Knowledge

Distributive lattice

Source 📝

1240: 1004: 406: 33: 606: 588: 1050:; a sublattice is a subset that is closed under the meet and join operations of the original lattice. Note that this is not the same as being a subset that is a lattice under the original order (but possibly with different join and meet operations). Further characterizations derive from the representation theory in the next section. 2057: 1870:
The numbers above count the number of elements in free distributive lattices in which the lattice operations are joins and meets of finite sets of elements, including the empty set. If empty joins and empty meets are disallowed, the resulting free distributive lattices have two fewer elements; their
415:
Distributive lattices are ubiquitous but also rather specific structures. As already mentioned the main example for distributive lattices are lattices of sets, where join and meet are given by the usual set-theoretic operations. Further examples include:
886: 397:, i.e. a function that is compatible with the two lattice operations. Because such a morphism of lattices preserves the lattice structure, it will consequently also preserve the distributivity (and thus be a morphism of distributive lattices). 381:) are always true. A lattice is distributive if one of the converse inequalities holds, too. More information on the relationship of this condition to other distributivity conditions of order theory can be found in the article 1127:
stated below. The important insight from this characterization is that the identities (equations) that hold in all distributive lattices are exactly the ones that hold in all lattices of sets in the above sense.
1200: 1410: 1223:
As a consequence of Stone's and Priestley's theorems, one easily sees that any distributive lattice is really isomorphic to a lattice of sets. However, the proofs of both statements require the
1166: 1111:
The introduction already hinted at the most important characterization for distributive lattices: a lattice is distributive if and only if it is isomorphic to a lattice of sets (closed under
1831: 1527: 766: 1206: 1185: 931: 1123:
in this context.) That set union and intersection are indeed distributive in the above sense is an elementary fact. The other direction is less trivial, in that it requires the
1203:. In this formulation, a distributive lattice is used to construct a topological space with an additional partial order on its points, yielding a (completely order-separated) 969: 1303:
can be constructed much more easily than a general free lattice. The first observation is that, using the laws of distributivity, every term formed by the binary operations
1243:
Free distributive lattices on zero, one, two, and three generators. The elements labeled "0" and "1" are the empty join and meet, and the element labeled "majority" is (
1683: 1626: 1341: 1749: 1714: 1653: 1596: 1557: 1440: 1321: 998: 2885: 1882: 1863: 546:
closed under coordinatewise minimum and coordinatewise maximum operations), with these two operations as the join and meet operations of the lattice.
2868: 1901: 247: 2398: 2234: 503:
forms a distributive lattice, again with the greatest common divisor as meet and the least common multiple as join. This is a Boolean algebra
50: 1563:. However, it is still possible that two such terms denote the same element of the distributive lattice. This occurs when there are indices 2715: 148:
over each other. The prototypical examples of such structures are collections of sets for which the lattice operations can be given by set
2120: 1131: 2110:
Balbes and Dwinger (1975), p. 63 citing Birkhoff, G. "Subdirect unions in universal algebra", Bull. Amer. Math. Soc. SO (1944), 764-768.
554:
believed that all lattices are distributive, that is, distributivity follows from the rest of the lattice axioms. However, independence
1766:. The join of two finite irredundant sets is obtained from their union by removing all redundant sets. Likewise the meet of two sets 2851: 2710: 2191: 1942: 116: 559: 97: 2705: 69: 1154:) between the class of all finite posets and the class of all finite distributive lattices. This bijection can be extended to a 2341: 1895: 1062: 1875:
0, 1, 4, 18, 166, 7579, 7828352, 2414682040996, 56130437228687557907786, 286386577668298411128469151667598498812364 (sequence
1856:
2, 3, 6, 20, 168, 7581, 7828354, 2414682040998, 56130437228687557907788, 286386577668298411128469151667598498812366 (sequence
2423: 54: 1353: 421: 76: 2742: 2662: 382: 2336: 2527: 2456: 1072:
Finally distributivity entails several other pleasant properties. For example, an element of a distributive lattice is
2430: 2418: 2381: 2356: 2331: 2285: 2254: 1224: 1066: 1058: 440: 83: 2361: 2351: 1777: 1464: 2727: 2227: 488:
as join. This lattice also has a least element, namely 1, which therefore serves as the identity element for joins.
2700: 2366: 1155: 1116: 153: 65: 2632: 2259: 451: 1162:
of finite posets. Generalizing this result to infinite lattices, however, requires adding further structure.
2918: 2880: 2863: 1036:, the "pentagon lattice". A lattice is distributive if and only if none of its sublattices is isomorphic to 481: 156:. Indeed, these lattices of sets describe the scenery completely: every distributive lattice is—up to 43: 250:
non-empty finite joins. It is a basic fact of lattice theory that the above condition is equivalent to its
2792: 2408: 1999: 1458:, one can ignore duplicates and order, and represent a join of meets like the one above as a set of sets: 1124: 251: 898: 2770: 2605: 2596: 2465: 2300: 2264: 2220: 1170: 1143: 539: 485: 2346: 881:{\displaystyle (x\wedge y)\vee (y\wedge z)\vee (z\wedge x)=(x\vee y)\wedge (y\vee z)\wedge (z\vee x).} 2858: 2817: 2807: 2797: 2542: 2495: 2475: 2460: 936: 463: 2785: 2696: 2642: 2601: 2591: 2480: 2413: 2376: 511: 433: 429: 1959:
Felsner, Stefan; Knauer, Kolja (2011), "Distributive lattices, polyhedra, and generalized flows",
1003: 90: 2824: 2677: 2586: 2576: 2517: 2435: 2037: 1834: 1159: 1112: 555: 149: 2897: 2737: 2371: 1716:
without changing the interpretation of the whole term. Consequently, a set of finite subsets of
524: 409: 2834: 2812: 2672: 2657: 2637: 2440: 2187: 1938: 1181: 1089: 1054: 551: 532: 459: 393:
A morphism of distributive lattices is just a lattice homomorphism as given in the article on
177: 157: 1065:
member of the class of distributive lattices is the two-element chain. As a corollary, every
2647: 2500: 2149: 2133: 2069: 2029: 1968: 1934: 1658: 1601: 1326: 1239: 1196: 571: 2163: 1982: 1751:
are mutually incomparable (with respect to the subset ordering); that is, when it forms an
1727: 1692: 1631: 1574: 1535: 1418: 1306: 17: 2829: 2612: 2490: 2485: 2470: 2295: 2280: 2159: 2098: 1978: 1845: 1228: 1212: 1100: 1085: 1081: 1077: 1073: 974: 543: 447: 394: 181: 138: 2386: 563: 168:
As in the case of arbitrary lattices, one can choose to consider a distributive lattice
2747: 2732: 2722: 2581: 2559: 2537: 1906: 1752: 744: 504: 477: 145: 1080:, though the latter is in general a weaker property. By duality, the same is true for 2912: 2846: 2802: 2780: 2652: 2522: 2510: 2315: 1451: 1189: 1174: 623: 567: 528: 184:. In the present situation, the algebraic description appears to be more convenient. 142: 2154: 1927: 1053:
An alternative way of stating the same fact is that every distributive lattice is a
2667: 2549: 2532: 2450: 2290: 2243: 2181: 1120: 1093: 173: 2137: 1173:, who first proved it). It characterizes distributive lattices as the lattices of 2003: 1933:. Colloquium Publications (3rd ed.). American Mathematical Society. p.  1833:
The verification that this structure is a distributive lattice with the required
2873: 2566: 2445: 2310: 1455: 1447: 1296: 1151: 1146:
of its join-prime (equivalently: join-irreducible) elements. This establishes a
1007:
Distributive lattice which contains N5 (solid lines, left) and M3 (right) as sub
518: 470: 405: 130: 32: 2841: 2775: 2616: 1973: 1217: 246:
Viewing lattices as partially ordered sets, this says that the meet operation
180:. Both views and their mutual correspondence are discussed in the article on 2892: 2765: 2571: 1147: 1139: 739:
Various equivalent formulations to the above definition exist. For example,
2204:
sequence A006982 (Number of unlabeled distributive lattices with
436:
is a distributive lattice, i.e. "and" distributes over "or" and vice versa.
1762:
is defined on the set of all finite irredundant sets of finite subsets of
462:. Also note that Heyting algebras can be viewed as Lindenbaum algebras of 2687: 2554: 2305: 1177: 455: 2121:
Birkhoff's representation theorem#The partial order of join-irreducibles
1898:— a lattice in which infinite joins distribute over infinite meets 1343:
on a set of generators can be transformed into the following equivalent
626:
of the two prototypical non-distributive lattices. The diamond lattice
2073: 2041: 1184:. This result can be viewed both as a generalization of Stone's famous 496: 2033: 605: 587: 480:
form a (conditionally complete) distributive lattice by taking the
1002: 425: 404: 2200: 2216: 2212: 26: 2203: 2078:
Korselt's non-distributive lattice example is a variant of
1994: 1992: 1877: 1858: 1758:
Now the free distributive lattice over a set of generators
473:
is a distributive lattice with max as join and min as meet.
1840:
The number of elements in free distributive lattices with
1216:). The original lattice is recovered as the collection of 1158:
between homomorphisms of finite distributive lattices and
1167:
Stone's representation theorem for distributive lattices
450:
is a distributive lattice. Especially this includes all
466:, which makes them a special case of the first example. 1405:{\displaystyle M_{1}\lor M_{2}\lor \cdots \lor M_{n},} 1195:
A further important representation was established by
2020:
Charles S. Peirce (1880). "On the Algebra of Logic".
1848:. These numbers grow rapidly, and are known only for 1780: 1730: 1695: 1661: 1634: 1604: 1577: 1538: 1467: 1421: 1356: 1329: 1309: 1165:
Another early representation theorem is now known as
1138:
distributive lattice is isomorphic to the lattice of
977: 939: 901: 769: 305:
In every lattice, if one defines the order relation
2758: 2686: 2625: 2395: 2324: 2273: 195:if the following additional identity holds for all 57:. Unsourced material may be challenged and removed. 1926: 1825: 1743: 1708: 1677: 1647: 1620: 1590: 1551: 1521: 1434: 1404: 1335: 1315: 1188:and as a specialization of the general setting of 992: 963: 925: 880: 2180:Burris, Stanley N.; Sankappanavar, H.P. (1981). 2101:, and three distinct points on it, respectively. 1201:representation theorem for distributive lattices 1099:Furthermore, every distributive lattice is also 1119:). (The latter structure is sometimes called a 550:Early in the development of the lattice theory 2138:"A ternary operation in distributive lattices" 1826:{\displaystyle \{N\cup M\mid N\in S,M\in T\}.} 1522:{\displaystyle \{N_{1},N_{2},\ldots ,N_{n}\},} 1299:distributive lattice over a set of generators 2228: 2142:Bulletin of the American Mathematical Society 8: 1817: 1781: 1513: 1468: 1134:for distributive lattices states that every 1088:elements. If a lattice is distributive, its 1186:representation theorem for Boolean algebras 2886:Positive cone of a partially ordered group 2235: 2221: 2213: 2002:; Fisch, M. H.; Kloesel, C. J. W. (1989), 2153: 1972: 1779: 1735: 1729: 1700: 1694: 1666: 1660: 1639: 1633: 1609: 1603: 1582: 1576: 1543: 1537: 1507: 1488: 1475: 1466: 1446:. Moreover, since both meet and join are 1426: 1420: 1393: 1374: 1361: 1355: 1328: 1308: 976: 938: 900: 768: 117:Learn how and when to remove this message 2869:Positive cone of an ordered vector space 2005:Writings of Charles S. Peirce: 1879–1884 1902:Duality theory for distributive lattices 1238: 160:—given as such a lattice of sets. 1917: 1871:numbers of elements form the sequence 747:the following holds for all elements 7: 1685:and hence one can safely remove the 55:adding citations to reliable sources 926:{\displaystyle x\wedge z=y\wedge z} 527:given by the inclusion ordering of 2396:Properties & Types ( 2097:corresponding to the empty set, a 25: 2852:Positive cone of an ordered field 2058:"Bemerkung zur Algebra der Logik" 1961:European Journal of Combinatorics 1132:Birkhoff's representation theorem 2706:Ordered topological vector space 1442:are finite meets of elements of 604: 586: 31: 2155:10.1090/S0002-9904-1947-08864-9 2022:American Journal of Mathematics 1896:Completely distributive lattice 964:{\displaystyle x\vee z=y\vee z} 892:is distributive if and only if 42:needs additional citations for 1774:is the irredundant version of 872: 860: 854: 842: 836: 824: 818: 806: 800: 788: 782: 770: 1: 2663:Series-parallel partial order 2183:A Course in Universal Algebra 1724:whenever all of its elements 1029:, the "diamond lattice", and 676:, while the pentagon lattice 383:Distributivity (order theory) 2342:Cantor's isomorphism theorem 683:is non-distributive because 633:is non-distributive because 519:lattice-ordered vector space 2382:Szpilrajn extension theorem 2357:Hausdorff maximal principle 2332:Boolean prime ideal theorem 1844:generators is given by the 1225:Boolean prime ideal theorem 1069:has this property as well. 141:in which the operations of 18:Distributive lattice/Proofs 2935: 2728:Topological vector lattice 2008:, Indiana University Press 1925:Birkhoff, Garrett (1967). 1655:will be below the meet of 1235:Free distributive lattices 1220:lower sets of this space. 535:is a distributive lattice. 521:is a distributive lattice. 495:, the set of all positive 443:is a distributive lattice. 2250: 1974:10.1016/j.ejc.2010.07.011 1852: ≤ 9; they are 1628:In this case the meet of 578:Characteristic properties 491:Given a positive integer 172:either as a structure of 2337:Cantor–Bernstein theorem 1753:antichain of finite sets 2881:Partially ordered group 2701:Specialization preorder 1125:representation theorems 1063:subdirectly irreducible 482:greatest common divisor 2367:Kruskal's tree theorem 2362:Knaster–Tarski theorem 2352:Dushnik–Miller theorem 2136:; Kiss, S. A. (1947), 1827: 1745: 1710: 1679: 1678:{\displaystyle N_{j},} 1649: 1622: 1621:{\displaystyle N_{k}.} 1592: 1559:are finite subsets of 1553: 1523: 1436: 1406: 1337: 1336:{\displaystyle \land } 1317: 1292: 1015: 994: 965: 927: 882: 412: 325:, then the inequality 66:"Distributive lattice" 2062:Mathematische Annalen 1828: 1746: 1744:{\displaystyle N_{i}} 1711: 1709:{\displaystyle N_{k}} 1680: 1650: 1648:{\displaystyle N_{k}} 1623: 1593: 1591:{\displaystyle N_{j}} 1554: 1552:{\displaystyle N_{i}} 1524: 1437: 1435:{\displaystyle M_{i}} 1407: 1338: 1318: 1316:{\displaystyle \lor } 1242: 1227:, a weak form of the 1171:Marshall Harvey Stone 1156:duality of categories 1107:Representation theory 1076:if and only if it is 1006: 995: 966: 928: 883: 540:distributive polytope 486:least common multiple 408: 2859:Ordered vector space 1778: 1728: 1693: 1659: 1632: 1602: 1575: 1536: 1465: 1419: 1354: 1327: 1307: 993:{\displaystyle x=y.} 975: 937: 899: 767: 464:intuitionistic logic 135:distributive lattice 51:improve this article 2697:Alexandrov topology 2643:Lexicographic order 2602:Well-quasi-ordering 2186:. Springer-Verlag. 2056:A. Korselt (1894). 1061:, or that the only 471:totally ordered set 2678:Transitive closure 2638:Converse/Transpose 2347:Dilworth's theorem 2074:10.1007/bf01446978 2000:Peirce, Charles S. 1835:universal property 1823: 1741: 1706: 1675: 1645: 1618: 1588: 1549: 1519: 1432: 1402: 1333: 1313: 1293: 1182:topological spaces 1160:monotone functions 1016: 990: 961: 923: 878: 533:integer partitions 460:topological spaces 422:Lindenbaum algebra 413: 2906: 2905: 2864:Partially ordered 2673:Symmetric closure 2658:Reflexive closure 2401: 2134:Birkhoff, Garrett 2085:, with 0, 1, and 1169:(the name honors 1090:covering relation 1059:two-element chain 1057:of copies of the 1055:subdirect product 611:pentagon lattice 552:Charles S. Peirce 313:as usual to mean 285:)   for all 178:universal algebra 127: 126: 119: 101: 16:(Redirected from 2926: 2648:Linear extension 2397: 2377:Mirsky's theorem 2237: 2230: 2223: 2214: 2202: 2197: 2168: 2166: 2157: 2130: 2124: 2117: 2111: 2108: 2102: 2077: 2053: 2047: 2045: 2017: 2011: 2009: 1996: 1987: 1985: 1976: 1956: 1950: 1948: 1932: 1922: 1880: 1861: 1846:Dedekind numbers 1832: 1830: 1829: 1824: 1750: 1748: 1747: 1742: 1740: 1739: 1715: 1713: 1712: 1707: 1705: 1704: 1684: 1682: 1681: 1676: 1671: 1670: 1654: 1652: 1651: 1646: 1644: 1643: 1627: 1625: 1624: 1619: 1614: 1613: 1597: 1595: 1594: 1589: 1587: 1586: 1558: 1556: 1555: 1550: 1548: 1547: 1528: 1526: 1525: 1520: 1512: 1511: 1493: 1492: 1480: 1479: 1441: 1439: 1438: 1433: 1431: 1430: 1411: 1409: 1408: 1403: 1398: 1397: 1379: 1378: 1366: 1365: 1342: 1340: 1339: 1334: 1322: 1320: 1319: 1314: 1197:Hilary Priestley 1180:sets of certain 1086:join-irreducible 1078:meet-irreducible 1020:non-distributive 1011:, but not as sub 999: 997: 996: 991: 970: 968: 967: 962: 932: 930: 929: 924: 887: 885: 884: 879: 743:is distributive 733: 697: 675: 647: 608: 593:diamond lattice 590: 538:The points of a 484:as meet and the 122: 115: 111: 108: 102: 100: 59: 35: 27: 21: 2934: 2933: 2929: 2928: 2927: 2925: 2924: 2923: 2909: 2908: 2907: 2902: 2898:Young's lattice 2754: 2682: 2621: 2471:Heyting algebra 2419:Boolean algebra 2391: 2372:Laver's theorem 2320: 2286:Boolean algebra 2281:Binary relation 2269: 2246: 2241: 2194: 2179: 2176: 2174:Further reading 2171: 2132: 2131: 2127: 2118: 2114: 2109: 2105: 2084: 2055: 2054: 2050: 2034:10.2307/2369442 2019: 2018: 2014: 1998: 1997: 1990: 1958: 1957: 1953: 1945: 1924: 1923: 1919: 1915: 1892: 1876: 1857: 1776: 1775: 1731: 1726: 1725: 1720:will be called 1696: 1691: 1690: 1662: 1657: 1656: 1635: 1630: 1629: 1605: 1600: 1599: 1598:is a subset of 1578: 1573: 1572: 1539: 1534: 1533: 1503: 1484: 1471: 1463: 1462: 1422: 1417: 1416: 1389: 1370: 1357: 1352: 1351: 1325: 1324: 1305: 1304: 1237: 1229:axiom of choice 1213:Priestley space 1109: 1067:Boolean lattice 1049: 1042: 1035: 1028: 973: 972: 935: 934: 897: 896: 765: 764: 737: 736: 735: 734: 715: 684: 682: 657: 634: 632: 620: 619: 618: 617: 609: 601: 600: 599: 591: 580: 544:convex polytope 525:Young's lattice 478:natural numbers 448:Heyting algebra 441:Boolean algebra 410:Young's lattice 403: 391: 353:) and its dual 166: 123: 112: 106: 103: 60: 58: 48: 36: 23: 22: 15: 12: 11: 5: 2932: 2930: 2922: 2921: 2919:Lattice theory 2911: 2910: 2904: 2903: 2901: 2900: 2895: 2890: 2889: 2888: 2878: 2877: 2876: 2871: 2866: 2856: 2855: 2854: 2844: 2839: 2838: 2837: 2832: 2825:Order morphism 2822: 2821: 2820: 2810: 2805: 2800: 2795: 2790: 2789: 2788: 2778: 2773: 2768: 2762: 2760: 2756: 2755: 2753: 2752: 2751: 2750: 2745: 2743:Locally convex 2740: 2735: 2725: 2723:Order topology 2720: 2719: 2718: 2716:Order topology 2713: 2703: 2693: 2691: 2684: 2683: 2681: 2680: 2675: 2670: 2665: 2660: 2655: 2650: 2645: 2640: 2635: 2629: 2627: 2623: 2622: 2620: 2619: 2609: 2599: 2594: 2589: 2584: 2579: 2574: 2569: 2564: 2563: 2562: 2552: 2547: 2546: 2545: 2540: 2535: 2530: 2528:Chain-complete 2520: 2515: 2514: 2513: 2508: 2503: 2498: 2493: 2483: 2478: 2473: 2468: 2463: 2453: 2448: 2443: 2438: 2433: 2428: 2427: 2426: 2416: 2411: 2405: 2403: 2393: 2392: 2390: 2389: 2384: 2379: 2374: 2369: 2364: 2359: 2354: 2349: 2344: 2339: 2334: 2328: 2326: 2322: 2321: 2319: 2318: 2313: 2308: 2303: 2298: 2293: 2288: 2283: 2277: 2275: 2271: 2270: 2268: 2267: 2262: 2257: 2251: 2248: 2247: 2242: 2240: 2239: 2232: 2225: 2217: 2211: 2210: 2198: 2192: 2175: 2172: 2170: 2169: 2148:(1): 749–752, 2125: 2112: 2103: 2082: 2048: 2046:, p. 33 bottom 2012: 1988: 1951: 1943: 1929:Lattice Theory 1916: 1914: 1911: 1910: 1909: 1907:Spectral space 1904: 1899: 1891: 1888: 1887: 1886: 1868: 1867: 1822: 1819: 1816: 1813: 1810: 1807: 1804: 1801: 1798: 1795: 1792: 1789: 1786: 1783: 1738: 1734: 1703: 1699: 1674: 1669: 1665: 1642: 1638: 1617: 1612: 1608: 1585: 1581: 1546: 1542: 1530: 1529: 1518: 1515: 1510: 1506: 1502: 1499: 1496: 1491: 1487: 1483: 1478: 1474: 1470: 1429: 1425: 1413: 1412: 1401: 1396: 1392: 1388: 1385: 1382: 1377: 1373: 1369: 1364: 1360: 1332: 1312: 1236: 1233: 1108: 1105: 1047: 1040: 1033: 1026: 1001: 1000: 989: 986: 983: 980: 960: 957: 954: 951: 948: 945: 942: 922: 919: 916: 913: 910: 907: 904: 877: 874: 871: 868: 865: 862: 859: 856: 853: 850: 847: 844: 841: 838: 835: 832: 829: 826: 823: 820: 817: 814: 811: 808: 805: 802: 799: 796: 793: 790: 787: 784: 781: 778: 775: 772: 745:if and only if 680: 656:≠ 0 = 0 ∨ 0 = 630: 624:Hasse diagrams 622: 621: 615: 610: 603: 602: 597: 592: 585: 584: 583: 582: 581: 579: 576: 558:were given by 548: 547: 536: 529:Young diagrams 522: 515: 505:if and only if 489: 474: 467: 454:and hence all 444: 437: 402: 399: 390: 387: 303: 302: 244: 243: 165: 162: 125: 124: 39: 37: 30: 24: 14: 13: 10: 9: 6: 4: 3: 2: 2931: 2920: 2917: 2916: 2914: 2899: 2896: 2894: 2891: 2887: 2884: 2883: 2882: 2879: 2875: 2872: 2870: 2867: 2865: 2862: 2861: 2860: 2857: 2853: 2850: 2849: 2848: 2847:Ordered field 2845: 2843: 2840: 2836: 2833: 2831: 2828: 2827: 2826: 2823: 2819: 2816: 2815: 2814: 2811: 2809: 2806: 2804: 2803:Hasse diagram 2801: 2799: 2796: 2794: 2791: 2787: 2784: 2783: 2782: 2781:Comparability 2779: 2777: 2774: 2772: 2769: 2767: 2764: 2763: 2761: 2757: 2749: 2746: 2744: 2741: 2739: 2736: 2734: 2731: 2730: 2729: 2726: 2724: 2721: 2717: 2714: 2712: 2709: 2708: 2707: 2704: 2702: 2698: 2695: 2694: 2692: 2689: 2685: 2679: 2676: 2674: 2671: 2669: 2666: 2664: 2661: 2659: 2656: 2654: 2653:Product order 2651: 2649: 2646: 2644: 2641: 2639: 2636: 2634: 2631: 2630: 2628: 2626:Constructions 2624: 2618: 2614: 2610: 2607: 2603: 2600: 2598: 2595: 2593: 2590: 2588: 2585: 2583: 2580: 2578: 2575: 2573: 2570: 2568: 2565: 2561: 2558: 2557: 2556: 2553: 2551: 2548: 2544: 2541: 2539: 2536: 2534: 2531: 2529: 2526: 2525: 2524: 2523:Partial order 2521: 2519: 2516: 2512: 2511:Join and meet 2509: 2507: 2504: 2502: 2499: 2497: 2494: 2492: 2489: 2488: 2487: 2484: 2482: 2479: 2477: 2474: 2472: 2469: 2467: 2464: 2462: 2458: 2454: 2452: 2449: 2447: 2444: 2442: 2439: 2437: 2434: 2432: 2429: 2425: 2422: 2421: 2420: 2417: 2415: 2412: 2410: 2409:Antisymmetric 2407: 2406: 2404: 2400: 2394: 2388: 2385: 2383: 2380: 2378: 2375: 2373: 2370: 2368: 2365: 2363: 2360: 2358: 2355: 2353: 2350: 2348: 2345: 2343: 2340: 2338: 2335: 2333: 2330: 2329: 2327: 2323: 2317: 2316:Weak ordering 2314: 2312: 2309: 2307: 2304: 2302: 2301:Partial order 2299: 2297: 2294: 2292: 2289: 2287: 2284: 2282: 2279: 2278: 2276: 2272: 2266: 2263: 2261: 2258: 2256: 2253: 2252: 2249: 2245: 2238: 2233: 2231: 2226: 2224: 2219: 2218: 2215: 2209: 2207: 2199: 2195: 2193:3-540-90578-2 2189: 2185: 2184: 2178: 2177: 2173: 2165: 2161: 2156: 2151: 2147: 2143: 2139: 2135: 2129: 2126: 2122: 2116: 2113: 2107: 2104: 2100: 2096: 2092: 2088: 2081: 2075: 2071: 2067: 2063: 2059: 2052: 2049: 2043: 2039: 2035: 2031: 2027: 2023: 2016: 2013: 2007: 2006: 2001: 1995: 1993: 1989: 1984: 1980: 1975: 1970: 1966: 1962: 1955: 1952: 1949:§6, Theorem 9 1946: 1944:0-8218-1025-1 1940: 1936: 1931: 1930: 1921: 1918: 1912: 1908: 1905: 1903: 1900: 1897: 1894: 1893: 1889: 1884: 1879: 1874: 1873: 1872: 1865: 1860: 1855: 1854: 1853: 1851: 1847: 1843: 1838: 1836: 1820: 1814: 1811: 1808: 1805: 1802: 1799: 1796: 1793: 1790: 1787: 1784: 1773: 1769: 1765: 1761: 1756: 1754: 1736: 1732: 1723: 1719: 1701: 1697: 1688: 1672: 1667: 1663: 1640: 1636: 1615: 1610: 1606: 1583: 1579: 1570: 1566: 1562: 1544: 1540: 1516: 1508: 1504: 1500: 1497: 1494: 1489: 1485: 1481: 1476: 1472: 1461: 1460: 1459: 1457: 1453: 1449: 1445: 1427: 1423: 1399: 1394: 1390: 1386: 1383: 1380: 1375: 1371: 1367: 1362: 1358: 1350: 1349: 1348: 1346: 1330: 1310: 1302: 1298: 1290: 1286: 1282: 1278: 1274: 1270: 1266: 1262: 1258: 1254: 1250: 1246: 1241: 1234: 1232: 1230: 1226: 1221: 1219: 1215: 1214: 1209: 1208: 1202: 1198: 1193: 1191: 1190:Stone duality 1187: 1183: 1179: 1176: 1172: 1168: 1163: 1161: 1157: 1153: 1149: 1145: 1141: 1137: 1133: 1129: 1126: 1122: 1118: 1114: 1106: 1104: 1102: 1097: 1095: 1091: 1087: 1083: 1079: 1075: 1070: 1068: 1064: 1060: 1056: 1051: 1046: 1039: 1032: 1025: 1022:lattices are 1021: 1018:The simplest 1014: 1010: 1005: 987: 984: 981: 978: 971:always imply 958: 955: 952: 949: 946: 943: 940: 920: 917: 914: 911: 908: 905: 902: 895: 894: 893: 891: 875: 869: 866: 863: 857: 851: 848: 845: 839: 833: 830: 827: 821: 815: 812: 809: 803: 797: 794: 791: 785: 779: 776: 773: 762: 758: 754: 750: 746: 742: 731: 727: 723: 719: 713: 709: 705: 701: 695: 691: 687: 679: 673: 669: 665: 661: 655: 651: 645: 641: 637: 629: 625: 614: 607: 596: 589: 577: 575: 573: 569: 565: 561: 557: 553: 545: 541: 537: 534: 531:representing 530: 526: 523: 520: 516: 513: 509: 506: 502: 498: 494: 490: 487: 483: 479: 475: 472: 468: 465: 461: 457: 453: 449: 445: 442: 438: 435: 431: 428:that support 427: 423: 419: 418: 417: 411: 407: 400: 398: 396: 388: 386: 384: 380: 376: 372: 368: 364: 360: 356: 352: 348: 344: 340: 336: 332: 328: 324: 320: 316: 312: 308: 300: 296: 292: 288: 284: 280: 276: 272: 268: 264: 260: 257: 256: 255: 253: 249: 241: 237: 233: 229: 225: 221: 217: 214: 213: 212: 210: 206: 202: 198: 194: 190: 185: 183: 179: 175: 171: 163: 161: 159: 155: 151: 147: 144: 143:join and meet 140: 136: 132: 121: 118: 110: 99: 96: 92: 89: 85: 82: 78: 75: 71: 68: –  67: 63: 62:Find sources: 56: 52: 46: 45: 40:This article 38: 34: 29: 28: 19: 2690:& Orders 2668:Star product 2597:Well-founded 2550:Prefix order 2506:Distributive 2505: 2496:Complemented 2466:Foundational 2431:Completeness 2387:Zorn's lemma 2291:Cyclic order 2274:Key concepts 2244:Order theory 2205: 2182: 2145: 2141: 2128: 2115: 2106: 2094: 2090: 2086: 2079: 2065: 2061: 2051: 2025: 2021: 2015: 2004: 1967:(1): 45–59, 1964: 1960: 1954: 1928: 1920: 1869: 1849: 1841: 1839: 1837:is routine. 1771: 1767: 1763: 1759: 1757: 1721: 1717: 1686: 1568: 1564: 1560: 1531: 1443: 1414: 1344: 1300: 1294: 1288: 1284: 1280: 1276: 1272: 1268: 1264: 1260: 1256: 1252: 1248: 1244: 1222: 1211: 1204: 1194: 1164: 1135: 1130: 1121:ring of sets 1117:intersection 1110: 1098: 1094:median graph 1071: 1052: 1044: 1037: 1030: 1023: 1019: 1017: 1012: 1008: 889: 760: 756: 752: 748: 740: 738: 729: 725: 721: 717: 711: 707: 703: 699: 693: 689: 685: 677: 671: 667: 663: 659: 653: 649: 643: 639: 635: 627: 612: 594: 549: 507: 500: 492: 458:lattices of 414: 392: 378: 374: 370: 366: 362: 358: 354: 350: 346: 342: 338: 334: 330: 326: 322: 318: 314: 310: 306: 304: 298: 294: 290: 286: 282: 278: 274: 270: 266: 262: 258: 245: 239: 235: 231: 227: 223: 219: 215: 208: 204: 200: 196: 193:distributive 192: 188: 186: 174:order theory 169: 167: 154:intersection 134: 128: 113: 104: 94: 87: 80: 73: 61: 49:Please help 44:verification 41: 2874:Riesz space 2835:Isomorphism 2711:Normal cone 2633:Composition 2567:Semilattice 2476:Homogeneous 2461:Equivalence 2311:Total order 2068:: 156–157. 2010:, p. xlvii. 1722:irredundant 1452:commutative 1448:associative 1345:normal form 1207:Stone space 1152:isomorphism 888:Similarly, 512:square-free 434:disjunction 430:conjunction 187:A lattice ( 158:isomorphism 131:mathematics 2842:Order type 2776:Cofinality 2617:Well-order 2592:Transitive 2481:Idempotent 2414:Asymmetric 1913:References 1571:such that 1532:where the 1456:idempotent 1140:lower sets 1082:join-prime 1074:meet-prime 164:Definition 146:distribute 77:newspapers 2893:Upper set 2830:Embedding 2766:Antichain 2587:Tolerance 2577:Symmetric 2572:Semiorder 2518:Reflexive 2436:Connected 2208:elements) 2028:: 15–57. 1812:∈ 1800:∈ 1794:∣ 1788:∪ 1687:redundant 1498:… 1387:∨ 1384:⋯ 1381:∨ 1368:∨ 1331:∧ 1311:∨ 1148:bijection 1113:set union 956:∨ 944:∨ 918:∧ 906:∧ 867:∨ 858:∧ 849:∨ 840:∧ 831:∨ 813:∧ 804:∨ 795:∧ 786:∨ 777:∧ 562:, Voigt, 389:Morphisms 248:preserves 191:,∨,∧) is 2913:Category 2688:Topology 2555:Preorder 2538:Eulerian 2501:Complete 2451:Directed 2441:Covering 2306:Preorder 2265:Category 2260:Glossary 1890:See also 1205:ordered 1092:forms a 1043:or  572:Dedekind 560:Schröder 497:divisors 456:open set 424:of most 401:Examples 395:lattices 182:lattices 107:May 2011 2793:Duality 2771:Cofinal 2759:Related 2738:Fréchet 2615:)  2491:Bounded 2486:Lattice 2459:)  2457:Partial 2325:Results 2296:Lattice 2164:0021540 2042:2369442 1983:2727459 1881:in the 1878:A007153 1862:in the 1859:A000372 1199:in her 1175:compact 1150:(up to 1142:of the 1101:modular 1013:lattice 568:Korselt 452:locales 139:lattice 91:scholar 2818:Subnet 2798:Filter 2748:Normed 2733:Banach 2699:& 2606:Better 2543:Strict 2533:Graded 2424:topics 2255:Topics 2190:  2162:  2040:  1981:  1941:  1415:where 1218:clopen 1136:finite 710:= 0 ∨ 702:∧ 1 = 652:∧ 1 = 570:, and 564:Lüroth 556:proofs 469:Every 446:Every 439:Every 426:logics 293:, and 203:, and 176:or of 93:  86:  79:  72:  64:  2808:Ideal 2786:Graph 2582:Total 2560:Total 2446:Dense 2038:JSTOR 1283:) ∧ ( 1275:) ∧ ( 1267:) = ( 1259:) ∨ ( 1251:) ∨ ( 1144:poset 724:) ∨ ( 666:) ∨ ( 373:) ∧ ( 365:) ≤ ( 345:) ∨ ( 337:) ≥ ( 277:) ∧ ( 269:) = ( 234:) ∨ ( 226:) = ( 150:union 137:is a 133:, a 98:JSTOR 84:books 2399:list 2201:OEIS 2188:ISBN 2119:See 2099:line 1939:ISBN 1883:OEIS 1864:OEIS 1770:and 1689:set 1567:and 1454:and 1323:and 1297:free 1295:The 1210:(or 1178:open 1115:and 1084:and 933:and 476:The 432:and 420:The 252:dual 152:and 70:news 2813:Net 2613:Pre 2150:doi 2070:doi 2030:doi 1969:doi 1009:set 759:in 688:∧ ( 638:∧ ( 542:(a 510:is 499:of 357:∨ ( 329:∧ ( 297:in 261:∨ ( 218:∧ ( 207:in 129:In 53:by 2915:: 2160:MR 2158:, 2146:53 2144:, 2140:, 2093:, 2089:, 2066:44 2064:. 2060:. 2036:. 2024:. 1991:^ 1979:MR 1977:, 1965:32 1963:, 1937:. 1935:11 1885:). 1866:). 1755:. 1450:, 1347:: 1291:). 1287:∨ 1279:∨ 1271:∨ 1263:∧ 1255:∧ 1247:∧ 1231:. 1192:. 1103:. 1096:. 763:: 755:, 751:, 728:∧ 720:∧ 714:= 706:≠ 698:= 692:∨ 670:∧ 662:∧ 648:= 642:∨ 574:. 566:, 517:A 385:. 377:∨ 369:∨ 361:∧ 349:∧ 341:∧ 333:∨ 289:, 281:∨ 273:∨ 265:∧ 254:: 242:). 238:∧ 230:∧ 222:∨ 211:: 199:, 2611:( 2608:) 2604:( 2455:( 2402:) 2236:e 2229:t 2222:v 2206:n 2196:. 2167:. 2152:: 2123:. 2095:z 2091:y 2087:x 2083:3 2080:M 2076:. 2072:: 2044:. 2032:: 2026:3 1986:. 1971:: 1947:. 1850:n 1842:n 1821:. 1818:} 1815:T 1809:M 1806:, 1803:S 1797:N 1791:M 1785:N 1782:{ 1772:T 1768:S 1764:G 1760:G 1737:i 1733:N 1718:G 1702:k 1698:N 1673:, 1668:j 1664:N 1641:k 1637:N 1616:. 1611:k 1607:N 1584:j 1580:N 1569:k 1565:j 1561:G 1545:i 1541:N 1517:, 1514:} 1509:n 1505:N 1501:, 1495:, 1490:2 1486:N 1482:, 1477:1 1473:N 1469:{ 1444:G 1428:i 1424:M 1400:, 1395:n 1391:M 1376:2 1372:M 1363:1 1359:M 1301:G 1289:z 1285:y 1281:z 1277:x 1273:y 1269:x 1265:z 1261:y 1257:z 1253:x 1249:y 1245:x 1048:5 1045:N 1041:3 1038:M 1034:5 1031:N 1027:3 1024:M 988:. 985:y 982:= 979:x 959:z 953:y 950:= 947:z 941:x 921:z 915:y 912:= 909:z 903:x 890:L 876:. 873:) 870:x 864:z 861:( 855:) 852:z 846:y 843:( 837:) 834:y 828:x 825:( 822:= 819:) 816:x 810:z 807:( 801:) 798:z 792:y 789:( 783:) 780:y 774:x 771:( 761:L 757:z 753:y 749:x 741:L 732:) 730:z 726:x 722:y 718:x 716:( 712:z 708:z 704:x 700:x 696:) 694:z 690:y 686:x 681:5 678:N 674:) 672:z 668:x 664:y 660:x 658:( 654:x 650:x 646:) 644:z 640:y 636:x 631:3 628:M 616:5 613:N 598:3 595:M 514:. 508:n 501:n 493:n 379:z 375:x 371:y 367:x 363:z 359:y 355:x 351:z 347:x 343:y 339:x 335:z 331:y 327:x 323:p 321:= 319:q 317:∧ 315:p 311:q 309:≤ 307:p 301:. 299:L 295:z 291:y 287:x 283:z 279:x 275:y 271:x 267:z 263:y 259:x 240:z 236:x 232:y 228:x 224:z 220:y 216:x 209:L 205:z 201:y 197:x 189:L 170:L 120:) 114:( 109:) 105:( 95:· 88:· 81:· 74:· 47:. 20:)

Index

Distributive lattice/Proofs

verification
improve this article
adding citations to reliable sources
"Distributive lattice"
news
newspapers
books
scholar
JSTOR
Learn how and when to remove this message
mathematics
lattice
join and meet
distribute
union
intersection
isomorphism
order theory
universal algebra
lattices
preserves
dual
Distributivity (order theory)
lattices

Young's lattice
Lindenbaum algebra
logics

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.