Knowledge

Dirac large numbers hypothesis

Source 📝

1419: 20: 1363:, itself a constant of nature, approx. 1.44 solar masses) and an electron approximates to 10, an interesting variation on the 10 and 10 that are typically associated with Dirac and Eddington respectively. (The physics defining the Chandrasekhar mass produces a ratio that is the −3/2 power of the gravitational fine-structure constant, 10.) 1319:: In 1978, G. Blake argued that paleontological data is consistent with the "multiplicative" scenario but not the "additive" scenario. Arguments both for and against LNH are also made from astrophysical considerations. For example, D. Falik argued that LNH is inconsistent with experimental results for 263: 1358:
Various authors have introduced new sets of numbers into the original "coincidence" considered by Dirac and his contemporaries, thus broadening or even departing from Dirac's own conclusions. Jordan (1947) noted that the mass ratio for a typical star (specifically, a star of the
492: 381: 714: 1403:(for example Planck density). This ratio of densities, and other ratios (using four fundamental constants: speed of light in vacuum c, Newtonian constant of gravity G, reduced Planck constant ℏ, and Hubble constant H) computes to an exact number, 1079: 1298:
Dirac's theory has inspired and continues to inspire a significant body of scientific literature in a variety of disciplines, with it sparking off many speculations, arguments and new ideas in terms of applications. In the context of
1281:
that describes the structure of spacetime in terms of a ratio of gravitational and electromagnetic units. He also provided alternative scenarios for the continuous creation of matter, one of the other significant issues in LNH:
910: 162: 566: 806: 1315:
demonstrated in 1962 how a simple revision of the parameters (in this case, the age of the Solar System) can invalidate Teller's conclusions. The debate is further complicated by the choice of LNH
387: 274: 620: 1199: 131: 96: 1548: 1257: 1166: 1139: 1875: 47:
in the present cosmological epoch. According to Dirac's hypothesis, the apparent similarity of these ratios might not be a mere coincidence but instead could imply a
996: 1223: 1105: 937: 2213: 2143: 840: 740:. For Milne, space was not a structured object but simply a system of reference in which relations such as this could accommodate Einstein's conclusions: 258:{\displaystyle {\frac {R_{\text{U}}}{r_{\text{e}}}}\approx {\frac {r_{\text{H}}}{r_{\text{e}}}}\approx 4.1666763\cdot 10^{42}\approx 10^{42.62\ldots },} 145:
LNH was Dirac's personal response to a set of large number "coincidences" that had intrigued other theorists of his time. The "coincidences" began with
1444: 497: 1418: 2453: 1695: 1658: 746: 2428: 1307:
seemed to raise a serious objection to LNH in 1948 when he argued that variations in the strength of gravity are not consistent with
2418: 156:, might also be the hypothetical radius of a particle whose rest energy is equal to the gravitational self-energy of the electron: 2463: 1384: 1432: 487:{\displaystyle r_{\text{H}}={\frac {e^{2}}{4\pi \epsilon _{0}\ m_{\text{H}}c^{2}}}\approx 1.5671987\cdot 10^{27}\,\mathrm {m} } 376:{\displaystyle r_{\text{e}}={\frac {e^{2}}{4\pi \epsilon _{0}\ m_{\text{e}}c^{2}}}\approx 3.7612682\cdot 10^{-16}\mathrm {m} } 1399:
in the universe. Valev (2019) found an equation connecting cosmological parameters (for example density of the universe) and
1320: 2423: 1949:
V. Canuto, S. Hsieh (1978). "The 3 K blackbody radiation, Dirac's Large Numbers Hypothesis, and scale-covariant cosmology".
736:
a few years before Dirac formulated LNH. Milne was inspired not by large number coincidences but by a dislike of Einstein's
1339:, it simply states that the large numbers in LNH are a necessary coincidence for intelligent beings since they parametrize 2301: 1372: 44: 737: 709:{\displaystyle {\frac {e^{2}}{4\pi \epsilon _{0}\ Gm_{\text{e}}^{2}}}\approx 4.1666763\cdot 10^{42}\approx {\sqrt {N}}} 2468: 2448: 1711:
J. P.Uzan (2003). "The fundamental constants and their variation, Observational status and theoretical motivations".
1263:
noted that such a temporal variation does not necessarily follow from Dirac's assumptions, a corresponding change of
2299:
C.-G. Shao; J. Shen; B. Wang; R.-K. Su (2006). "Dirac Cosmology and the Acceleration of the Contemporary Universe".
1683: 1646: 834:
The Weyl and Eddington ratios above can be rephrased in a variety of ways, as for instance in the context of time:
1407:. This provides evidence of the Dirac large numbers hypothesis by connecting the macro-world and the micro-world. 1371:
Several authors have recently identified and pondered the significance of yet another large number, approximately
1271:
is constant, otherwise the law of conserved energy is violated. Dirac met this difficulty by introducing into the
2088: 1992: 1951: 1914: 1713: 579: 1272: 721: 1625: 1202: 56: 1847: 1387:
identified 10 with the ratio of the universe's volume to the volume of a typical nucleon bounded by its
1380: 1332: 1171: 972: 2473: 2384: 2363:
A. Unzicker (2009). "A Look at the Abandoned Contributions to Cosmology of Dirac, Sciama and Dicke".
2320: 2271: 2222: 2183: 2152: 2038: 2001: 1960: 1923: 1884: 1816: 1779: 1732: 1557: 1546:
A. Eddington (1931). "Preliminary Note on the Masses of the Electron, the Proton, and the Universe".
1520: 1479: 103: 66: 2458: 1379:, which Nottale (1993) and Matthews (1997) associated in an LNH context with a scaling law for the 1360: 1336: 733: 725: 60: 1228: 1144: 1117: 2400: 2374: 2365: 2349: 2336: 2310: 2287: 2261: 2238: 2199: 2118: 1748: 1722: 1573: 1511: 1470: 1388: 1289:'multiplicative' creation (new matter is created where there are already concentrations of mass). 968: 48: 1767: 1687: 1595: 2117:
H. Lyre (2003). "C. F. Weizsäcker's Reconstruction of Physics: Yesterday, Today and Tomorrow".
2252: 1851: 1691: 1654: 1438: 1650: 1640: 136:
Physical constants are actually not constant. Their values depend on the age of the Universe.
2392: 2328: 2279: 2230: 2191: 2174: 2160: 2097: 2046: 2009: 1968: 1931: 1892: 1824: 1787: 1740: 1565: 1528: 1487: 1074:{\displaystyle {\frac {e^{2}}{4\pi \epsilon _{0}Gm_{\text{p}}m_{\text{e}}}}\approx 10^{40}.} 607: 1807: 1085: 2388: 2324: 2275: 2226: 2187: 2156: 2042: 2005: 1964: 1927: 1888: 1820: 1783: 1736: 1561: 1524: 1483: 1676: 1424: 1340: 1208: 1090: 940: 922: 614:, the estimated number of charged particles in the universe, with the following ratio: 43:
to that of force scales. The ratios constitute very large, dimensionless numbers: some
2332: 2250:
G. A. Mena Marugan; S. Carneiro (2002). "Holography and the large number hypothesis".
2065: 1375:. This is for example the ratio of the theoretical and observational estimates of the 2442: 2340: 2291: 2242: 1752: 1642:
Cosmology and Controversy: The historical development of two theories of the universe
1577: 1376: 1327:
consistent. One argument that has created significant controversy was put forward by
1304: 976: 905:{\displaystyle {\frac {c\,t}{r_{\text{e}}}}\approx 3.47\cdot 10^{41}\approx 10^{42},} 2433: 2404: 1912:
D. Falik (1979). "Primordial Nucleosynthesis and Dirac's Large Numbers Hypothesis".
720:
In addition to the examples of Weyl and Eddington, Dirac was also influenced by the
2203: 1400: 1328: 1312: 1308: 1260: 146: 2348:
S. Ray; U. Mukhopadhyay; P. P. Ghosh (2007). "Large Number Hypothesis: A Review".
1396: 2283: 2211:
P. A. M. Dirac (1974). "Cosmological Models and the Large Numbers Hypothesis".
2102: 2083: 2066:"Mach's Principle, Dirac's Large Numbers and the Cosmological Constant Problem" 19: 1897: 1870: 1791: 1744: 1569: 1414: 1300: 100:
The mass of the universe is proportional to the square of the universe's age:
36: 2396: 2050: 1532: 1491: 1316: 2234: 2164: 1828: 1766:
Saibal, Ray; Mukhopadhyay, Utpal; Ray, Soham; Bhattacharjee, Arjak (2019).
561:{\displaystyle m_{\text{H}}c^{2}={\frac {Gm_{\text{e}}^{2}}{r_{\text{e}}}}} 1286:'additive' creation (new matter is created uniformly throughout space) and 728:, who lectured on the topic in Cambridge in 1933. The notion of a varying- 2123: 1447: – Hypothetical conflict with the laws of physics as currently known 1344: 1108: 987: 40: 1768:"Dirac's large number hypothesis: A journey from concept to implication" 1727: 2315: 2266: 967:, the age of the universe is about 10 units of time. This is the same 2195: 983: 1506: 1465: 1391:, and he identified this ratio with the sum of elementary events or 2014: 1987: 1972: 1935: 2379: 2354: 979: 801:{\displaystyle G=\left(\!{\frac {c^{3}}{M_{\text{U}}}}\!\right)t,} 18: 1988:"Primordial nucleosynthesis and Dirac's large numbers hypothesis" 149:(1919), who speculated that the observed radius of the universe, 1855: 1352: 1348: 1112: 829: 1392: 1267:
has not been found. According to general relativity, however,
1276: 16:
Hypothesis relating age of the universe to physical constants
1871:"The Large Numbers Hypothesis and the rotation of the Earth" 2419:
Audio of Dirac talking about the large numbers hypothesis
1805:
E. Teller (1948). "On the change of physical constants".
1205:
is approximately 10. Dirac interpreted this to mean that
1168:
of the proton and electron, and the permittivity factor
950:
is the classical electron radius. Hence, in units where
822:
is the age of the universe. According to this relation,
830:
Dirac's interpretation of the large number coincidences
2172:
P. A. M. Dirac (1937). "The Cosmological Constants".
1231: 1211: 1174: 1147: 1120: 1093: 999: 925: 843: 749: 623: 500: 390: 277: 165: 106: 69: 2429:
Robert Matthews: Dirac's coincidences sixty years on
2141:
P. A. M. Dirac (1938). "A New Basis for Cosmology".
596:denotes the mass of the hypothetical particle, and 1675: 1549:Proceedings of the Cambridge Philosophical Society 1251: 1217: 1193: 1160: 1133: 1099: 1073: 931: 904: 800: 708: 560: 486: 375: 257: 125: 90: 1876:Monthly Notices of the Royal Astronomical Society 786: 761: 1507:"Eine neue Erweiterung der Relativitätstheorie" 1201:in atomic units (equal to 1), the value of the 55:The strength of gravity, as represented by the 39:in 1937 relating ratios of size scales in the 2029:P. Jordan (1947). "Die Herkunft der Sterne". 8: 2214:Proceedings of the Royal Society of London A 2144:Proceedings of the Royal Society of London A 1596:"Evidence of Dirac large numbers hypothesis" 2378: 2353: 2314: 2265: 2122: 2101: 2013: 1896: 1772:International Journal of Modern Physics D 1726: 1241: 1230: 1210: 1185: 1173: 1152: 1146: 1125: 1119: 1092: 1062: 1046: 1036: 1023: 1006: 1000: 998: 924: 893: 880: 859: 850: 844: 842: 778: 768: 762: 748: 699: 690: 668: 663: 647: 630: 624: 622: 606:The coincidence was further developed by 550: 539: 534: 524: 515: 505: 499: 479: 478: 472: 450: 440: 427: 410: 404: 395: 389: 368: 359: 337: 327: 314: 297: 291: 282: 276: 243: 230: 209: 199: 193: 182: 172: 166: 164: 117: 105: 87: 79: 68: 1323:whereas Canuto and Hsieh argued that it 1622:Relativity, Gravity and World Structure 1456: 1445:Time-variation of fundamental constants 1435: – Physical constant with no units 732:cosmology first appears in the work of 610:(1931) who related the above ratios to 1294:Later developments and interpretations 2434:The Mysterious Eddington–Dirac Number 2084:"Dirac's coincidences sixty years on" 7: 1589: 1587: 1603:Proceedings of the Romanian Academy 1441: – Unsolved problem in physics 59:, is inversely proportional to the 2424:Full transcript of Dirac's speech. 1194:{\displaystyle 4\pi \epsilon _{0}} 480: 369: 14: 1417: 818:is the mass of the universe and 1433:Dimensionless physical constant 1321:microwave background radiation 126:{\displaystyle M\propto t^{2}} 91:{\displaystyle G\propto 1/t\,} 29:Dirac large numbers hypothesis 1: 2302:Classical and Quantum Gravity 1794:– via World Scientific. 1678:Dirac: A Scientific Biography 1385:Carl Friedrich von Weizsäcker 603:is its electrostatic radius. 589:is the mass of the electron, 51:with these unusual features: 2454:Obsolete scientific theories 1986:V. Canuto, S. Hsieh (1980). 1377:energy density of the vacuum 1252:{\displaystyle G\approx 1/t} 1161:{\displaystyle m_{\text{e}}} 1134:{\displaystyle m_{\text{p}}} 919:is the age of the universe, 738:general theory of relativity 35:) is an observation made by 2333:10.1088/0264-9381/23/11/003 1355:would not arise otherwise. 2490: 2284:10.1103/PhysRevD.65.087303 2089:Astronomy & Geophysics 1684:Cambridge University Press 1647:Princeton University Press 1277: 2031:Astronomische Nachrichten 1993:The Astrophysical Journal 1952:The Astrophysical Journal 1915:The Astrophysical Journal 1792:10.1142/S0218271819300143 1745:10.1103/RevModPhys.75.403 1714:Reviews of Modern Physics 1570:10.1017/S0305004100009269 1466:"Zur Gravitationstheorie" 580:classical electron radius 2397:10.1002/andp.20095210108 2103:10.1093/astrog/39.6.6.19 2051:10.1002/asna.19472751012 1533:10.1002/andp.19193641002 1492:10.1002/andp.19173591804 1273:Einstein field equations 1084:Hence, interpreting the 722:primeval-atom hypothesis 2464:Astronomical hypotheses 1898:10.1093/mnras/185.2.399 1626:Oxford University Press 1373:120 orders of magnitude 1351:and hence carbon-based 2235:10.1098/rspa.1974.0095 2165:10.1098/rspa.1938.0053 1829:10.1103/PhysRev.73.801 1778:(8): 1930014–1930096. 1331:in 1961. Known as the 1253: 1219: 1203:gravitational constant 1195: 1162: 1135: 1101: 1075: 933: 906: 802: 710: 562: 488: 377: 259: 127: 92: 57:gravitational constant 45:40 orders of magnitude 24: 1381:cosmological constant 1333:anthropic coincidence 1254: 1220: 1196: 1163: 1136: 1102: 1076: 934: 907: 826:increases over time. 803: 711: 563: 489: 378: 260: 128: 93: 22: 2082:R. Matthews (1998). 1850:. pp. 138–141. 1620:E. A. Milne (1935). 1229: 1225:varies with time as 1209: 1172: 1145: 1118: 1091: 997: 971:as the ratio of the 923: 841: 747: 621: 498: 388: 275: 163: 104: 67: 2389:2009AnP...521...57U 2325:2006CQGra..23.3707S 2276:2002PhRvD..65h7303M 2227:1974RSPSA.338..439D 2188:1937Natur.139..323D 2157:1938RSPSA.165..199D 2043:1947dhds.book.....J 2006:1980ApJ...239L..91C 1965:1978ApJ...224..302C 1928:1979ApJ...231L...1F 1889:1978MNRAS.185..399B 1821:1948PhRv...73..801T 1784:2019IJMPD..2830014R 1737:2003RvMP...75..403U 1562:1931PCPS...27...15E 1525:1919AnP...364..101W 1484:1917AnP...359..117W 1337:fine-tuned universe 734:Edward Arthur Milne 673: 544: 61:age of the universe 2469:1937 introductions 2449:Physical cosmology 2366:Annalen der Physik 1512:Annalen der Physik 1471:Annalen der Physik 1389:Compton wavelength 1361:Chandrasekhar mass 1249: 1215: 1191: 1158: 1131: 1097: 1071: 969:order of magnitude 929: 902: 798: 706: 659: 558: 530: 484: 373: 255: 123: 88: 25: 2309:(11): 3707–3720. 2253:Physical Review D 2221:(1615): 439–446. 1869:G. Blake (1978). 1842:G. Gamow (1962). 1697:978-0-521-38089-8 1674:H. Kragh (1990). 1660:978-0-691-02623-7 1639:H. Kragh (1996). 1594:D. Valev (2019). 1439:Hierarchy problem 1275:a gauge function 1218:{\displaystyle G} 1155: 1128: 1100:{\displaystyle e} 1053: 1049: 1039: 932:{\displaystyle c} 865: 862: 784: 781: 704: 675: 666: 655: 556: 553: 537: 508: 457: 443: 435: 398: 344: 330: 322: 285: 215: 212: 202: 188: 185: 175: 2481: 2408: 2382: 2359: 2357: 2344: 2318: 2295: 2269: 2246: 2207: 2196:10.1038/139323a0 2168: 2151:(921): 199–208. 2129: 2128: 2126: 2124:quant-ph/0309183 2114: 2108: 2107: 2105: 2079: 2073: 2072: 2070: 2061: 2055: 2054: 2026: 2020: 2019: 2017: 1983: 1977: 1976: 1946: 1940: 1939: 1909: 1903: 1902: 1900: 1866: 1860: 1859: 1839: 1833: 1832: 1802: 1796: 1795: 1763: 1757: 1756: 1730: 1708: 1702: 1701: 1681: 1671: 1665: 1664: 1636: 1630: 1629: 1617: 1611: 1610: 1600: 1591: 1582: 1581: 1543: 1537: 1536: 1505:H. Weyl (1919). 1502: 1496: 1495: 1464:H. Weyl (1917). 1461: 1427: 1422: 1421: 1406: 1303:, for instance, 1280: 1279: 1258: 1256: 1255: 1250: 1245: 1224: 1222: 1221: 1216: 1200: 1198: 1197: 1192: 1190: 1189: 1167: 1165: 1164: 1159: 1157: 1156: 1153: 1140: 1138: 1137: 1132: 1130: 1129: 1126: 1106: 1104: 1103: 1098: 1080: 1078: 1077: 1072: 1067: 1066: 1054: 1052: 1051: 1050: 1047: 1041: 1040: 1037: 1028: 1027: 1011: 1010: 1001: 966: 956: 938: 936: 935: 930: 911: 909: 908: 903: 898: 897: 885: 884: 866: 864: 863: 860: 854: 845: 807: 805: 804: 799: 791: 787: 785: 783: 782: 779: 773: 772: 763: 726:Georges Lemaître 715: 713: 712: 707: 705: 700: 695: 694: 676: 674: 672: 667: 664: 653: 652: 651: 635: 634: 625: 608:Arthur Eddington 567: 565: 564: 559: 557: 555: 554: 551: 545: 543: 538: 535: 525: 520: 519: 510: 509: 506: 493: 491: 490: 485: 483: 477: 476: 458: 456: 455: 454: 445: 444: 441: 433: 432: 431: 415: 414: 405: 400: 399: 396: 382: 380: 379: 374: 372: 367: 366: 345: 343: 342: 341: 332: 331: 328: 320: 319: 318: 302: 301: 292: 287: 286: 283: 264: 262: 261: 256: 251: 250: 235: 234: 216: 214: 213: 210: 204: 203: 200: 194: 189: 187: 186: 183: 177: 176: 173: 167: 132: 130: 129: 124: 122: 121: 97: 95: 94: 89: 83: 2489: 2488: 2484: 2483: 2482: 2480: 2479: 2478: 2439: 2438: 2415: 2362: 2347: 2298: 2249: 2210: 2171: 2140: 2137: 2135:Further reading 2132: 2116: 2115: 2111: 2081: 2080: 2076: 2068: 2063: 2062: 2058: 2028: 2027: 2023: 1985: 1984: 1980: 1948: 1947: 1943: 1911: 1910: 1906: 1868: 1867: 1863: 1841: 1840: 1836: 1808:Physical Review 1804: 1803: 1799: 1765: 1764: 1760: 1710: 1709: 1705: 1698: 1673: 1672: 1668: 1661: 1638: 1637: 1633: 1619: 1618: 1614: 1598: 1593: 1592: 1585: 1545: 1544: 1540: 1519:(10): 101–133. 1504: 1503: 1499: 1478:(18): 117–145. 1463: 1462: 1458: 1454: 1423: 1416: 1413: 1404: 1369: 1311:data. However, 1309:paleontological 1296: 1227: 1226: 1207: 1206: 1181: 1170: 1169: 1148: 1143: 1142: 1121: 1116: 1115: 1089: 1088: 1058: 1042: 1032: 1019: 1012: 1002: 995: 994: 964: 958: 951: 949: 921: 920: 889: 876: 855: 846: 839: 838: 832: 817: 774: 764: 760: 756: 745: 744: 686: 643: 636: 626: 619: 618: 602: 595: 588: 577: 546: 526: 511: 501: 496: 495: 468: 446: 436: 423: 416: 406: 391: 386: 385: 355: 333: 323: 310: 303: 293: 278: 273: 272: 239: 226: 205: 195: 178: 168: 161: 160: 155: 143: 113: 102: 101: 65: 64: 17: 12: 11: 5: 2487: 2485: 2477: 2476: 2471: 2466: 2461: 2456: 2451: 2441: 2440: 2437: 2436: 2431: 2426: 2421: 2414: 2413:External links 2411: 2410: 2409: 2360: 2345: 2296: 2247: 2208: 2169: 2136: 2133: 2131: 2130: 2109: 2074: 2056: 2037:(10–12): 191. 2021: 2015:10.1086/183299 1978: 1973:10.1086/156378 1941: 1936:10.1086/182993 1904: 1883:(2): 399–408. 1861: 1834: 1815:(7): 801–802. 1797: 1758: 1728:hep-ph/0205340 1703: 1696: 1666: 1659: 1631: 1612: 1609:(+4): 361–368. 1583: 1538: 1497: 1455: 1453: 1450: 1449: 1448: 1442: 1436: 1429: 1428: 1425:Physics portal 1412: 1409: 1368: 1367:Modern studies 1365: 1295: 1292: 1291: 1290: 1287: 1248: 1244: 1240: 1237: 1234: 1214: 1188: 1184: 1180: 1177: 1151: 1124: 1096: 1082: 1081: 1070: 1065: 1061: 1057: 1045: 1035: 1031: 1026: 1022: 1018: 1015: 1009: 1005: 962: 947: 941:speed of light 928: 913: 912: 901: 896: 892: 888: 883: 879: 875: 872: 869: 858: 853: 849: 831: 828: 815: 809: 808: 797: 794: 790: 777: 771: 767: 759: 755: 752: 718: 717: 703: 698: 693: 689: 685: 682: 679: 671: 662: 658: 650: 646: 642: 639: 633: 629: 600: 593: 586: 575: 569: 568: 549: 542: 533: 529: 523: 518: 514: 504: 482: 475: 471: 467: 464: 461: 453: 449: 439: 430: 426: 422: 419: 413: 409: 403: 394: 383: 371: 365: 362: 358: 354: 351: 348: 340: 336: 326: 317: 313: 309: 306: 300: 296: 290: 281: 266: 265: 254: 249: 246: 242: 238: 233: 229: 225: 222: 219: 208: 198: 192: 181: 171: 153: 142: 139: 138: 137: 134: 120: 116: 112: 109: 98: 86: 82: 78: 75: 72: 15: 13: 10: 9: 6: 4: 3: 2: 2486: 2475: 2472: 2470: 2467: 2465: 2462: 2460: 2457: 2455: 2452: 2450: 2447: 2446: 2444: 2435: 2432: 2430: 2427: 2425: 2422: 2420: 2417: 2416: 2412: 2406: 2402: 2398: 2394: 2390: 2386: 2381: 2376: 2372: 2368: 2367: 2361: 2356: 2351: 2346: 2342: 2338: 2334: 2330: 2326: 2322: 2317: 2316:gr-qc/0508030 2312: 2308: 2304: 2303: 2297: 2293: 2289: 2285: 2281: 2277: 2273: 2268: 2267:gr-qc/0111034 2263: 2260:(8): 087303. 2259: 2255: 2254: 2248: 2244: 2240: 2236: 2232: 2228: 2224: 2220: 2216: 2215: 2209: 2205: 2201: 2197: 2193: 2189: 2185: 2182:(3512): 323. 2181: 2177: 2176: 2170: 2166: 2162: 2158: 2154: 2150: 2146: 2145: 2139: 2138: 2134: 2125: 2120: 2113: 2110: 2104: 2099: 2095: 2091: 2090: 2085: 2078: 2075: 2067: 2060: 2057: 2052: 2048: 2044: 2040: 2036: 2032: 2025: 2022: 2016: 2011: 2007: 2003: 1999: 1995: 1994: 1989: 1982: 1979: 1974: 1970: 1966: 1962: 1958: 1954: 1953: 1945: 1942: 1937: 1933: 1929: 1925: 1921: 1917: 1916: 1908: 1905: 1899: 1894: 1890: 1886: 1882: 1878: 1877: 1872: 1865: 1862: 1857: 1853: 1849: 1845: 1838: 1835: 1830: 1826: 1822: 1818: 1814: 1810: 1809: 1801: 1798: 1793: 1789: 1785: 1781: 1777: 1773: 1769: 1762: 1759: 1754: 1750: 1746: 1742: 1738: 1734: 1729: 1724: 1720: 1716: 1715: 1707: 1704: 1699: 1693: 1689: 1685: 1680: 1679: 1670: 1667: 1662: 1656: 1652: 1648: 1644: 1643: 1635: 1632: 1627: 1623: 1616: 1613: 1608: 1604: 1597: 1590: 1588: 1584: 1579: 1575: 1571: 1567: 1563: 1559: 1555: 1551: 1550: 1542: 1539: 1534: 1530: 1526: 1522: 1518: 1514: 1513: 1508: 1501: 1498: 1493: 1489: 1485: 1481: 1477: 1474:(in German). 1473: 1472: 1467: 1460: 1457: 1451: 1446: 1443: 1440: 1437: 1434: 1431: 1430: 1426: 1420: 1415: 1410: 1408: 1402: 1398: 1394: 1390: 1386: 1382: 1378: 1374: 1366: 1364: 1362: 1356: 1354: 1350: 1346: 1342: 1338: 1334: 1330: 1326: 1322: 1318: 1314: 1310: 1306: 1305:Edward Teller 1302: 1293: 1288: 1285: 1284: 1283: 1274: 1270: 1266: 1262: 1246: 1242: 1238: 1235: 1232: 1212: 1204: 1186: 1182: 1178: 1175: 1149: 1122: 1114: 1110: 1094: 1087: 1068: 1063: 1059: 1055: 1043: 1033: 1029: 1024: 1020: 1016: 1013: 1007: 1003: 993: 992: 991: 989: 985: 981: 978: 977:gravitational 974: 970: 961: 954: 946: 942: 926: 918: 899: 894: 890: 886: 881: 877: 873: 870: 867: 856: 851: 847: 837: 836: 835: 827: 825: 821: 814: 795: 792: 788: 775: 769: 765: 757: 753: 750: 743: 742: 741: 739: 735: 731: 727: 723: 701: 696: 691: 687: 683: 680: 677: 669: 660: 656: 648: 644: 640: 637: 631: 627: 617: 616: 615: 613: 609: 604: 599: 592: 585: 581: 574: 547: 540: 531: 527: 521: 516: 512: 502: 473: 469: 465: 462: 459: 451: 447: 437: 428: 424: 420: 417: 411: 407: 401: 392: 384: 363: 360: 356: 352: 349: 346: 338: 334: 324: 315: 311: 307: 304: 298: 294: 288: 279: 271: 270: 269: 252: 247: 244: 240: 236: 231: 227: 223: 220: 217: 206: 196: 190: 179: 169: 159: 158: 157: 152: 148: 140: 135: 118: 114: 110: 107: 99: 84: 80: 76: 73: 70: 62: 58: 54: 53: 52: 50: 46: 42: 38: 34: 30: 21: 2373:(1): 57–70. 2370: 2364: 2306: 2300: 2257: 2251: 2218: 2212: 2179: 2173: 2148: 2142: 2112: 2096:(6): 19–20. 2093: 2087: 2077: 2064:L. Nottale. 2059: 2034: 2030: 2024: 1997: 1991: 1981: 1956: 1950: 1944: 1919: 1913: 1907: 1880: 1874: 1864: 1843: 1837: 1812: 1806: 1800: 1775: 1771: 1761: 1718: 1712: 1706: 1677: 1669: 1641: 1634: 1621: 1615: 1606: 1602: 1556:(1): 15–19. 1553: 1547: 1541: 1516: 1510: 1500: 1475: 1469: 1459: 1401:Planck units 1370: 1357: 1329:Robert Dicke 1324: 1313:George Gamow 1297: 1268: 1264: 1261:George Gamow 1083: 959: 952: 944: 916: 914: 833: 823: 819: 812: 810: 729: 719: 611: 605: 597: 590: 583: 572: 570: 267: 150: 147:Hermann Weyl 144: 32: 28: 26: 2474:Coincidence 1649:. pp.  1397:information 1317:cosmologies 1259:. Although 2459:Paul Dirac 2443:Categories 1721:(2): 403. 1686:. p.  1452:References 1301:geophysics 982:between a 973:electrical 141:Background 37:Paul Dirac 23:Paul Dirac 2380:0708.3518 2355:0705.1836 2341:119339090 2292:119452710 2243:122802355 1848:Doubleday 1753:118684485 1578:122865789 1236:≈ 1183:ϵ 1179:π 1056:≈ 1021:ϵ 1017:π 887:≈ 874:⋅ 868:≈ 697:≈ 684:⋅ 681:4.1666763 678:≈ 645:ϵ 641:π 466:⋅ 463:1.5671987 460:≈ 425:ϵ 421:π 361:− 353:⋅ 350:3.7612682 347:≈ 312:ϵ 308:π 248:… 237:≈ 224:⋅ 221:4.1666763 218:≈ 191:≈ 111:∝ 74:∝ 49:cosmology 2405:11248780 1856:62008840 1411:See also 1345:hydrogen 1109:electron 988:electron 41:Universe 2385:Bibcode 2321:Bibcode 2272:Bibcode 2223:Bibcode 2204:4106534 2184:Bibcode 2153:Bibcode 2039:Bibcode 2002:Bibcode 2000:: L91. 1961:Bibcode 1959:: 302. 1924:Bibcode 1885:Bibcode 1844:Gravity 1817:Bibcode 1780:Bibcode 1733:Bibcode 1558:Bibcode 1521:Bibcode 1480:Bibcode 1405:32.8·10 1107:of the 986:and an 975:to the 939:is the 578:is the 268:where, 2403:  2339:  2290:  2241:  2202:  2175:Nature 1922:: L1. 1854:  1751:  1694:  1657:  1576:  1341:fusion 1113:masses 1111:, the 1086:charge 984:proton 980:forces 915:where 811:where 654:  434:  321:  2401:S2CID 2375:arXiv 2350:arXiv 2337:S2CID 2311:arXiv 2288:S2CID 2262:arXiv 2239:S2CID 2200:S2CID 2119:arXiv 2069:(PDF) 1749:S2CID 1723:arXiv 1651:61–62 1599:(PDF) 1574:S2CID 1349:stars 494:with 245:42.62 1852:LCCN 1692:ISBN 1655:ISBN 1393:bits 1353:life 1141:and 957:and 943:and 871:3.47 571:and 27:The 2393:doi 2329:doi 2280:doi 2231:doi 2219:338 2192:doi 2180:139 2161:doi 2149:165 2098:doi 2047:doi 2035:275 2010:doi 1998:239 1969:doi 1957:224 1932:doi 1920:231 1893:doi 1881:185 1825:doi 1788:doi 1741:doi 1688:177 1566:doi 1529:doi 1517:364 1488:doi 1476:359 1395:of 1347:in 1343:of 1335:or 990:: 965:= 1 955:= 1 724:of 33:LNH 2445:: 2399:. 2391:. 2383:. 2371:18 2369:. 2335:. 2327:. 2319:. 2307:23 2305:. 2286:. 2278:. 2270:. 2258:65 2256:. 2237:. 2229:. 2217:. 2198:. 2190:. 2178:. 2159:. 2147:. 2094:39 2092:. 2086:. 2045:. 2033:. 2008:. 1996:. 1990:. 1967:. 1955:. 1930:. 1918:. 1891:. 1879:. 1873:. 1846:. 1823:. 1813:73 1811:. 1786:. 1776:28 1774:. 1770:. 1747:. 1739:. 1731:. 1719:75 1717:. 1690:. 1682:. 1653:. 1645:. 1624:. 1607:20 1605:. 1601:. 1586:^ 1572:. 1564:. 1554:27 1552:. 1527:. 1515:. 1509:. 1486:. 1468:. 1383:. 1325:is 1064:40 1060:10 895:42 891:10 882:41 878:10 692:42 688:10 582:, 474:27 470:10 364:16 357:10 241:10 232:42 228:10 63:: 2407:. 2395:: 2387:: 2377:: 2358:. 2352:: 2343:. 2331:: 2323:: 2313:: 2294:. 2282:: 2274:: 2264:: 2245:. 2233:: 2225:: 2206:. 2194:: 2186:: 2167:. 2163:: 2155:: 2127:. 2121:: 2106:. 2100:: 2071:. 2053:. 2049:: 2041:: 2018:. 2012:: 2004:: 1975:. 1971:: 1963:: 1938:. 1934:: 1926:: 1901:. 1895:: 1887:: 1858:. 1831:. 1827:: 1819:: 1790:: 1782:: 1755:. 1743:: 1735:: 1725:: 1700:. 1663:. 1628:. 1580:. 1568:: 1560:: 1535:. 1531:: 1523:: 1494:. 1490:: 1482:: 1278:β 1269:G 1265:G 1247:t 1243:/ 1239:1 1233:G 1213:G 1187:0 1176:4 1154:e 1150:m 1127:p 1123:m 1095:e 1069:. 1048:e 1044:m 1038:p 1034:m 1030:G 1025:0 1014:4 1008:2 1004:e 963:e 960:r 953:c 948:e 945:r 927:c 917:t 900:, 861:e 857:r 852:t 848:c 824:G 820:t 816:U 813:M 796:, 793:t 789:) 780:U 776:M 770:3 766:c 758:( 754:= 751:G 730:G 716:. 702:N 670:2 665:e 661:m 657:G 649:0 638:4 632:2 628:e 612:N 601:H 598:r 594:H 591:m 587:e 584:m 576:e 573:r 552:e 548:r 541:2 536:e 532:m 528:G 522:= 517:2 513:c 507:H 503:m 481:m 452:2 448:c 442:H 438:m 429:0 418:4 412:2 408:e 402:= 397:H 393:r 370:m 339:2 335:c 329:e 325:m 316:0 305:4 299:2 295:e 289:= 284:e 280:r 253:, 211:e 207:r 201:H 197:r 184:e 180:r 174:U 170:R 154:U 151:R 133:. 119:2 115:t 108:M 85:t 81:/ 77:1 71:G 31:(

Index


Paul Dirac
Universe
40 orders of magnitude
cosmology
gravitational constant
age of the universe
Hermann Weyl
classical electron radius
Arthur Eddington
primeval-atom hypothesis
Georges Lemaître
Edward Arthur Milne
general theory of relativity
speed of light
order of magnitude
electrical
gravitational
forces
proton
electron
charge
electron
masses
gravitational constant
George Gamow
Einstein field equations
geophysics
Edward Teller
paleontological

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.