinate system 2394:spherical coordinate system 1912:{\displaystyle \theta _{i}} 1048:{\displaystyle \theta _{n}} 327:corpuscular theory of light 258:, who also coined the term 6536: 6074:10.1103/PhysRevLett.13.479 6027:. CRC Press. p. 102. 5954:, Oxford, pp. 36–40. 5881:, in H. Crew (ed.), 5708:Jean Louis Aubert (1760). 5675:Francesco Maria Grimaldi, 5426:Francesco Maria Grimaldi, 5239: 5027: 4908: 4772: 4749: 4462:Diffraction-limited system 4459: 1977: 1777: 1435:unnormalized sinc function 1250:{\displaystyle I(\theta )} 978:is the width of the slit, 831:{\displaystyle \lambda /2} 737: 29: 4805:Huygens–Fresnel principle 4768: 1305:{\displaystyle \theta =0} 771:Huygens–Fresnel principle 446:path integral formulation 415:Huygens-Fresnel principle 386:modern quantum mechanical 358:Huygens–Fresnel principle 147:Huygens–Fresnel principle 6200:Grant R. Fowles (1975). 6104:10.1109/MAP.2013.6586622 5190:of the diffracted beam. 5119:{\displaystyle \lambda } 4542:{\displaystyle \lambda } 2287:for a point source (the 1569:When the incident angle 1018:{\displaystyle \lambda } 398:probability distribution 256:Francesco Maria Grimaldi 137:on the registering plate 76:Francesco Maria Grimaldi 74:wave. Italian scientist 30:Not to be confused with 6204:. Courier Corporation. 6120:Proceedings of the IEEE 6054:Physical Review Letters 5877:; partly translated as 5758:Oxford University Press 5298:Atmospheric diffraction 5159:{\displaystyle \theta } 4905:Matter wave diffraction 4718:is the diameter of the 1498:{\displaystyle \theta } 734:Single-slit diffraction 171:closely spaced openings 130:{\displaystyle \theta } 6362:10.1098/rstb.2013.0313 6225:Hecht, Eugene (2002). 6173:Fundamental of Physics 6148:John M. Cowley (1975) 6133:10.1109/PROC.1974.9651 6021:Andrew Norton (2000). 5810:10.1098/rstl.1804.0001 5457: 5449: 5353:Fraunhofer diffraction 5333:Diffractive solar sail 5318:Diffraction from slits 5219: 5180: 5160: 5140: 5120: 5100: 5047: 5002: 4978: 4958: 4878: 4797:knife-edge diffraction 4712: 4692: 4633: 4632:{\displaystyle N\gg 1} 4607: 4587: 4563: 4543: 4523: 4484: 4399: 4170: 4115: 4062: 3826: 3698: 3623: 3405: 3278: 3143: 3070: 3057: 2833: 2781: 2644: 2622: 2593: 2527: 2477: 2382: 2351: 2274: 2252: 2220: 2193: 2162: 2142: 2122: 2000: 1992: 1953: 1933: 1913: 1886: 1798: 1770: 1762: 1754: 1739: 1709: 1590: 1556: 1528: 1499: 1476: 1446:Fraunhofer diffraction 1425: 1377: 1344: 1306: 1278: 1251: 1222: 1133:Fraunhofer diffraction 1118: 1098: 1049: 1019: 999: 972: 952: 906: 879: 832: 798: 765: 757: 749: 717: 683: 675: 657: 430:Fraunhofer diffraction 403:double-slit experiment 345: 248: 138: 131: 107: 56: 5596:10.1038/nnano.2012.34 5566:Nature Nanotechnology 5450: 5442: 5373:Point spread function 5293:Angle-sensitive pixel 5220: 5197:or matter waves like 5181: 5161: 5141: 5121: 5101: 5037: 5028:Further information: 5003: 4979: 4959: 4926:de Broglie wavelength 4876: 4736:microscope objectives 4713: 4693: 4634: 4608: 4588: 4564: 4544: 4524: 4469: 4400: 4171: 4116: 4063: 3827: 3699: 3624: 3406: 3279: 3144: 3068: 3058: 2834: 2782: 2645: 2623: 2594: 2528: 2478: 2383: 2352: 2275: 2253: 2251:{\displaystyle \psi } 2221: 2219:{\displaystyle J_{1}} 2194: 2163: 2143: 2123: 1998: 1987: 1954: 1934: 1914: 1887: 1796: 1768: 1760: 1752: 1740: 1710: 1591: 1557: 1529: 1500: 1477: 1426: 1378: 1345: 1307: 1279: 1277:{\displaystyle I_{0}} 1252: 1223: 1119: 1099: 1050: 1020: 1000: 973: 953: 907: 880: 833: 799: 797:{\displaystyle 2\pi } 763: 755: 747: 740:Diffraction formalism 715: 709:and other obstacles. 681: 673: 651: 340: 311:Augustin-Jean Fresnel 303:celebrated experiment 243: 206:electromagnetic waves 132: 108: 92: 42: 5909:TraitĂ© de la lumiere 5906:Christiaan Huygens, 5735:A Treatise on Optics 5348:Electron diffraction 5280:free-electron lasers 5230:electron diffraction 5209: 5170: 5150: 5130: 5110: 5066: 4992: 4968: 4931: 4919:Electron diffraction 4702: 4651: 4617: 4597: 4577: 4553: 4533: 4495: 4183: 4125: 4074: 3836: 3708: 3635: 3418: 3288: 3155: 3077: 2846: 2793: 2658: 2632: 2605: 2537: 2501: 2400: 2361: 2295: 2262: 2242: 2203: 2172: 2152: 2132: 2015: 1943: 1923: 1896: 1815: 1722: 1604: 1573: 1540: 1512: 1489: 1460: 1388: 1354: 1318: 1290: 1261: 1232: 1139: 1108: 1059: 1032: 1009: 982: 962: 916: 889: 845: 814: 785: 396:that determines the 392:is described by its 222:wave-like properties 121: 97: 6299:2000Natur.406..752N 6150:Diffraction physics 6088:Rahmat-Samii, Yahya 6066:1964PhRvL..13..479C 5964:Dietrich Zawischa. 5846:"First Memoir" 5844:. (Revision of the 5801:1804RSPT...94....1Y 5588:2012NatNa...7..297J 5403:Thinned-array curse 5242:Coherence (physics) 5126:is the wavelength, 5056:diffraction grating 4915:Neutron diffraction 4780:Babinet's principle 4775:Babinet's principle 4769:Babinet's principle 1797:Diffraction grating 1780:Diffraction grating 1774:Diffraction grating 543:diffraction grating 438:Fresnel diffraction 405:first performed by 295:diffraction grating 198:gravitational waves 175:diffraction grating 45:diffraction pattern 6520:Physical phenomena 6356:(1647): 20130313. 5927:2016-12-01 at the 5916:2016-06-16 at the 5767:2016-12-01 at the 5686:2016-12-01 at the 5473:2016-12-01 at the 5437:2016-12-01 at the 5378:Powder diffraction 5215: 5176: 5156: 5136: 5116: 5096: 5048: 4998: 4974: 4954: 4879: 4833:Robert Kouyoumjian 4760:seen when using a 4740:numerical aperture 4728:Rayleigh criterion 4708: 4688: 4645:angular resolution 4629: 4603: 4583: 4559: 4539: 4519: 4485: 4395: 4264: 4166: 4111: 4058: 3917: 3822: 3694: 3619: 3499: 3401: 3274: 3139: 3071: 3053: 2896: 2829: 2777: 2640: 2618: 2589: 2523: 2473: 2378: 2347: 2289:Helmholtz equation 2270: 2248: 2216: 2189: 2158: 2138: 2118: 2001: 1993: 1949: 1929: 1909: 1882: 1799: 1771: 1763: 1755: 1735: 1705: 1586: 1564:geometrical optics 1552: 1524: 1495: 1472: 1421: 1373: 1340: 1302: 1274: 1247: 1218: 1114: 1094: 1045: 1015: 995: 968: 948: 902: 875: 828: 794: 766: 758: 750: 718: 684: 676: 661:Diffraction spikes 658: 444:) and the Feynman 424:(derived from the 346: 323:Christiaan Huygens 297:to be discovered. 249: 194:acoustic impedance 139: 127: 103: 57: 6293:(6797): 752–757. 6263:978-0-521-45373-8 6236:978-0-8053-8566-3 6211:978-0-486-65957-2 6184:978-0-471-23231-5 6127:(11): 1448–1461. 6034:978-0-7503-0719-2 5656:978-3-030-26699-8 5509:978-1-4899-0148-4 5408:X-ray diffraction 5323:Diffraction spike 5308:Cloud iridescence 5256:atomic transition 5218:{\displaystyle d} 5179:{\displaystyle m} 5139:{\displaystyle d} 5052:Bragg diffraction 5030:Bragg diffraction 5024:Bragg diffraction 5001:{\displaystyle p} 4977:{\displaystyle h} 4948: 4820:Arnold Sommerfeld 4793:knife-edge effect 4711:{\displaystyle D} 4683: 4606:{\displaystyle D} 4586:{\displaystyle f} 4562:{\displaystyle N} 4409:Fourier transform 4232: 4230: 4178:Fourier transform 3885: 3883: 3816: 3792: 3782: 3770: 3753: 3720: 3691: 3668: 3584: 3467: 3465: 3393: 3352: 3269: 3133: 3110: 3024: 2944: 2864: 2772: 2584: 2456: 2427: 2161:{\displaystyle k} 2141:{\displaystyle a} 2103: 1974:Circular aperture 1952:{\displaystyle m} 1932:{\displaystyle d} 1794: 1732: 1694: 1664: 1583: 1453:intensity profile 1419: 1371: 1338: 1199: 1129:intensity profile 1117:{\displaystyle n} 992: 971:{\displaystyle d} 936: 899: 873: 725:fundamental limit 652:The bright spot ( 527:Colors seen in a 350:classical physics 218:quantum mechanics 143:classical physics 106:{\displaystyle d} 16:(Redirected from 6527: 6497: 6496: 6495: 6485: 6484: 6483: 6473: 6472: 6461: 6460: 6459: 6449: 6448: 6437: 6436: 6428: 6413: 6384: 6383: 6373: 6341: 6335: 6334: 6307:10.1038/35021099 6278: 6272: 6271: 6247: 6241: 6240: 6222: 6216: 6215: 6197: 6188: 6187: 6176: 6166: 6160: 6146: 6137: 6136: 6114: 6108: 6107: 6084: 6078: 6077: 6045: 6039: 6038: 6018: 6012: 6011: 6009: 6007: 5983: 5977: 5976: 5974: 5972: 5961: 5955: 5948: 5942: 5904: 5898: 5875:pp. 247–364 5867:pp. 339–475 5864: 5855: 5849: 5830: 5824: 5822: 5812: 5778: 5772: 5750: 5744: 5743: 5729: 5723: 5722: 5705: 5699: 5673: 5667: 5666: 5665: 5663: 5630: 5624: 5623: 5581: 5560: 5554: 5553: 5527: 5521: 5520: 5518: 5516: 5493: 5487: 5484: 5478: 5466:Cajori, Florian 5464: 5458: 5424: 5252:coherence length 5224: 5222: 5221: 5216: 5185: 5183: 5182: 5177: 5165: 5163: 5162: 5157: 5145: 5143: 5142: 5137: 5125: 5123: 5122: 5117: 5105: 5103: 5102: 5097: 5007: 5005: 5004: 4999: 4983: 4981: 4980: 4975: 4963: 4961: 4960: 4955: 4949: 4941: 4860: 4848: 4825:Joseph B. Keller 4746:Speckle patterns 4738:require a large 4717: 4715: 4714: 4709: 4697: 4695: 4694: 4689: 4684: 4676: 4638: 4636: 4635: 4630: 4612: 4610: 4609: 4604: 4592: 4590: 4589: 4584: 4568: 4566: 4565: 4560: 4548: 4546: 4545: 4540: 4528: 4526: 4525: 4520: 4404: 4402: 4401: 4396: 4391: 4379: 4367: 4366: 4362: 4354: 4353: 4341: 4333: 4332: 4306: 4295: 4284: 4283: 4282: 4263: 4262: 4231: 4229: 4218: 4217: 4202: 4175: 4173: 4172: 4167: 4137: 4136: 4120: 4118: 4117: 4112: 4086: 4085: 4067: 4065: 4064: 4059: 4054: 4042: 4030: 4029: 4025: 4005: 3959: 3948: 3937: 3936: 3935: 3916: 3915: 3884: 3882: 3871: 3870: 3855: 3831: 3829: 3828: 3823: 3818: 3817: 3809: 3794: 3793: 3785: 3780: 3768: 3755: 3754: 3746: 3722: 3721: 3713: 3703: 3701: 3700: 3695: 3693: 3692: 3684: 3681: 3670: 3669: 3661: 3658: 3647: 3643: 3628: 3626: 3625: 3620: 3615: 3603: 3591: 3590: 3586: 3585: 3577: 3571: 3567: 3541: 3530: 3519: 3518: 3517: 3498: 3497: 3466: 3464: 3453: 3452: 3437: 3410: 3408: 3407: 3402: 3400: 3399: 3395: 3394: 3386: 3380: 3376: 3353: 3351: 3340: 3339: 3324: 3316: 3312: 3306: 3301: 3283: 3281: 3280: 3275: 3270: 3268: 3267: 3262: 3258: 3249: 3244: 3232: 3231: 3230: 3225: 3221: 3212: 3207: 3191: 3183: 3179: 3173: 3168: 3148: 3146: 3145: 3140: 3135: 3134: 3126: 3123: 3112: 3111: 3103: 3100: 3089: 3085: 3062: 3060: 3059: 3054: 3049: 3037: 3025: 3023: 3022: 3017: 3013: 3004: 2999: 2987: 2986: 2985: 2980: 2976: 2967: 2962: 2946: 2942: 2938: 2927: 2916: 2915: 2914: 2895: 2894: 2841:surface integral 2838: 2836: 2835: 2830: 2813: 2812: 2811: 2786: 2784: 2783: 2778: 2773: 2771: 2770: 2765: 2761: 2752: 2747: 2735: 2734: 2733: 2728: 2724: 2715: 2710: 2694: 2686: 2682: 2676: 2671: 2652:Green's function 2649: 2647: 2646: 2641: 2639: 2627: 2625: 2624: 2619: 2617: 2613: 2598: 2596: 2595: 2590: 2585: 2583: 2572: 2571: 2556: 2532: 2530: 2529: 2524: 2522: 2521: 2491:Green's function 2482: 2480: 2479: 2474: 2457: 2455: 2454: 2453: 2440: 2439: 2430: 2428: 2420: 2412: 2411: 2390:Laplace operator 2387: 2385: 2384: 2379: 2374: 2356: 2354: 2353: 2348: 2340: 2323: 2322: 2307: 2306: 2282:frequency domain 2279: 2277: 2276: 2271: 2269: 2257: 2255: 2254: 2249: 2234:General aperture 2225: 2223: 2222: 2217: 2215: 2214: 2198: 2196: 2195: 2190: 2185: 2167: 2165: 2164: 2159: 2147: 2145: 2144: 2139: 2127: 2125: 2124: 2119: 2114: 2113: 2108: 2104: 2102: 2085: 2063: 2062: 2049: 2042: 2041: 1958: 1956: 1955: 1950: 1938: 1936: 1935: 1930: 1918: 1916: 1915: 1910: 1908: 1907: 1891: 1889: 1888: 1883: 1869: 1865: 1864: 1863: 1862: 1843: 1842: 1841: 1795: 1746: 1744: 1742: 1741: 1736: 1734: 1733: 1730: 1714: 1712: 1711: 1706: 1704: 1700: 1696: 1695: 1692: 1665: 1660: 1652: 1642: 1641: 1631: 1630: 1595: 1593: 1592: 1587: 1585: 1584: 1581: 1561: 1559: 1558: 1553: 1535: 1533: 1531: 1530: 1525: 1506: 1504: 1502: 1501: 1496: 1483: 1481: 1479: 1478: 1473: 1432: 1430: 1428: 1427: 1422: 1420: 1415: 1404: 1382: 1380: 1379: 1374: 1372: 1364: 1349: 1347: 1346: 1341: 1339: 1331: 1313: 1311: 1309: 1308: 1303: 1283: 1281: 1280: 1275: 1273: 1272: 1256: 1254: 1253: 1248: 1227: 1225: 1224: 1219: 1214: 1210: 1200: 1195: 1187: 1177: 1176: 1166: 1165: 1123: 1121: 1120: 1115: 1103: 1101: 1100: 1095: 1081: 1080: 1054: 1052: 1051: 1046: 1044: 1043: 1024: 1022: 1021: 1016: 1004: 1002: 1001: 996: 994: 993: 990: 977: 975: 974: 969: 957: 955: 954: 949: 938: 937: 934: 911: 909: 908: 903: 901: 900: 897: 884: 882: 881: 876: 874: 869: 849: 839: 837: 835: 834: 829: 824: 803: 801: 800: 795: 631: 615: 568: 556: 524: 512: 500: 488: 476: 454:boundary element 368:for a secondary 186:refractive index 136: 134: 133: 128: 112: 110: 109: 104: 78:coined the word 55:in another plate 21: 6535: 6534: 6530: 6529: 6528: 6526: 6525: 6524: 6505: 6504: 6503: 6493: 6491: 6481: 6479: 6467: 6457: 6455: 6443: 6431: 6423: 6406:Crystallography 6400: 6392: 6387: 6343: 6342: 6338: 6280: 6279: 6275: 6264: 6249: 6248: 6244: 6237: 6224: 6223: 6219: 6212: 6199: 6198: 6191: 6185: 6168: 6167: 6163: 6147: 6140: 6116: 6115: 6111: 6086: 6085: 6081: 6060:(15): 479–482. 6047: 6046: 6042: 6035: 6020: 6019: 6015: 6005: 6003: 5996:The Slate Group 5985: 5984: 5980: 5970: 5968: 5963: 5962: 5958: 5949: 5945: 5929:Wayback Machine 5918:Wayback Machine 5905: 5901: 5869:; reprinted in 5862: 5856: 5852: 5842:pp. 89–122 5831: 5827: 5780: 5779: 5775: 5769:Wayback Machine 5751: 5747: 5731: 5730: 5726: 5707: 5706: 5702: 5688:Wayback Machine 5674: 5670: 5661: 5659: 5657: 5632: 5631: 5627: 5562: 5561: 5557: 5550: 5529: 5528: 5524: 5514: 5512: 5510: 5495: 5494: 5490: 5485: 5481: 5475:Wayback Machine 5465: 5461: 5439:Wayback Machine 5425: 5421: 5417: 5412: 5303:Brocken spectre 5288: 5276: 5271: 5244: 5238: 5207: 5206: 5168: 5167: 5148: 5147: 5128: 5127: 5108: 5107: 5064: 5063: 5042:, each dot (or 5032: 5026: 5015:Diffraction of 4990: 4989: 4986:Planck constant 4966: 4965: 4929: 4928: 4921: 4907: 4890:of the angles.) 4871: 4864: 4861: 4852: 4849: 4789: 4777: 4771: 4758:speckle pattern 4754: 4752:Speckle pattern 4748: 4700: 4699: 4649: 4648: 4615: 4614: 4595: 4594: 4575: 4574: 4551: 4550: 4531: 4530: 4493: 4492: 4464: 4458: 4426: 4384: 4372: 4355: 4345: 4334: 4324: 4310: 4299: 4288: 4267: 4219: 4203: 4181: 4180: 4128: 4123: 4122: 4077: 4072: 4071: 4047: 4035: 4018: 3998: 3963: 3952: 3941: 3920: 3872: 3856: 3834: 3833: 3706: 3705: 3674: 3651: 3638: 3633: 3632: 3608: 3596: 3562: 3545: 3534: 3523: 3502: 3454: 3438: 3416: 3415: 3371: 3354: 3341: 3325: 3307: 3286: 3285: 3253: 3233: 3216: 3192: 3174: 3153: 3152: 3116: 3093: 3080: 3075: 3074: 3042: 3030: 3008: 2988: 2971: 2947: 2931: 2920: 2899: 2844: 2843: 2796: 2791: 2790: 2756: 2736: 2719: 2695: 2677: 2656: 2655: 2630: 2629: 2608: 2603: 2602: 2573: 2557: 2535: 2534: 2504: 2499: 2498: 2493:, which in the 2445: 2441: 2431: 2403: 2398: 2397: 2359: 2358: 2314: 2298: 2293: 2292: 2260: 2259: 2240: 2239: 2236: 2228:Bessel function 2206: 2201: 2200: 2170: 2169: 2150: 2149: 2130: 2129: 2086: 2054: 2050: 2044: 2043: 2033: 2013: 2012: 1982: 1976: 1941: 1940: 1921: 1920: 1899: 1894: 1893: 1854: 1833: 1825: 1821: 1813: 1812: 1810: 1784: 1782: 1776: 1725: 1720: 1719: 1718: 1687: 1653: 1650: 1646: 1633: 1622: 1602: 1601: 1576: 1571: 1570: 1538: 1537: 1510: 1509: 1508: 1487: 1486: 1485: 1458: 1457: 1456: 1405: 1386: 1385: 1384: 1352: 1351: 1316: 1315: 1288: 1287: 1285: 1264: 1259: 1258: 1230: 1229: 1188: 1185: 1181: 1168: 1157: 1137: 1136: 1106: 1105: 1072: 1057: 1056: 1035: 1030: 1029: 1007: 1006: 985: 980: 979: 960: 959: 929: 914: 913: 892: 887: 886: 850: 843: 842: 812: 811: 810: 783: 782: 742: 736: 688:speckle pattern 643: 642: 641: 640: 639: 632: 624: 623: 616: 576: 575: 574: 573: 572: 569: 561: 560: 557: 539: 532: 525: 516: 513: 504: 501: 492: 489: 480: 477: 376:as well as the 335: 281:of light rays. 238: 216:. Furthermore, 119: 118: 95: 94: 35: 28: 23: 22: 15: 12: 11: 5: 6533: 6531: 6523: 6522: 6517: 6507: 6506: 6502: 6501: 6489: 6477: 6465: 6453: 6441: 6421: 6420: 6414: 6398: 6391: 6390:External links 6388: 6386: 6385: 6336: 6273: 6262: 6242: 6235: 6217: 6210: 6189: 6183: 6161: 6138: 6109: 6079: 6040: 6033: 6013: 5978: 5956: 5943: 5899: 5850: 5825: 5773: 5745: 5724: 5700: 5668: 5655: 5625: 5572:(5): 297–300. 5555: 5548: 5522: 5508: 5488: 5479: 5459: 5418: 5416: 5413: 5411: 5410: 5405: 5400: 5395: 5390: 5385: 5380: 5375: 5370: 5365: 5363:Fresnel number 5360: 5358:Fresnel imager 5355: 5350: 5345: 5340: 5338:Diffractometer 5335: 5330: 5325: 5320: 5315: 5310: 5305: 5300: 5295: 5289: 5287: 5284: 5275: 5272: 5270: 5267: 5240:Main article: 5237: 5234: 5214: 5175: 5155: 5135: 5115: 5095: 5092: 5089: 5086: 5083: 5080: 5077: 5074: 5071: 5025: 5022: 4997: 4973: 4953: 4947: 4944: 4939: 4936: 4906: 4903: 4902: 4901: 4894: 4891: 4870: 4867: 4866: 4865: 4862: 4855: 4853: 4850: 4843: 4788: 4785: 4773:Main article: 4770: 4767: 4750:Main article: 4747: 4744: 4720:entrance pupil 4707: 4687: 4682: 4679: 4674: 4671: 4668: 4665: 4662: 4659: 4656: 4628: 4625: 4622: 4602: 4582: 4573:(focal length 4558: 4538: 4518: 4515: 4512: 4509: 4506: 4503: 4500: 4460:Main article: 4457: 4454: 4425: 4422: 4418:Fourier optics 4394: 4390: 4387: 4383: 4378: 4375: 4371: 4365: 4361: 4358: 4352: 4348: 4344: 4340: 4337: 4331: 4327: 4323: 4320: 4317: 4313: 4309: 4305: 4302: 4298: 4294: 4291: 4287: 4281: 4278: 4275: 4270: 4261: 4258: 4255: 4252: 4249: 4246: 4243: 4240: 4235: 4228: 4225: 4222: 4216: 4213: 4210: 4206: 4200: 4197: 4194: 4191: 4188: 4165: 4161: 4158: 4155: 4152: 4149: 4146: 4143: 4140: 4135: 4131: 4110: 4107: 4104: 4101: 4098: 4095: 4092: 4089: 4084: 4080: 4057: 4053: 4050: 4046: 4041: 4038: 4034: 4028: 4024: 4021: 4017: 4014: 4011: 4008: 4004: 4001: 3997: 3994: 3991: 3988: 3985: 3982: 3979: 3976: 3973: 3970: 3966: 3962: 3958: 3955: 3951: 3947: 3944: 3940: 3934: 3931: 3928: 3923: 3914: 3911: 3908: 3905: 3902: 3899: 3896: 3893: 3888: 3881: 3878: 3875: 3869: 3866: 3863: 3859: 3853: 3850: 3847: 3844: 3841: 3821: 3815: 3812: 3806: 3803: 3800: 3797: 3791: 3788: 3779: 3776: 3773: 3767: 3764: 3761: 3758: 3752: 3749: 3743: 3740: 3737: 3734: 3731: 3728: 3725: 3719: 3716: 3690: 3687: 3680: 3677: 3673: 3667: 3664: 3657: 3654: 3650: 3646: 3642: 3618: 3614: 3611: 3607: 3602: 3599: 3595: 3589: 3583: 3580: 3574: 3570: 3566: 3561: 3558: 3555: 3552: 3548: 3544: 3540: 3537: 3533: 3529: 3526: 3522: 3516: 3513: 3510: 3505: 3496: 3493: 3490: 3487: 3484: 3481: 3478: 3475: 3470: 3463: 3460: 3457: 3451: 3448: 3445: 3441: 3435: 3432: 3429: 3426: 3423: 3398: 3392: 3389: 3383: 3379: 3375: 3370: 3367: 3364: 3361: 3357: 3350: 3347: 3344: 3338: 3335: 3332: 3328: 3322: 3319: 3315: 3311: 3305: 3300: 3296: 3293: 3284:simplifies to 3273: 3266: 3261: 3257: 3252: 3248: 3243: 3239: 3236: 3229: 3224: 3220: 3215: 3211: 3206: 3202: 3199: 3195: 3189: 3186: 3182: 3178: 3172: 3167: 3163: 3160: 3138: 3132: 3129: 3122: 3119: 3115: 3109: 3106: 3099: 3096: 3092: 3088: 3084: 3052: 3048: 3045: 3041: 3036: 3033: 3029: 3021: 3016: 3012: 3007: 3003: 2998: 2994: 2991: 2984: 2979: 2975: 2970: 2966: 2961: 2957: 2954: 2950: 2941: 2937: 2934: 2930: 2926: 2923: 2919: 2913: 2910: 2907: 2902: 2893: 2890: 2887: 2884: 2881: 2878: 2875: 2872: 2867: 2863: 2860: 2857: 2854: 2851: 2828: 2825: 2822: 2819: 2816: 2810: 2807: 2804: 2799: 2776: 2769: 2764: 2760: 2755: 2751: 2746: 2742: 2739: 2732: 2727: 2723: 2718: 2714: 2709: 2705: 2702: 2698: 2692: 2689: 2685: 2681: 2675: 2670: 2666: 2663: 2638: 2616: 2612: 2588: 2582: 2579: 2576: 2570: 2567: 2564: 2560: 2554: 2551: 2548: 2545: 2542: 2520: 2517: 2514: 2511: 2507: 2472: 2469: 2466: 2463: 2460: 2452: 2448: 2444: 2438: 2434: 2426: 2423: 2418: 2415: 2410: 2406: 2396:simplifies to 2377: 2373: 2369: 2366: 2346: 2343: 2339: 2335: 2332: 2329: 2326: 2321: 2317: 2313: 2310: 2305: 2301: 2268: 2247: 2235: 2232: 2213: 2209: 2188: 2184: 2180: 2177: 2157: 2137: 2117: 2112: 2107: 2101: 2098: 2095: 2092: 2089: 2084: 2081: 2078: 2075: 2072: 2069: 2066: 2061: 2057: 2053: 2047: 2040: 2036: 2032: 2029: 2026: 2023: 2020: 1978:Main article: 1975: 1972: 1948: 1928: 1906: 1902: 1881: 1878: 1875: 1872: 1868: 1861: 1857: 1852: 1849: 1846: 1840: 1836: 1831: 1828: 1824: 1820: 1806: 1778:Main article: 1775: 1772: 1728: 1703: 1699: 1690: 1686: 1683: 1680: 1677: 1674: 1671: 1668: 1663: 1659: 1656: 1649: 1645: 1640: 1636: 1629: 1625: 1621: 1618: 1615: 1612: 1609: 1579: 1551: 1548: 1545: 1523: 1520: 1517: 1494: 1471: 1468: 1465: 1418: 1414: 1411: 1408: 1402: 1399: 1396: 1393: 1370: 1367: 1362: 1359: 1337: 1334: 1329: 1326: 1323: 1301: 1298: 1295: 1271: 1267: 1246: 1243: 1240: 1237: 1217: 1213: 1209: 1206: 1203: 1198: 1194: 1191: 1184: 1180: 1175: 1171: 1164: 1160: 1156: 1153: 1150: 1147: 1144: 1113: 1093: 1090: 1087: 1084: 1079: 1075: 1071: 1068: 1064: 1042: 1038: 1014: 988: 967: 947: 944: 941: 932: 928: 925: 921: 895: 872: 868: 865: 862: 859: 856: 853: 827: 823: 819: 793: 790: 738:Main article: 735: 732: 694:appears to be 633: 626: 625: 617: 610: 609: 608: 607: 606: 598:backscattering 570: 563: 562: 558: 551: 550: 549: 548: 547: 538: 535: 534: 533: 526: 519: 517: 514: 507: 505: 502: 495: 493: 490: 483: 481: 478: 471: 450:finite element 370:spherical wave 334: 331: 237: 234: 126: 102: 26: 24: 14: 13: 10: 9: 6: 4: 3: 2: 6532: 6521: 6518: 6516: 6513: 6512: 6510: 6500: 6490: 6488: 6478: 6476: 6471: 6466: 6464: 6454: 6452: 6447: 6442: 6440: 6435: 6430: 6426: 6418: 6415: 6411: 6407: 6403: 6399: 6397: 6394: 6393: 6389: 6381: 6377: 6372: 6367: 6363: 6359: 6355: 6351: 6347: 6340: 6337: 6332: 6328: 6324: 6320: 6316: 6312: 6308: 6304: 6300: 6296: 6292: 6288: 6284: 6277: 6274: 6269: 6265: 6259: 6255: 6254: 6246: 6243: 6238: 6232: 6228: 6221: 6218: 6213: 6207: 6203: 6196: 6194: 6190: 6186: 6180: 6175: 6174: 6165: 6162: 6159: 6158:0-444-10791-6 6155: 6151: 6145: 6143: 6139: 6134: 6130: 6126: 6122: 6121: 6113: 6110: 6105: 6101: 6097: 6093: 6089: 6083: 6080: 6075: 6071: 6067: 6063: 6059: 6055: 6051: 6044: 6041: 6036: 6030: 6026: 6025: 6017: 6014: 6001: 5997: 5993: 5989: 5982: 5979: 5967: 5960: 5957: 5953: 5947: 5944: 5940: 5939: 5934: 5930: 5926: 5923: 5919: 5915: 5912: 5910: 5903: 5900: 5896: 5892: 5888: 5884: 5880: 5876: 5872: 5868: 5860: 5854: 5851: 5847: 5843: 5839: 5835: 5829: 5826: 5820: 5816: 5811: 5806: 5802: 5798: 5794: 5790: 5789: 5784: 5777: 5774: 5770: 5766: 5763: 5759: 5755: 5749: 5746: 5741: 5737: 5736: 5728: 5725: 5721: 5717: 5713: 5712: 5704: 5701: 5697: 5693: 5689: 5685: 5682: 5678: 5672: 5669: 5658: 5652: 5648: 5644: 5640: 5636: 5629: 5626: 5621: 5617: 5613: 5609: 5605: 5601: 5597: 5593: 5589: 5585: 5580: 5575: 5571: 5567: 5559: 5556: 5551: 5549:9780122274107 5545: 5541: 5537: 5533: 5526: 5523: 5511: 5505: 5501: 5500: 5492: 5489: 5483: 5480: 5476: 5472: 5469: 5463: 5460: 5456: 5454: 5448: 5446: 5440: 5436: 5433: 5429: 5423: 5420: 5414: 5409: 5406: 5404: 5401: 5399: 5396: 5394: 5391: 5389: 5386: 5384: 5381: 5379: 5376: 5374: 5371: 5369: 5366: 5364: 5361: 5359: 5356: 5354: 5351: 5349: 5346: 5344: 5341: 5339: 5336: 5334: 5331: 5329: 5326: 5324: 5321: 5319: 5316: 5314: 5311: 5309: 5306: 5304: 5301: 5299: 5296: 5294: 5291: 5290: 5285: 5283: 5281: 5273: 5268: 5266: 5263: 5259: 5257: 5253: 5248: 5243: 5235: 5233: 5231: 5226: 5212: 5204: 5200: 5196: 5191: 5189: 5173: 5153: 5133: 5113: 5093: 5090: 5087: 5084: 5081: 5078: 5075: 5072: 5069: 5061: 5057: 5053: 5045: 5041: 5036: 5031: 5023: 5021: 5018: 5013: 5011: 4995: 4987: 4971: 4951: 4945: 4942: 4937: 4934: 4927: 4920: 4916: 4912: 4904: 4899: 4895: 4892: 4889: 4884: 4883: 4882: 4875: 4868: 4859: 4854: 4847: 4842: 4840: 4838: 4834: 4830: 4826: 4821: 4817: 4812: 4810: 4806: 4802: 4798: 4794: 4787:"Knife edge" 4786: 4784: 4781: 4776: 4766: 4763: 4762:laser pointer 4759: 4753: 4745: 4743: 4741: 4737: 4732: 4729: 4723: 4721: 4705: 4685: 4680: 4677: 4672: 4669: 4666: 4663: 4660: 4657: 4654: 4646: 4642: 4626: 4623: 4620: 4600: 4580: 4572: 4556: 4536: 4516: 4513: 4510: 4507: 4504: 4501: 4490: 4482: 4479: 4475: 4474: 4468: 4463: 4455: 4453: 4449: 4447: 4446:self-focusing 4443: 4439: 4438:Gaussian beam 4435: 4431: 4423: 4421: 4419: 4414: 4410: 4405: 4392: 4388: 4385: 4381: 4376: 4373: 4369: 4359: 4356: 4350: 4346: 4342: 4338: 4335: 4329: 4325: 4318: 4315: 4311: 4303: 4300: 4296: 4292: 4289: 4268: 4233: 4226: 4223: 4220: 4214: 4211: 4208: 4204: 4198: 4192: 4179: 4163: 4159: 4156: 4153: 4150: 4147: 4144: 4141: 4138: 4133: 4129: 4108: 4105: 4102: 4099: 4096: 4093: 4090: 4087: 4082: 4078: 4068: 4055: 4051: 4048: 4044: 4039: 4036: 4032: 4022: 4019: 4015: 4012: 4009: 4006: 4002: 3999: 3995: 3992: 3989: 3983: 3980: 3977: 3974: 3971: 3968: 3964: 3956: 3953: 3949: 3945: 3942: 3921: 3886: 3879: 3876: 3873: 3867: 3864: 3861: 3857: 3851: 3845: 3819: 3804: 3801: 3798: 3795: 3777: 3774: 3771: 3765: 3762: 3759: 3756: 3741: 3738: 3735: 3732: 3729: 3726: 3723: 3678: 3675: 3671: 3655: 3652: 3648: 3644: 3629: 3616: 3612: 3609: 3605: 3600: 3597: 3593: 3572: 3568: 3556: 3553: 3550: 3546: 3538: 3535: 3531: 3527: 3524: 3503: 3468: 3461: 3458: 3455: 3449: 3446: 3443: 3439: 3433: 3427: 3412: 3381: 3377: 3365: 3362: 3359: 3355: 3348: 3345: 3342: 3336: 3333: 3330: 3326: 3320: 3313: 3291: 3271: 3259: 3250: 3237: 3234: 3222: 3213: 3200: 3197: 3193: 3187: 3180: 3158: 3149: 3136: 3120: 3117: 3113: 3097: 3094: 3090: 3086: 3067: 3063: 3050: 3046: 3043: 3039: 3034: 3031: 3027: 3014: 3005: 2992: 2989: 2977: 2968: 2955: 2952: 2948: 2935: 2932: 2928: 2924: 2921: 2900: 2865: 2861: 2855: 2842: 2823: 2820: 2817: 2797: 2787: 2774: 2762: 2753: 2740: 2737: 2725: 2716: 2703: 2700: 2696: 2690: 2683: 2661: 2653: 2614: 2599: 2586: 2580: 2577: 2574: 2568: 2565: 2562: 2558: 2552: 2546: 2540: 2518: 2515: 2512: 2509: 2505: 2496: 2492: 2488: 2483: 2470: 2464: 2461: 2450: 2446: 2436: 2424: 2421: 2416: 2413: 2408: 2395: 2391: 2364: 2344: 2330: 2327: 2324: 2319: 2315: 2311: 2308: 2303: 2290: 2286: 2285:wave equation 2283: 2245: 2233: 2231: 2229: 2211: 2207: 2186: 2182: 2178: 2175: 2155: 2135: 2115: 2110: 2105: 2099: 2096: 2093: 2090: 2087: 2079: 2076: 2073: 2070: 2067: 2059: 2055: 2051: 2045: 2038: 2034: 2030: 2024: 2018: 2010: 2006: 1997: 1991: 1986: 1981: 1973: 1971: 1967: 1965: 1960: 1946: 1926: 1904: 1900: 1879: 1876: 1873: 1870: 1866: 1859: 1855: 1850: 1847: 1844: 1838: 1834: 1829: 1826: 1822: 1818: 1809: 1805: 1781: 1773: 1767: 1759: 1751: 1747: 1726: 1715: 1701: 1688: 1684: 1681: 1678: 1675: 1672: 1669: 1661: 1657: 1654: 1647: 1643: 1638: 1634: 1627: 1623: 1619: 1613: 1607: 1599: 1577: 1567: 1565: 1549: 1546: 1543: 1521: 1518: 1515: 1492: 1469: 1466: 1463: 1454: 1449: 1447: 1443: 1438: 1436: 1433:which is the 1416: 1412: 1409: 1406: 1400: 1397: 1394: 1391: 1368: 1365: 1360: 1357: 1335: 1332: 1327: 1324: 1321: 1299: 1296: 1293: 1269: 1265: 1241: 1235: 1215: 1211: 1207: 1204: 1201: 1196: 1192: 1189: 1182: 1178: 1173: 1169: 1162: 1158: 1154: 1148: 1142: 1134: 1130: 1125: 1111: 1091: 1088: 1085: 1082: 1077: 1073: 1069: 1066: 1062: 1040: 1036: 1026: 1012: 986: 965: 945: 942: 939: 930: 926: 923: 919: 893: 870: 863: 857: 854: 851: 825: 821: 817: 806: 791: 788: 780: 774: 772: 762: 754: 746: 741: 733: 731: 728: 726: 721: 714: 710: 708: 703: 701: 697: 693: 689: 680: 672: 668: 666: 662: 655: 650: 646: 637: 630: 621: 614: 605: 603: 599: 595: 591: 587: 583: 581: 567: 555: 546: 544: 536: 530: 523: 518: 511: 506: 499: 494: 487: 482: 475: 470: 468: 466: 461: 457: 455: 451: 447: 443: 439: 435: 431: 427: 426:wave equation 423: 418: 416: 412: 408: 404: 399: 395: 391: 387: 382: 379: 375: 371: 367: 363: 359: 355: 351: 344: 339: 332: 330: 328: 324: 320: 316: 312: 308: 304: 300: 296: 292: 288: 284: 283:James Gregory 280: 276: 272: 268: 265: 261: 257: 253: 247: 242: 235: 233: 231: 230:semi-circular 225: 223: 219: 215: 211: 207: 203: 199: 195: 191: 187: 183: 178: 176: 172: 168: 164: 160: 156: 152: 148: 144: 124: 116: 100: 91: 87: 85: 81: 77: 73: 69: 65: 61: 54: 50: 46: 41: 37: 33: 19: 6405: 6353: 6349: 6339: 6290: 6286: 6276: 6252: 6245: 6226: 6220: 6201: 6172: 6164: 6149: 6124: 6118: 6112: 6098:(3): 29–40. 6095: 6091: 6082: 6057: 6053: 6043: 6023: 6016: 6004:. Retrieved 5991: 5981: 5971:21 September 5969:. Retrieved 5959: 5951: 5946: 5936: 5932: 5908: 5902: 5886: 5882: 5870: 5861:, vol.  5858: 5853: 5837: 5833: 5828: 5792: 5786: 5776: 5753: 5748: 5734: 5727: 5719: 5710: 5703: 5695: 5691: 5676: 5671: 5660:, retrieved 5638: 5628: 5569: 5565: 5558: 5531: 5525: 5513:. Retrieved 5498: 5491: 5482: 5462: 5452: 5451: 5444: 5443: 5427: 5422: 5368:Fresnel zone 5277: 5269:Applications 5264: 5260: 5249: 5245: 5227: 5192: 5187: 5059: 5049: 5043: 5017:matter waves 5014: 4922: 4880: 4813: 4796: 4792: 4790: 4778: 4755: 4733: 4724: 4486: 4471: 4450: 4427: 4406: 4069: 3630: 3413: 3150: 3072: 2788: 2600: 2484: 2258:at location 2237: 2168:is equal to 2002: 1989: 1968: 1961: 1807: 1803: 1800: 1716: 1568: 1450: 1439: 1135:equation as 1126: 1027: 807: 775: 767: 729: 722: 719: 704: 685: 659: 644: 584: 577: 540: 462: 458: 419: 407:G. I. Taylor 394:wavefunction 383: 366:point source 347: 301:performed a 299:Thomas Young 278: 275:Isaac Newton 266: 259: 250: 226: 204:, and other 188:, or when a 179: 167:interference 140: 79: 59: 58: 36: 6515:Diffraction 6499:Outer space 6487:Spaceflight 6451:Mathematics 6006:9 September 5453:Translation 5383:Quasioptics 5060:Bragg's law 5040:Bragg's law 4911:Matter wave 4898:double-slit 4489:diffraction 4481:zeta Boötis 4478:binary star 4473:lucky image 4442:convex lens 3631:Now, since 1964:convolution 1598:path length 465:water waves 343:ripple tank 267:diffringere 262:, from the 260:diffraction 214:radio waves 202:water waves 80:diffraction 72:propagating 60:Diffraction 6509:Categories 6419:at YouTube 5415:References 5393:Reflection 5388:Refraction 5044:reflection 5038:Following 4909:See also: 4816:half-plane 4430:laser beam 1455:above, if 696:iridescent 654:Arago spot 602:refraction 529:spider web 442:near field 378:amplitudes 190:sound wave 182:light wave 163:wavelength 32:refraction 18:Diffracted 6463:Astronomy 6315:1476-4687 5819:110408369 5604:1748-3395 5579:1402.1867 5534:: 67–85. 5515:7 January 5236:Coherence 5203:electrons 5154:θ 5114:λ 5091:θ 5088:⁡ 5073:λ 4935:λ 4809:wavefront 4801:radiation 4678:λ 4667:θ 4664:⁡ 4658:≈ 4655:θ 4624:≫ 4537:λ 4511:λ 4499:Δ 4316:− 4234:∬ 4224:π 4199:∝ 4187:Ψ 4160:ϕ 4157:⁡ 4151:θ 4148:⁡ 4109:ϕ 4106:⁡ 4100:θ 4097:⁡ 4016:ϕ 4013:⁡ 3996:ϕ 3993:⁡ 3984:θ 3981:⁡ 3969:− 3887:∬ 3877:π 3852:∝ 3840:Ψ 3814:^ 3805:θ 3802:⁡ 3790:^ 3778:ϕ 3775:⁡ 3766:θ 3763:⁡ 3751:^ 3742:ϕ 3739:⁡ 3733:θ 3730:⁡ 3718:^ 3689:^ 3666:^ 3582:^ 3573:⋅ 3551:− 3469:∬ 3459:π 3434:∝ 3422:Ψ 3391:^ 3382:⋅ 3360:− 3346:π 3292:ψ 3251:− 3238:π 3214:− 3159:ψ 3131:^ 3108:^ 3006:− 2993:π 2969:− 2866:∬ 2862:∝ 2850:Ψ 2754:− 2741:π 2717:− 2662:ψ 2578:π 2541:ψ 2516:ω 2510:− 2465:ψ 2443:∂ 2433:∂ 2414:ψ 2405:∇ 2365:δ 2331:δ 2325:ψ 2309:ψ 2300:∇ 2246:ψ 2187:λ 2179:π 2100:θ 2097:⁡ 2080:θ 2077:⁡ 2025:θ 2009:variation 2005:Airy disk 1990:Airy disk 1980:Airy disk 1901:θ 1877:λ 1856:θ 1851:⁡ 1845:± 1835:θ 1830:⁡ 1727:θ 1689:θ 1685:⁡ 1679:± 1676:θ 1673:⁡ 1662:λ 1658:π 1644:⁡ 1614:θ 1578:θ 1547:≈ 1544:θ 1522:λ 1519:≫ 1493:θ 1470:λ 1467:≪ 1451:From the 1442:far field 1410:⁡ 1395:⁡ 1366:π 1358:θ 1333:π 1328:− 1322:θ 1294:θ 1242:θ 1208:θ 1205:⁡ 1197:λ 1193:π 1179:⁡ 1149:θ 1089:λ 1074:θ 1070:⁡ 1055:given by 1037:θ 1013:λ 987:θ 943:λ 931:θ 927:⁡ 912:given by 894:θ 864:θ 858:⁡ 818:λ 792:π 692:deli meat 456:methods. 434:far field 333:Mechanism 279:inflexion 173:(e.g., a 151:wavefront 125:θ 115:wavefront 47:of a red 6380:24914146 6323:10963603 6268:Archived 6000:Archived 5925:Archived 5914:Archived 5795:: 1–16. 5765:Archived 5684:Archived 5681:pp. 1–11 5662:25 April 5612:22447163 5471:Archived 5445:Original 5435:Archived 5286:See also 5199:neutrons 5010:momentum 4869:Patterns 4641:paraxial 4571:f-number 4448:effect. 4434:coherent 4389:′ 4377:′ 4360:′ 4339:′ 4304:′ 4293:′ 4070:Letting 4052:′ 4040:′ 4023:′ 4003:′ 3957:′ 3946:′ 3679:′ 3656:′ 3645:′ 3613:′ 3601:′ 3569:′ 3539:′ 3528:′ 3378:′ 3314:′ 3260:′ 3223:′ 3181:′ 3121:′ 3098:′ 3087:′ 3047:′ 3035:′ 3015:′ 2978:′ 2936:′ 2925:′ 2763:′ 2726:′ 2684:′ 2615:′ 779:coherent 665:aperture 634:A solar 580:hologram 537:Examples 360:and the 252:Da Vinci 208:such as 159:coherent 155:wavelets 64:aperture 53:aperture 6439:Physics 6425:Portals 6371:4052855 6331:4300920 6295:Bibcode 6062:Bibcode 5797:Bibcode 5620:5918772 5584:Bibcode 5008:is the 4984:is the 4839:(UTD). 4569:is the 4476:of the 2007:. The 707:jetties 436:), the 428:), the 384:In the 236:History 6378:  6368:  6329:  6321:  6313:  6287:Nature 6260:  6233:  6227:Optics 6208:  6181:  6156:  6031:  5938:TraitĂ© 5895:337–78 5891:246–96 5817:  5762:p. 254 5653:  5618:  5610:  5602:  5546:  5506:  5432:page 2 5195:X-rays 5106:where 4964:where 4917:, and 4698:where 4529:where 3781:  3769:  2943:  2357:where 2128:where 1892:where 1228:where 1104:where 958:where 620:corona 618:Lunar 590:corona 390:photon 374:phases 210:X-rays 68:shadow 6475:Stars 6327:S2CID 5992:Slate 5922:p. 15 5815:S2CID 5616:S2CID 5574:arXiv 5201:(and 5188:order 4888:sines 2533:) is 2485:(See 2226:is a 1536:only 636:glory 594:glory 460:out. 354:waves 264:Latin 49:laser 6376:PMID 6319:PMID 6311:ISSN 6258:ISBN 6231:ISBN 6206:ISBN 6179:ISBN 6154:ISBN 6029:ISBN 6008:2013 5973:2007 5664:2024 5651:ISBN 5608:PMID 5600:ISSN 5544:ISBN 5517:2023 5504:ISBN 4988:and 4791:The 4756:The 4673:1.22 4508:1.22 4121:and 3704:and 2199:and 1635:sinc 1392:sinc 1170:sinc 700:wave 686:The 452:and 411:1909 319:1818 317:and 315:1816 307:1803 291:1675 287:1638 271:1665 246:1803 212:and 84:1660 6366:PMC 6358:doi 6354:369 6303:doi 6291:406 6129:doi 6100:doi 6070:doi 5931:: 5805:doi 5716:149 5690:: 5643:doi 5592:doi 5536:doi 5441:: 5085:sin 4795:or 4661:sin 4647:is 4420:). 4154:sin 4145:sin 4103:cos 4094:sin 4010:sin 3990:cos 3978:sin 3799:cos 3772:sin 3760:sin 3736:cos 3727:sin 2291:), 2094:sin 2074:sin 1848:sin 1827:sin 1682:sin 1670:sin 1407:sin 1350:to 1202:sin 1067:sin 991:min 935:min 924:sin 898:min 855:sin 409:in 348:In 305:in 141:In 6511:: 6408:. 6404:. 6374:. 6364:. 6352:. 6348:. 6325:. 6317:. 6309:. 6301:. 6289:. 6285:. 6266:. 6192:^ 6141:^ 6125:62 6123:. 6096:55 6094:. 6068:. 6058:13 6056:. 6052:. 5998:. 5994:. 5990:. 5897:.) 5893:, 5813:. 5803:. 5793:94 5791:. 5785:. 5740:95 5718:. 5649:, 5637:, 5614:. 5606:. 5598:. 5590:. 5582:. 5568:. 5542:. 5062:: 4913:, 1566:. 1437:. 1312:), 773:. 702:. 329:. 273:. 232:. 200:, 86:. 43:A 6427:: 6412:. 6382:. 6360:: 6333:. 6305:: 6297:: 6239:. 6214:. 6135:. 6131:: 6106:. 6102:: 6076:. 6072:: 6064:: 6037:. 6010:. 5975:. 5911:… 5863:V 5821:. 5807:: 5799:: 5771:. 5742:. 5645:: 5622:. 5594:: 5586:: 5576:: 5570:7 5552:. 5538:: 5519:. 5213:d 5174:m 5134:d 5094:, 5082:d 5079:2 5076:= 5070:m 4996:p 4972:h 4952:, 4946:p 4943:h 4938:= 4706:D 4686:, 4681:D 4670:= 4639:( 4627:1 4621:N 4601:D 4581:f 4557:N 4517:, 4514:N 4505:= 4502:x 4483:. 4393:, 4386:y 4382:d 4374:x 4370:d 4364:) 4357:y 4351:y 4347:k 4343:+ 4336:x 4330:x 4326:k 4322:( 4319:i 4312:e 4308:) 4301:y 4297:, 4290:x 4286:( 4280:c 4277:n 4274:i 4269:E 4260:e 4257:r 4254:u 4251:t 4248:r 4245:e 4242:p 4239:a 4227:r 4221:4 4215:r 4212:k 4209:i 4205:e 4196:) 4193:r 4190:( 4164:, 4142:k 4139:= 4134:y 4130:k 4091:k 4088:= 4083:x 4079:k 4056:. 4049:y 4045:d 4037:x 4033:d 4027:) 4020:y 4007:+ 4000:x 3987:( 3975:k 3972:i 3965:e 3961:) 3954:y 3950:, 3943:x 3939:( 3933:c 3930:n 3927:i 3922:E 3913:e 3910:r 3907:u 3904:t 3901:r 3898:e 3895:p 3892:a 3880:r 3874:4 3868:r 3865:k 3862:i 3858:e 3849:) 3846:r 3843:( 3820:, 3811:z 3796:+ 3787:y 3757:+ 3748:x 3724:= 3715:r 3686:y 3676:y 3672:+ 3663:x 3653:x 3649:= 3641:r 3617:. 3610:y 3606:d 3598:x 3594:d 3588:) 3579:r 3565:r 3560:( 3557:k 3554:i 3547:e 3543:) 3536:y 3532:, 3525:x 3521:( 3515:c 3512:n 3509:i 3504:E 3495:e 3492:r 3489:u 3486:t 3483:r 3480:e 3477:p 3474:a 3462:r 3456:4 3450:r 3447:k 3444:i 3440:e 3431:) 3428:r 3425:( 3397:) 3388:r 3374:r 3369:( 3366:k 3363:i 3356:e 3349:r 3343:4 3337:r 3334:k 3331:i 3327:e 3321:= 3318:) 3310:r 3304:| 3299:r 3295:( 3272:, 3265:| 3256:r 3247:r 3242:| 3235:4 3228:| 3219:r 3210:r 3205:| 3201:k 3198:i 3194:e 3188:= 3185:) 3177:r 3171:| 3166:r 3162:( 3137:. 3128:y 3118:y 3114:+ 3105:x 3095:x 3091:= 3083:r 3051:, 3044:y 3040:d 3032:x 3028:d 3020:| 3011:r 3002:r 2997:| 2990:4 2983:| 2974:r 2965:r 2960:| 2956:k 2953:i 2949:e 2940:) 2933:y 2929:, 2922:x 2918:( 2912:c 2909:n 2906:i 2901:E 2892:e 2889:r 2886:u 2883:t 2880:r 2877:e 2874:p 2871:a 2859:) 2856:r 2853:( 2827:) 2824:y 2821:, 2818:x 2815:( 2809:c 2806:n 2803:i 2798:E 2775:. 2768:| 2759:r 2750:r 2745:| 2738:4 2731:| 2722:r 2713:r 2708:| 2704:k 2701:i 2697:e 2691:= 2688:) 2680:r 2674:| 2669:r 2665:( 2637:r 2611:r 2587:. 2581:r 2575:4 2569:r 2566:k 2563:i 2559:e 2553:= 2550:) 2547:r 2544:( 2519:t 2513:i 2506:e 2471:. 2468:) 2462:r 2459:( 2451:2 2447:r 2437:2 2425:r 2422:1 2417:= 2409:2 2376:) 2372:r 2368:( 2345:, 2342:) 2338:r 2334:( 2328:= 2320:2 2316:k 2312:+ 2304:2 2267:r 2212:1 2208:J 2183:/ 2176:2 2156:k 2136:a 2116:, 2111:2 2106:) 2091:a 2088:k 2083:) 2071:a 2068:k 2065:( 2060:1 2056:J 2052:2 2046:( 2039:0 2035:I 2031:= 2028:) 2022:( 2019:I 1947:m 1927:d 1905:i 1880:, 1874:m 1871:= 1867:) 1860:i 1839:m 1823:( 1819:d 1808:m 1804:θ 1745:. 1731:i 1702:] 1698:) 1693:i 1667:( 1655:d 1648:[ 1639:2 1628:0 1624:I 1620:= 1617:) 1611:( 1608:I 1582:i 1550:0 1534:, 1516:d 1505:, 1482:, 1464:d 1444:( 1431:, 1417:x 1413:x 1401:= 1398:x 1369:2 1361:= 1336:2 1325:= 1300:0 1297:= 1286:( 1270:0 1266:I 1245:) 1239:( 1236:I 1216:, 1212:) 1190:d 1183:( 1174:2 1163:0 1159:I 1155:= 1152:) 1146:( 1143:I 1112:n 1092:, 1086:n 1083:= 1078:n 1063:d 1041:n 966:d 946:, 940:= 920:d 871:2 867:) 861:( 852:d 838:. 826:2 822:/ 789:2 622:. 289:– 285:( 101:d 20:)

Index

Diffracted
refraction

diffraction pattern
laser
aperture
aperture
shadow
propagating
Francesco Maria Grimaldi
1660

wavefront
classical physics
Huygens–Fresnel principle
wavefront
wavelets
coherent
wavelength
interference
closely spaced openings
diffraction grating
light wave
refractive index
sound wave
acoustic impedance
gravitational waves
water waves
electromagnetic waves
X-rays

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑