Knowledge (XXG)

Direct methods (electron microscopy)

Source 📝

6211: 4272: 7899: 2822: 4561: 3938: 7911: 3349: 3982: 2502: 4730: 4339: 3694: 4282:
The basis behind the phase problem is that phase information is more important than amplitude information when recovering an image. This is because the phase term of the structure factor contains the positions. However, the phase information does not need to be retrieved completely accurately. Often
6206:
was originally developed by Gerchberg and Saxton to solve for the phase of wave functions with intensities known in both the diffraction and imaging planes. However, it has been generalized for any information in real or reciprocal space. Detailed here is a generalization using electron diffraction
4307:
intensities can be measured. One specific example is surface diffraction in plan view orientation. When analyzing the surface of a sample in plan view, the sample is often tilted off a zone axis in order to isolate the diffracted beams of the surface from those of the bulk. Achieving kinematical
2408: 2259:
The triplet phase relationship is an equation directly relating two known phases of diffracted beams to the unknown phase of another. This relationship can be easily derived via the Sayre equation, but it may also be demonstrated through statistical relationships between the diffracted beams, as
6290:
Direct methods with electron diffraction datasets have been used to solve for a variety of structures. As mentioned earlier, surfaces are one of the cases in electron diffraction where scattering is kinematical. As such, many surface structures have been solved for by both X-ray and electron
6513:
direct methods. The program is written in Fortran and C++ and is free for academic use. SIR can be used for the crystal structure determination of small-to-medium-sized molecules and proteins from either X-ray or electron diffraction data. More information can be found at its website:
3119: 3111: 4267:{\displaystyle tan(\varphi ({\textbf {k}}))\approx {\frac {\sum _{h}|U({\textbf {k}})-NU({\textbf {k-h}})U({\textbf {h}})|sin\phi ({\textbf {k-h}})+\phi ({\textbf {h}})}{\sum _{h}|U({\textbf {k}})-NU({\textbf {k-h}})U({\textbf {h}})|cos\phi ({\textbf {k-h}})+\phi ({\textbf {h}})}}} 4302:
One of the reasons direct methods was originally developed for analyzing X-ray diffraction is because almost all X-ray diffraction is kinematical. While most electron diffraction is dynamical, which is more difficult to interpret, there are instances in which mostly kinematical
5768: 2817:{\displaystyle |U({\textbf {k}})-NU({\textbf {k-h}})U({\textbf {k}})|^{2}=|U({\textbf {k}})|^{2}+N^{2}|U({\textbf {k-h}})U({\textbf {h}})|^{2}-2N|U({\textbf {k}})U({\textbf {k-h}})U({\textbf {h}})|\times cos(\phi ({\textbf {k}})-\phi ({\textbf {k-h}})-\phi ({\textbf {h}}))} 438: 323: 2063: 1419: 1299: 1532:
function (for X-ray diffraction) or crystal potential function (for electron diffraction) results in a function that resembles the original un-squared function of identical and resolved peaks. By doing so, it reinforces atom-like features of the crystal.
5096: 5627: 3476: 1774: 1939: 5272: 4567: 6078: 4556:{\displaystyle D(\phi ({\textbf {k}})-\phi ({\textbf {k-h}})-\phi ({\textbf {h}}))=A({\textbf {k,h}}){\sqrt{I({\textbf {k}})I({\textbf {k-h}})I({\textbf {h}})}}\times cos(\phi ({\textbf {k}})-\phi ({\textbf {k-h}})-\phi ({\textbf {h}}))} 4326:, where dynamical scattering from random phases add up to be nearly kinematical. Furthermore, as explained earlier, it is not critical to retrieve phase information completely accurately. Errors in the phase information are tolerable. 2925: 2491: 4291:
In order to apply direct methods to a set of data for successful structure determination, there must be reasonable sufficient conditions satisfied by the experimental conditions or sample properties. Outlined here are several cases.
3933:{\displaystyle \prod _{h}P(U({\textbf {k}})-NU({\textbf {k-h}})U({\textbf {k}}))\approx 2NCe^{\sum _{h}|U({\textbf {k}})U({\textbf {k-h}})U({\textbf {k}})|\times cos(\phi ({\textbf {k}})-\phi ({\textbf {k-h}})-\phi ({\textbf {h}}))}} 6386:
and was most recently updated in 2008. It can be used for structures with heavy atoms, structures of molecules with partly known geometries, and for certain special case structures. Detailed information can be found at its website:
3687:
The tangent formula was first derived in 1955 by Jerome Karle and Herbert Hauptman. It related the amplitudes and phases of known diffracted beams to the unknown phase of another. Here, it is derived using the Cochran distribution.
3548: 6502:
representation) suite of programs was developed for solving the crystal structures of small molecules. SIR is updated and released frequently, with the first release in 1988 and the latest release in 2014. It is capable of both
5519:
In some cases, scattering from a sample can be dominated by one type of atom. Therefore, the exit wave from the sample will also be dominated by that atom type. For example, the exit wave and intensity of a sample dominated by
2273: 1074: 990: 7138:
de la Cruz, M. J.; Hattne, J.; Shi, D.; Seidler, P.; Rodriguez, J.; Reyes, F. E.; Sawaya, M. R.; Cascio, D.; Weiss, S. C.; Kim, S. K.; Hinck, C. S.; Hinck, A. P.; Calero, G.; Eisenberg, D.; Gonen, T. (13 February 2017).
2147: 3344:{\displaystyle P(U({\textbf {k}})-NU({\textbf {k-h}})U({\textbf {k}}))\approx De^{2N|U({\textbf {k}})-NU({\textbf {k-h}})U({\textbf {k}})|\times cos(\phi ({\textbf {k}})-\phi ({\textbf {k-h}})-\phi ({\textbf {h}}))}} 1478:
The majority of direct methods was developed for X-ray diffraction. However, electron diffraction has advantages in several applications. Electron diffraction is a powerful technique for analyzing and characterizing
5493:
will also be large and small. So, the observed intensities can be used to reasonably estimate the phases for diffracted beams. The observed intensity can be related to the structure factor more formally using the
2949: 5491: 5416: 6223:
Constraints can be physical or statistical. For instance, the fact that the data is produced by a scattering experiment in a transmission electron microscope imposes several constraints, including atomicity,
784: 6214:
The generalized Gerchberg-Saxton algorithm for direct methods with electron diffraction. By successively applying constraints, the algorithm will eventually converge to a possible solution. Modified from.
5633: 4970:
Consider two scattered beams with different intensities. The magnitude of their intensities will then have to be related to the amplitude of their corresponding scattering factors by the relationship:
892: 6486:
ubstitution protein data. It reduces the phase problem to a sign problem by locating the atomic sites of anomalous scatterers or heavy atom substitutions. More details can be found at the website:
331: 219: 1950: 897:
This is a straightforward method of obtaining the amplitude term of the structure factor. However, the phase term, which contains position information from the crystal potential, is lost.
4318:
Even though most cases of electron diffraction are dynamical, it is still possible to achieve scattering that is statistically kinematical in nature. This is what enables the analysis of
1307: 1187: 6207:
information. As illustrated in image to the right, one can successively impose real space and reciprocal constraints on an initial estimate until it converges to a feasible solution.
3611: 3974: 3677: 3644: 7543: 5530: 7011:
Erdman, N.; Poeppelmeier, K. R.; Asta, M.; Warschkow, O.; Ellis, D. E.; Marks, L. D. (5 September 2002). "The structure and chemistry of the TiO2-rich surface of SrTiO3 (001)".
4958: 4925: 4869: 4836: 4283:
even with errors in the phases, a complete structure determination is possible. Likewise, amplitude errors will not severely impact the accuracy of the structure determination.
3368: 2183: 662: 6180: 6147: 6114: 5947: 5910: 5877: 5836: 5803: 5341: 5308: 5162: 4803: 4766: 2249: 2216: 1843: 1810: 1600: 1567: 1143: 1110: 820: 619: 562: 525: 473: 160: 127: 5129: 6426:, and Fortran 77, EDM is capable of performing image processing of high resolution electron microscopy images and diffraction patterns and direct methods. It has a standard 1680: 699: 1652: 1628: 1171: 586: 211: 187: 6182:
will satisfy atomistic constraints as long as they are reasonably small and well-separated, thereby satisfying some constraints required for implementing direct methods.
4725:{\displaystyle D(\phi ({\textbf {k}})-\phi ({\textbf {k-h}})-\phi ({\textbf {h}}))=B({\textbf {k,h}})cos(\phi ({\textbf {k}})-\phi ({\textbf {k-h}})-\phi ({\textbf {h}}))} 1851: 6257: 5170: 4976: 3578: 4892: 1424:
Here, it is also clear that the phase terms are lost upon measurement in an electron diffraction experiment. This is referred to as the crystallographic phase problem.
7526: 7521: 6439: 5959: 7670: 7373: 2830: 2419: 7660: 7263: 6278:(highly convergent) or non-convex (weakly convergent). Imposing these constraints with the algorithm detailed earlier can converge towards unique or non-unique 1672: 1528:
considered are identical and there is a minimum distance between atoms. Called the "Squaring Method," a key concept of the Sayre equation is that squaring the
7563: 7536: 3482: 7091:"Three-dimensional electron diffraction as a complementary technique to powder X-ray diffraction for phase identification and structure solution of powders" 2403:{\displaystyle N\langle U({\textbf {k-h}})U({\textbf {h}})\rangle ={\frac {1}{N}}\sum _{l}e^{2\pi i{\textbf {k}}\cdot {\textbf {r}}_{l}}=U({\textbf {k}})} 7471: 1454:
also independently derived relationships between the signs of different structure factors. Later advancements were done by other scientists, including
1440:, a construct that related the known phases of certain diffracted beams to estimate the unknown phase of another diffracted beam. In the same issue of 7531: 6856:
Gerchberg, R. W.; Saxton, W. O. (29 November 1971). "A Practical Algorithm for the Determination of Phase from Image and Diffraction Plane Pictures".
998: 914: 7675: 2071: 6232:, and interference. Constraints may also be statistical in origin, as shown earlier with the Cochran distribution and triplet phase relationship ( 1173:
is a reciprocal space vector. When a diffraction pattern is measured, only the intensities can be extracted. A measurement obtains a statistical
6318:
and rotation electron diffraction. These techniques have been used to obtain data for structure solution through direct methods and applied for
5509:. Specifically, precession electron diffraction produces a quasi-kinematical diffraction pattern that can be used adequately in direct methods. 7491: 3106:{\displaystyle P(U({\textbf {k}})-NU({\textbf {k-h}})U({\textbf {k}}))\approx Ce^{-|U({\textbf {k}})-NU({\textbf {k-h}})U({\textbf {k}})|^{2}}} 7615: 7481: 7428: 6976:
Marks, L. D.; Bengu, E.; Collazo-Davila, C.; Grozea, D.; Landree, E.; Leslie, C.; Sinkler, W. (October 1998). "Direct Methods for Surfaces".
7598: 7583: 7509: 47:
information is lost during a diffraction measurement. Direct methods provides a method of estimating the phase information by establishing
5421: 5346: 6342:. In some of these cases, the structures were solved in combination with X-ray diffraction data, making them complementary techniques. 707: 6458:
in Fortran 77. The most recent release is version 4.2 in 2012. It is a program for direct methods phasing of protein structures. The
1507:, there are specific cases (detailed later) that have sufficient conditions for applying direct methods for structure determination. 7620: 7453: 7306: 7256: 6902: 6562: 6350: 5763:{\displaystyle I({\textbf {k}})=|A({\textbf {k}})|^{2}{\bigg |}\sum _{l}e^{2\pi i{\textbf {k}}\cdot {\textbf {r}}_{l}}{\bigg |}^{2}} 4960:. With a narrow distribution such as this, the scattering data will be statistically within the realm of kinematical consideration. 7608: 7603: 7501: 7476: 7443: 6532: 901: 17: 7680: 7665: 7645: 6542: 5506: 1500: 7383: 2943:
in form. By combining the terms of the known moduli, a distribution function can be written that is dependent on the phases:
7448: 7291: 6427: 6378:
and direct methods applied to difference structure factors. It was first released by Paul Beurkens and his colleagues at the
828: 7915: 6314:
More recently, methods for automated three dimensional electron diffraction methods have been developed, such as automated
7625: 7588: 7433: 6190:
Direct methods is a set of routines for structure determination. In order to successfully solve for a structure, several
3362:
scales with the reciprocal of the unitary structure factors. If they are large, then the sum in the cosine term must be:
7937: 7903: 7463: 7249: 433:{\displaystyle F({\textbf {k}})=\int _{-\infty }^{\infty }f({\textbf {r}})e^{-2\pi i{\textbf {k}}\cdot {\textbf {r}}}dr} 6941:
Marks, L. D.; Sinkler, W.; Landree, E. (1 July 1999). "A feasible set approach to the crystallographic phase problem".
318:{\displaystyle f({\textbf {r}})=\int _{-\infty }^{\infty }F({\textbf {k}})e^{2\pi i{\textbf {k}}\cdot {\textbf {r}}}dk} 6455: 2058:{\displaystyle u({\textbf {r}})={\frac {1}{N}}\sum _{l}\delta ({\textbf {r}}-{\textbf {r}}_{l})=Nu({\textbf {r}})^{2}} 1451: 7650: 7568: 6203: 4769: 2936: 7062:
Kienzle, Danielle M.; Marks, Laurence D. (2012). "Surface transmission electron diffraction for SrTiO3 surfaces".
1524:
was developed under certain assumptions taken from information about the crystal structure, specifically that all
1470:(1985) to Hauptman and Karle for their development of direct methods for the determination of crystal structures. 1414:{\displaystyle I({\textbf {u}})=\langle |\Psi ({\textbf {u}})|^{2}\rangle =\langle |A({\textbf {u}})|^{2}\rangle } 1294:{\displaystyle I({\textbf {r}})=\langle |\psi ({\textbf {r}})|^{2}\rangle =\langle |a({\textbf {r}})|^{2}\rangle } 6770:
Marks, L. D.; Sinkler, W. (16 September 2003). "Sufficient Conditions for Direct Methods with Swift Electrons".
7875: 7829: 7655: 6552: 6423: 6346: 6331: 6323: 7865: 7578: 7514: 7388: 7347: 6411: 5622:{\displaystyle \Psi ({\textbf {k}})=A({\textbf {k}})\sum _{l}e^{2\pi i{\textbf {k}}\cdot {\textbf {r}}_{l}}} 3583: 1447: 528: 480: 3976:
can be found by taking the derivative of the above equation, which gives a variant of the tangent formula:
3471:{\displaystyle \phi ({\textbf {k}})-\phi ({\textbf {k-h}})-\phi ({\textbf {h}})\approx 2n\pi ,~~n=0,1,2...} 7768: 6880: 6379: 6315: 3946: 3649: 3616: 1442: 7773: 7593: 6547: 5521: 4930: 4897: 4841: 4808: 2932: 2155: 1504: 624: 81: 16:
This article is about direct methods in electron diffraction. For X-ray diffraction direct methods, see
4308:
conditions is difficult in most cases—it requires very thin samples to minimize dynamical diffraction.
1769:{\displaystyle F({\textbf {k}})=\sum _{l}f({\textbf {k}})e^{2\pi {\textbf {k}}\cdot {\textbf {r}}_{l}}} 6152: 6119: 6086: 5919: 5882: 5849: 5808: 5775: 5313: 5280: 5134: 4775: 4738: 2221: 2188: 1815: 1782: 1572: 1539: 1115: 1082: 792: 591: 534: 497: 445: 132: 99: 7778: 7337: 7020: 6985: 6830: 6779: 6557: 5104: 1934:{\displaystyle U({\textbf {k}})={\frac {1}{N}}\sum _{l}e^{2\pi {\textbf {k}}\cdot {\textbf {r}}_{l}}} 1146: 73: 56: 5267:{\displaystyle T({\textbf {k}})=e^{i\phi ({\textbf {k}})}{\sqrt{I({\textbf {k}})}}/N({\textbf {k}})} 5091:{\displaystyle I({\textbf {k}})>I({\textbf {k'}})~~iff~|F({\textbf {k}})|>|F({\textbf {k'}})|} 667: 7743: 7728: 7635: 7630: 7573: 7438: 7420: 7352: 7342: 7286: 7272: 6885: 6345:
In addition, some success has been found using direct methods for structure determination with the
6263: 2940: 1633: 1609: 1455: 1152: 908:
of the electron beam from the crystal in real and reciprocal space can be written respectively as:
567: 487: 192: 168: 7814: 7393: 7357: 7044: 6912: 6803: 6487: 6375: 6308: 6235: 5913: 5502: 4838:
contains both of these for simplicity. Here, the most probable phases will maximize the function
3556: 3355: 1603: 6073:{\displaystyle B({\textbf {k}})=S({\textbf {k}})|A({\textbf {k}})|,where~S({\textbf {k}})=\pm 1} 6353:. MicroED has been used for a variety of materials, including crystal fragments, proteins, and 4874: 7758: 7753: 7227: 7209: 7170: 7141:"Atomic-resolution structures from fragmented protein crystals with the cryoEM method MicroED" 7120: 7036: 6958: 6898: 6795: 6435: 6415: 6335: 6229: 5501:
Other cases to consider for intensity mapping are specific diffraction experiments, including
3359: 483: 93: 89: 2927:
and the moduli are known on the right hand side. The only unknown terms are contained in the
2152:
This equation is a variation of the Sayre equation. Based on this equation, if the phases of
7708: 7640: 7217: 7201: 7160: 7152: 7110: 7102: 7071: 7028: 6993: 6950: 6890: 6838: 6787: 6743: 6710: 6652: 6621: 6594: 6388: 6371: 6279: 6210: 5950: 2920:{\displaystyle \langle |U({\textbf {k}})-NU({\textbf {k-h}})U({\textbf {k}})|^{2}\rangle =0} 1529: 476: 163: 85: 2486:{\displaystyle U({\textbf {k}})\approx N\langle U({\textbf {k-h}})U({\textbf {h}})\rangle } 7763: 6924: 6527: 6296: 6271: 4319: 24: 6677:"A theory of phase determination for the four types of non-centrosymmetric space groups 1 6585:
Sayre, D. (1 January 1952). "The squaring method: a new method for phase determination".
7024: 6989: 6834: 6783: 7718: 7332: 7222: 7189: 7165: 7140: 7115: 7090: 6431: 6339: 5843: 5839: 5495: 4323: 3543:{\displaystyle \phi ({\textbf {k}})\approx \phi ({\textbf {k-h}})-\phi ({\textbf {h}})} 1657: 1437: 1178: 6894: 6418:. First released in 2004, its most recent release was version 3.1 in 2010. Written in 7931: 7794: 7738: 7398: 6821:
Blackman, M. (10 November 1939). "On the Intensities of Electron Diffraction Rings".
905: 44: 40: 7845: 6807: 6443: 76:, a diffraction pattern is produced by the interaction of the electron beam and the 7855: 7819: 7713: 7703: 7378: 7327: 7048: 6823:
Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences
6612:
Cochran, W. (1 January 1952). "A relation between the signs of structure factors".
1459: 6194:
have been developed for direct methods. A selection of these are explained below.
4871:. If the intensities are sufficiently high and the sum in the cosine term remains 789:
During a diffraction experiment, the intensity of the reflections are measured as
5131:) be a function that relates the intensity to the phase for the same beam, where 7799: 7733: 7723: 6537: 6225: 1463: 1433: 48: 32: 1503:
and more complex to understand compared to X-ray diffraction, which is usually
1069:{\displaystyle \Psi ({\textbf {u}})=A({\textbf {u}})e^{-i\phi ({\textbf {u}})}} 985:{\displaystyle \psi ({\textbf {r}})=a({\textbf {r}})e^{-i\phi ({\textbf {r}})}} 7880: 7301: 7296: 7106: 6997: 6954: 6791: 6748: 6731: 6715: 6676: 6657: 6640: 6625: 6598: 6515: 6275: 6191: 4304: 2264: 491: 7213: 6442:
image simulation capabilities. More information can be found at the website:
2142:{\displaystyle U({\textbf {k}})=N\sum _{h}U({\textbf {k-h}})U({\textbf {h}})} 7748: 7403: 6505: 6300: 4330: 1480: 1467: 52: 7231: 7174: 7124: 7040: 6962: 6842: 6799: 7850: 7316: 7205: 6499: 6319: 1521: 1492: 1488: 7032: 7860: 7804: 7486: 7156: 7075: 6459: 6383: 6354: 6292: 6262:
According to Combettes, image recovery problems can be considered as a
1496: 1174: 77: 7241: 7824: 6304: 5949:, then it is feasible to retrieve atom-like features from the object 2928: 1944:
This can be alternatively rewritten in real and reciprocal space as:
1484: 6438:
search for solving structures using direct methods, and it also has
5486:{\displaystyle |T({\textbf {k}})T({\textbf {k-h}})T({\textbf {h}})|} 5411:{\displaystyle |F({\textbf {k}})F({\textbf {k-h}})F({\textbf {h}})|} 6419: 6327: 6209: 1525: 701:). The phase term contains the position information in this form. 779:{\displaystyle F({\textbf {g}})=|F({\textbf {g}})|e^{i\phi _{g}}} 213:
are position vectors in real and reciprocal space, respectively.
7809: 7190:"MicroED: a versatile cryoEM method for structure determination" 6641:"A new analytical method for solving complex crystal structures" 5879:
is real in reciprocal space and complex in the object plane. If
7245: 129:
is in real space and corresponds to the crystal potential, and
6488:
http://cryst.iphy.ac.cn/Project/IPCAS1.0/user_guide/oasis.html
31:
is a set of techniques used for structure determination using
7089:
Yun, Y.; Zou, X.; Hovmöller, S.; Wan, W. (10 February 2015).
5842:
and represents the shape of an atom, given by the channeling
3354:
This distribution is known as the Cochran distribution. The
486:(i.e. the periodic crystal potential), and it defines the 6389:
http://www.xtal.science.ru.nl/dirdif/software/dirdif.html
6454:
OASIS was first written by several scientists from the
887:{\displaystyle I({\textbf {g}})=|F({\textbf {g}})|^{2}} 1779:
This can be converted to the unitary structure factor
39:
information. It is a solution to the crystallographic
6238: 6155: 6122: 6089: 5962: 5922: 5885: 5852: 5811: 5778: 5636: 5533: 5424: 5349: 5316: 5283: 5173: 5137: 5107: 4979: 4933: 4900: 4877: 4844: 4811: 4778: 4741: 4570: 4342: 4329:
Recalling the Cochran distribution and considering a
3985: 3949: 3697: 3652: 3619: 3586: 3559: 3485: 3371: 3122: 2952: 2833: 2505: 2422: 2276: 2224: 2191: 2158: 2074: 1953: 1854: 1818: 1785: 1683: 1660: 1636: 1612: 1575: 1542: 1310: 1190: 1155: 1118: 1085: 1001: 917: 900:
Analogously, for electron diffraction performed in a
831: 795: 710: 670: 627: 594: 570: 537: 500: 448: 334: 222: 195: 171: 135: 102: 7838: 7787: 7696: 7689: 7556: 7500: 7462: 7419: 7412: 7366: 7315: 7279: 6732:"Relations between the phases of structure factors" 6462:OASIS stands for two of its applications: phasing 6291:diffraction direct methods, including many of the 6251: 6174: 6141: 6108: 6072: 5941: 5904: 5871: 5830: 5797: 5762: 5621: 5485: 5410: 5335: 5302: 5266: 5156: 5123: 5090: 4952: 4919: 4886: 4863: 4830: 4797: 4760: 4724: 4555: 4266: 3968: 3932: 3671: 3638: 3605: 3572: 3542: 3470: 3343: 3105: 2919: 2816: 2485: 2402: 2243: 2210: 2177: 2141: 2057: 1933: 1837: 1804: 1768: 1666: 1646: 1622: 1594: 1561: 1413: 1293: 1165: 1137: 1104: 1068: 984: 886: 814: 778: 693: 656: 613: 580: 556: 519: 467: 432: 317: 205: 181: 162:is its Fourier transform in reciprocal space. The 154: 121: 6444:http://www.numis.northwestern.edu/edm/index.shtml 6282:, depending on the convexity of the constraints. 5749: 5691: 5310:values will be directly related to the values of 6877:The Convex Feasibility Problem in Image Recovery 6440:high-resolution transmission electron microscopy 5524:can be written in reciprocal space in the form: 7188:Nannenga, Brent L.; Gonen, Tamir (2018-02-06). 6434:purposes. It uses a feasible set approach and 3553:This is called the triplet phase relationship ( 7671:Serial block-face scanning electron microscopy 7374:Detectors for transmission electron microscopy 6374:for structure determination through using the 6270:to the crystallographic phase problem. With a 6083:In the object plane, the Fourier transform of 588:is a specific reflection in reciprocal space. 7257: 2267:distributed atoms, the following holds true: 8: 6879:. Vol. 95. Elsevier. pp. 155–270. 4805:terms are the experimental intensities, and 2935:can be applied here, which establishes that 2908: 2834: 2480: 2445: 2315: 2280: 1408: 1372: 1366: 1330: 1288: 1252: 1246: 1210: 6936: 6934: 6765: 6763: 6761: 6759: 6516:http://www.ba.ic.cnr.it/softwareic/sir2014/ 6351:Microcrystal Electron Diffraction (MicroED) 1812:by dividing by N (the number of atoms) and 7693: 7416: 7264: 7250: 7242: 7221: 7164: 7114: 6884: 6747: 6714: 6675:Karle, J.; Hauptman, H. (1 August 1956). 6656: 6446:. The code is no longer being developed. 6410:ethods is a set of programs developed at 6243: 6237: 6163: 6162: 6154: 6130: 6129: 6121: 6116:will be a real and symmetric pseudoatom ( 6097: 6096: 6088: 6052: 6051: 6019: 6010: 6009: 5998: 5989: 5988: 5970: 5969: 5961: 5930: 5929: 5921: 5893: 5892: 5884: 5860: 5859: 5851: 5819: 5818: 5810: 5786: 5785: 5777: 5754: 5748: 5747: 5738: 5732: 5731: 5721: 5720: 5710: 5700: 5690: 5689: 5683: 5678: 5668: 5667: 5656: 5644: 5643: 5635: 5611: 5605: 5604: 5594: 5593: 5583: 5573: 5560: 5559: 5541: 5540: 5532: 5478: 5469: 5468: 5453: 5452: 5437: 5436: 5425: 5423: 5403: 5394: 5393: 5378: 5377: 5362: 5361: 5350: 5348: 5324: 5323: 5315: 5291: 5290: 5282: 5255: 5254: 5243: 5239: 5229: 5228: 5219: 5208: 5207: 5197: 5181: 5180: 5172: 5145: 5144: 5136: 5115: 5114: 5106: 5083: 5074: 5073: 5062: 5054: 5045: 5044: 5033: 5006: 5005: 4987: 4986: 4978: 4941: 4940: 4932: 4908: 4907: 4899: 4876: 4852: 4851: 4843: 4819: 4818: 4810: 4786: 4785: 4777: 4749: 4748: 4740: 4710: 4709: 4691: 4690: 4672: 4671: 4644: 4643: 4622: 4621: 4603: 4602: 4584: 4583: 4569: 4541: 4540: 4522: 4521: 4503: 4502: 4477: 4467: 4466: 4451: 4450: 4435: 4434: 4425: 4416: 4415: 4394: 4393: 4375: 4374: 4356: 4355: 4341: 4252: 4251: 4233: 4232: 4212: 4203: 4202: 4187: 4186: 4165: 4164: 4153: 4147: 4132: 4131: 4113: 4112: 4092: 4083: 4082: 4067: 4066: 4045: 4044: 4033: 4027: 4020: 4005: 4004: 3984: 3957: 3956: 3948: 3916: 3915: 3897: 3896: 3878: 3877: 3851: 3842: 3841: 3826: 3825: 3810: 3809: 3798: 3792: 3787: 3759: 3758: 3743: 3742: 3721: 3720: 3702: 3696: 3660: 3659: 3651: 3627: 3626: 3618: 3594: 3593: 3585: 3564: 3558: 3531: 3530: 3512: 3511: 3493: 3492: 3484: 3417: 3416: 3398: 3397: 3379: 3378: 3370: 3327: 3326: 3308: 3307: 3289: 3288: 3262: 3253: 3252: 3237: 3236: 3215: 3214: 3203: 3196: 3174: 3173: 3158: 3157: 3136: 3135: 3121: 3095: 3090: 3080: 3079: 3064: 3063: 3042: 3041: 3030: 3026: 3004: 3003: 2988: 2987: 2966: 2965: 2951: 2902: 2897: 2887: 2886: 2871: 2870: 2849: 2848: 2837: 2832: 2802: 2801: 2783: 2782: 2764: 2763: 2737: 2728: 2727: 2712: 2711: 2696: 2695: 2684: 2669: 2664: 2654: 2653: 2638: 2637: 2626: 2620: 2607: 2602: 2592: 2591: 2580: 2571: 2566: 2556: 2555: 2540: 2539: 2518: 2517: 2506: 2504: 2471: 2470: 2455: 2454: 2430: 2429: 2421: 2391: 2390: 2373: 2367: 2366: 2356: 2355: 2345: 2335: 2321: 2306: 2305: 2290: 2289: 2275: 2232: 2231: 2223: 2199: 2198: 2190: 2166: 2165: 2157: 2130: 2129: 2114: 2113: 2101: 2082: 2081: 2073: 2049: 2039: 2038: 2017: 2011: 2010: 2000: 1999: 1987: 1973: 1961: 1960: 1952: 1923: 1917: 1916: 1906: 1905: 1898: 1888: 1874: 1862: 1861: 1853: 1826: 1825: 1817: 1793: 1792: 1784: 1758: 1752: 1751: 1741: 1740: 1733: 1720: 1719: 1707: 1691: 1690: 1682: 1659: 1638: 1637: 1635: 1614: 1613: 1611: 1583: 1582: 1574: 1550: 1549: 1541: 1402: 1397: 1387: 1386: 1375: 1360: 1355: 1345: 1344: 1333: 1318: 1317: 1309: 1282: 1277: 1267: 1266: 1255: 1240: 1235: 1225: 1224: 1213: 1198: 1197: 1189: 1157: 1156: 1154: 1126: 1125: 1117: 1093: 1092: 1084: 1055: 1054: 1041: 1028: 1027: 1009: 1008: 1000: 971: 970: 957: 944: 943: 925: 924: 916: 878: 873: 863: 862: 851: 839: 838: 830: 803: 802: 794: 768: 760: 751: 742: 741: 730: 718: 717: 709: 683: 675: 669: 649: 640: 639: 628: 626: 602: 601: 593: 572: 571: 569: 545: 544: 536: 508: 507: 499: 456: 455: 447: 416: 415: 406: 405: 392: 379: 378: 366: 358: 342: 341: 333: 301: 300: 291: 290: 280: 267: 266: 254: 246: 230: 229: 221: 197: 196: 194: 173: 172: 170: 143: 142: 134: 110: 109: 101: 6274:approach, constraints can be considered 6266:problem. This idea was adapted by Marks 6670: 6668: 6580: 6578: 6574: 4927:will also be large, thereby maximizing 6920: 6910: 3606:{\displaystyle \phi ({\textbf {k-h}})} 1499:. While electron diffraction is often 6639:Zachariasen, W. H. (1 January 1952). 7: 7910: 3969:{\displaystyle \phi ({\textbf {h}})} 3672:{\displaystyle \phi ({\textbf {k}})} 3639:{\displaystyle \phi ({\textbf {h}})} 6875:Combettes, P. L. (1 January 1996). 6164: 6131: 6098: 6053: 6011: 5990: 5971: 5931: 5894: 5861: 5820: 5787: 5733: 5722: 5669: 5645: 5606: 5595: 5561: 5542: 5470: 5454: 5438: 5395: 5379: 5363: 5325: 5292: 5256: 5230: 5209: 5182: 5146: 5116: 5075: 5046: 5007: 4988: 4942: 4909: 4853: 4820: 4787: 4750: 4711: 4692: 4673: 4645: 4623: 4604: 4585: 4542: 4523: 4504: 4468: 4452: 4436: 4417: 4395: 4376: 4357: 4313:Statistical Kinematical Diffraction 4253: 4234: 4204: 4188: 4166: 4133: 4114: 4084: 4068: 4046: 4006: 3958: 3917: 3898: 3879: 3843: 3827: 3811: 3760: 3744: 3722: 3661: 3628: 3595: 3532: 3513: 3494: 3418: 3399: 3380: 3328: 3309: 3290: 3254: 3238: 3216: 3175: 3159: 3137: 3081: 3065: 3043: 3005: 2989: 2967: 2931:term that includes the phases. The 2888: 2872: 2850: 2803: 2784: 2765: 2729: 2713: 2697: 2655: 2639: 2593: 2557: 2541: 2519: 2472: 2456: 2431: 2392: 2368: 2357: 2307: 2291: 2233: 2200: 2167: 2131: 2115: 2083: 2040: 2012: 2001: 1962: 1918: 1907: 1863: 1827: 1794: 1753: 1742: 1721: 1692: 1639: 1615: 1584: 1551: 1388: 1346: 1319: 1268: 1226: 1199: 1158: 1127: 1094: 1056: 1029: 1010: 972: 945: 926: 864: 840: 804: 743: 719: 641: 603: 573: 546: 509: 457: 417: 407: 380: 343: 302: 292: 268: 231: 198: 174: 144: 111: 51:relationships between the recorded 6240: 6149:) at the atomic column positions. 5534: 4953:{\displaystyle D({\textbf {k,h}})} 4920:{\displaystyle B({\textbf {k,h}})} 4864:{\displaystyle D({\textbf {k,h}})} 4831:{\displaystyle B({\textbf {k,h}})} 3561: 2178:{\displaystyle U({\textbf {k-h}})} 1474:Comparison to X-Ray Direct Methods 1338: 1002: 657:{\displaystyle |F({\textbf {g}})|} 367: 362: 255: 250: 14: 7307:Timeline of microscope technology 6563:Microcrystal Electron Diffraction 6430:and is free to use or modify for 1462:, leading to the awarding of the 96:relationships shown below, where 55:information and phases of strong 7909: 7898: 7897: 7194:Emerging Topics in Life Sciences 6943:Acta Crystallographica Section A 6533:Transmission electron microscopy 6175:{\displaystyle b({\textbf {r}})} 6142:{\displaystyle b({\textbf {r}})} 6109:{\displaystyle B({\textbf {k}})} 5942:{\displaystyle A({\textbf {k}})} 5905:{\displaystyle B({\textbf {k}})} 5872:{\displaystyle A({\textbf {k}})} 5831:{\displaystyle a({\textbf {r}})} 5798:{\displaystyle A({\textbf {k}})} 5336:{\displaystyle F({\textbf {k}})} 5303:{\displaystyle T({\textbf {k}})} 5157:{\displaystyle N({\textbf {k}})} 4798:{\displaystyle I({\textbf {k}})} 4761:{\displaystyle A({\textbf {k}})} 2244:{\displaystyle U({\textbf {k}})} 2211:{\displaystyle U({\textbf {h}})} 1838:{\displaystyle f({\textbf {k}})} 1805:{\displaystyle U({\textbf {k}})} 1595:{\displaystyle f({\textbf {k}})} 1562:{\displaystyle F({\textbf {k}})} 1138:{\displaystyle A({\textbf {u}})} 1105:{\displaystyle a({\textbf {r}})} 902:transmission electron microscope 815:{\displaystyle I({\textbf {g}})} 614:{\displaystyle F({\textbf {g}})} 557:{\displaystyle F({\textbf {g}})} 520:{\displaystyle F({\textbf {k}})} 479:, is the Fourier transform of a 468:{\displaystyle F({\textbf {k}})} 155:{\displaystyle F({\textbf {k}})} 122:{\displaystyle f({\textbf {r}})} 18:Direct methods (crystallography) 7666:Precession electron diffraction 6543:Precession electron diffraction 5507:precession electron diffraction 5124:{\displaystyle T({\textbf {k}}} 6730:Cochran, W. (10 August 1955). 6169: 6159: 6136: 6126: 6103: 6093: 6058: 6048: 6020: 6016: 6006: 5999: 5995: 5985: 5976: 5966: 5936: 5926: 5899: 5889: 5866: 5856: 5825: 5815: 5792: 5782: 5679: 5674: 5664: 5657: 5650: 5640: 5566: 5556: 5547: 5537: 5479: 5475: 5465: 5459: 5449: 5443: 5433: 5426: 5404: 5400: 5390: 5384: 5374: 5368: 5358: 5351: 5330: 5320: 5297: 5287: 5261: 5251: 5235: 5225: 5214: 5204: 5187: 5177: 5164:contains normalization terms: 5151: 5141: 5111: 5084: 5080: 5070: 5063: 5055: 5051: 5041: 5034: 5012: 5002: 4993: 4983: 4947: 4937: 4914: 4904: 4858: 4848: 4825: 4815: 4792: 4782: 4755: 4745: 4719: 4716: 4706: 4697: 4687: 4678: 4668: 4662: 4650: 4640: 4631: 4628: 4618: 4609: 4599: 4590: 4580: 4574: 4550: 4547: 4537: 4528: 4518: 4509: 4499: 4493: 4473: 4463: 4457: 4447: 4441: 4431: 4422: 4412: 4403: 4400: 4390: 4381: 4371: 4362: 4352: 4346: 4258: 4248: 4239: 4229: 4213: 4209: 4199: 4193: 4183: 4171: 4161: 4154: 4138: 4128: 4119: 4109: 4093: 4089: 4079: 4073: 4063: 4051: 4041: 4034: 4014: 4011: 4001: 3995: 3963: 3953: 3925: 3922: 3912: 3903: 3893: 3884: 3874: 3868: 3852: 3848: 3838: 3832: 3822: 3816: 3806: 3799: 3768: 3765: 3755: 3749: 3739: 3727: 3717: 3711: 3666: 3656: 3633: 3623: 3600: 3590: 3537: 3527: 3518: 3508: 3499: 3489: 3423: 3413: 3404: 3394: 3385: 3375: 3336: 3333: 3323: 3314: 3304: 3295: 3285: 3279: 3263: 3259: 3249: 3243: 3233: 3221: 3211: 3204: 3183: 3180: 3170: 3164: 3154: 3142: 3132: 3126: 3091: 3086: 3076: 3070: 3060: 3048: 3038: 3031: 3013: 3010: 3000: 2994: 2984: 2972: 2962: 2956: 2898: 2893: 2883: 2877: 2867: 2855: 2845: 2838: 2811: 2808: 2798: 2789: 2779: 2770: 2760: 2754: 2738: 2734: 2724: 2718: 2708: 2702: 2692: 2685: 2665: 2660: 2650: 2644: 2634: 2627: 2603: 2598: 2588: 2581: 2567: 2562: 2552: 2546: 2536: 2524: 2514: 2507: 2477: 2467: 2461: 2451: 2436: 2426: 2397: 2387: 2312: 2302: 2296: 2286: 2238: 2228: 2205: 2195: 2172: 2162: 2136: 2126: 2120: 2110: 2088: 2078: 2046: 2035: 2023: 1996: 1967: 1957: 1868: 1858: 1832: 1822: 1799: 1789: 1726: 1716: 1697: 1687: 1589: 1579: 1556: 1546: 1536:Consider the structure factor 1398: 1393: 1383: 1376: 1356: 1351: 1341: 1334: 1324: 1314: 1278: 1273: 1263: 1256: 1236: 1231: 1221: 1214: 1204: 1194: 1132: 1122: 1099: 1089: 1061: 1051: 1034: 1024: 1015: 1005: 977: 967: 950: 940: 931: 921: 874: 869: 859: 852: 845: 835: 809: 799: 752: 748: 738: 731: 724: 714: 694:{\displaystyle e^{i\phi _{g}}} 650: 646: 636: 629: 608: 598: 551: 541: 514: 504: 490:measured during a diffraction 462: 452: 385: 375: 348: 338: 273: 263: 236: 226: 149: 139: 116: 106: 1: 6895:10.1016/S1076-5670(08)70157-5 5916:function, is substituted for 2218:are known, then the phase of 1647:{\displaystyle {\textbf {r}}} 1623:{\displaystyle {\textbf {k}}} 1569:in the following form, where 1166:{\displaystyle {\textbf {u}}} 581:{\displaystyle {\textbf {g}}} 206:{\displaystyle {\textbf {k}}} 182:{\displaystyle {\textbf {r}}} 6772:Microscopy and Microanalysis 5805:is the Fourier transform of 5343:. That is, when the product 621:has an amplitude term (i.e. 6456:Chinese Academy of Sciences 6252:{\displaystyle \Sigma _{2}} 4735:In the above distribution, 3943:The most probable value of 3573:{\displaystyle \Sigma _{2}} 1149:terms are phase terms, and 92:can be related through the 7954: 7651:Immune electron microscopy 7569:Annular dark-field imaging 7384:Everhart–Thornley detector 6978:Surface Review and Letters 6382:in 1999. It is written in 6204:Gerchberg-Saxton algorithm 5277:Then, the distribution of 3646:are known, then the phase 2255:Triplet Phase Relationship 1606:for each atom at position 15: 7893: 7805:Hitachi High-Technologies 7107:10.1107/S2052252514028188 6998:10.1142/S0218625X98001444 6955:10.1107/S0108767398014408 6792:10.1017/S1431927603030332 6749:10.1107/S0365110X55001485 6716:10.1107/S0365110X56001741 6658:10.1107/S0365110X52000150 6626:10.1107/S0365110X52000149 6599:10.1107/S0365110X52000137 4887:{\displaystyle \approx 0} 1145:are amplitude terms, the 664:) and a phase term (i.e. 527:can also be written in a 7830:Thermo Fisher Scientific 7656:Geometric phase analysis 7544:Aberration-Corrected TEM 6553:Electron crystallography 6347:cryo-electron microscopy 6332:metal-organic frameworks 4278:Practical Considerations 1654:is the position of atom 1604:atomic scattering factor 7579:Charge contrast imaging 7389:Field electron emission 6412:Northwestern University 4297:Kinematical Diffraction 2827:In the above equation, 7769:Thomas Eugene Everhart 6843:10.1098/rspa.1939.0129 6736:Acta Crystallographica 6703:Acta Crystallographica 6645:Acta Crystallographica 6614:Acta Crystallographica 6587:Acta Crystallographica 6380:University of Nijmegen 6316:diffraction tomography 6253: 6215: 6176: 6143: 6110: 6074: 5943: 5906: 5873: 5832: 5799: 5764: 5623: 5487: 5412: 5337: 5304: 5268: 5158: 5125: 5092: 4954: 4921: 4888: 4865: 4832: 4799: 4762: 4726: 4557: 4333:of that distribution: 4268: 3970: 3934: 3673: 3640: 3607: 3574: 3544: 3472: 3345: 3107: 2921: 2818: 2487: 2404: 2245: 2212: 2179: 2143: 2059: 1935: 1839: 1806: 1770: 1668: 1648: 1624: 1596: 1563: 1516:Unitary Sayre Equation 1443:Acta Crystallographica 1415: 1295: 1167: 1139: 1106: 1070: 986: 888: 816: 780: 695: 658: 615: 582: 558: 521: 469: 434: 319: 207: 183: 156: 123: 7774:Vernon Ellis Cosslett 7594:Dark-field microscopy 6548:Dynamical diffraction 6254: 6213: 6177: 6144: 6111: 6075: 5944: 5907: 5874: 5846:(e.g. 1s, 2s, etc.). 5833: 5800: 5765: 5624: 5488: 5413: 5338: 5305: 5269: 5159: 5126: 5093: 4955: 4922: 4889: 4866: 4833: 4800: 4763: 4727: 4558: 4287:Sufficient Conditions 4269: 3971: 3935: 3674: 3641: 3608: 3575: 3545: 3473: 3346: 3108: 2933:central limit theorem 2922: 2819: 2488: 2405: 2246: 2213: 2180: 2144: 2060: 1936: 1840: 1807: 1771: 1669: 1649: 1625: 1597: 1564: 1416: 1296: 1168: 1140: 1107: 1071: 987: 889: 817: 781: 696: 659: 616: 583: 559: 522: 470: 435: 320: 208: 184: 157: 124: 7779:Vladimir K. Zworykin 7429:Correlative light EM 7338:Electron diffraction 7206:10.1042/etls20170082 6558:Electron diffraction 6236: 6153: 6120: 6087: 5960: 5920: 5883: 5850: 5809: 5776: 5634: 5531: 5514:Dominated Scattering 5422: 5347: 5314: 5281: 5171: 5135: 5105: 4977: 4931: 4898: 4875: 4842: 4809: 4776: 4739: 4568: 4340: 4324:biological materials 3983: 3947: 3695: 3650: 3617: 3584: 3557: 3483: 3369: 3120: 2950: 2831: 2503: 2420: 2274: 2222: 2189: 2156: 2072: 1951: 1852: 1816: 1783: 1681: 1658: 1634: 1610: 1573: 1540: 1308: 1188: 1153: 1116: 1083: 999: 915: 829: 793: 708: 668: 625: 592: 568: 535: 498: 475:, also known as the 446: 332: 220: 193: 169: 133: 100: 88:information about a 74:electron diffraction 7938:Electron microscopy 7744:Manfred von Ardenne 7729:Gerasimos Danilatos 7636:Electron tomography 7631:Electron holography 7574:Cathodoluminescence 7353:Secondary electrons 7343:Electron scattering 7287:Electron microscopy 7273:Electron microscopy 7033:10.1038/nature01010 7025:2002Natur.419...55E 6990:1998SRL.....5.1087M 6835:1939RSPSA.173...68B 6784:2003MiMic...9..399M 5914:conjugate symmetric 5418:is large or small, 371: 259: 7866:Digital Micrograph 7472:Environmental SEM 7394:Field emission gun 7358:X-ray fluorescence 7157:10.1038/nmeth.4178 7076:10.1039/c2ce25204j 6376:Patterson function 6309:strontium titanate 6264:convex feasibility 6249: 6216: 6172: 6139: 6106: 6070: 5939: 5902: 5869: 5828: 5795: 5760: 5705: 5619: 5578: 5503:powder diffraction 5483: 5408: 5333: 5300: 5264: 5154: 5121: 5088: 4950: 4917: 4884: 4861: 4828: 4795: 4758: 4722: 4553: 4264: 4152: 4032: 3966: 3930: 3797: 3707: 3679:can be estimated. 3669: 3636: 3603: 3570: 3540: 3468: 3356:standard deviation 3341: 3103: 2917: 2814: 2483: 2400: 2340: 2241: 2208: 2175: 2139: 2106: 2055: 1992: 1931: 1893: 1835: 1802: 1766: 1712: 1664: 1644: 1620: 1592: 1559: 1411: 1291: 1163: 1135: 1102: 1066: 982: 884: 812: 776: 691: 654: 611: 578: 554: 517: 465: 430: 354: 315: 242: 203: 179: 152: 119: 7925: 7924: 7889: 7888: 7759:Nestor J. Zaluzec 7754:Maximilian Haider 7552: 7551: 6436:genetic algorithm 6336:organic compounds 6166: 6133: 6100: 6055: 6044: 6013: 5992: 5973: 5933: 5896: 5863: 5822: 5789: 5735: 5724: 5696: 5671: 5647: 5608: 5597: 5569: 5563: 5544: 5472: 5456: 5440: 5397: 5381: 5365: 5327: 5294: 5258: 5241: 5232: 5211: 5184: 5148: 5118: 5077: 5048: 5032: 5020: 5017: 5009: 4990: 4965:Intensity Mapping 4944: 4911: 4855: 4822: 4789: 4752: 4713: 4694: 4675: 4647: 4625: 4606: 4587: 4544: 4525: 4506: 4479: 4470: 4454: 4438: 4419: 4397: 4378: 4359: 4262: 4255: 4236: 4206: 4190: 4168: 4143: 4135: 4116: 4086: 4070: 4048: 4023: 4008: 3960: 3919: 3900: 3881: 3845: 3829: 3813: 3788: 3762: 3746: 3724: 3698: 3663: 3630: 3597: 3580:). If the phases 3534: 3515: 3496: 3446: 3443: 3420: 3401: 3382: 3360:Gaussian function 3330: 3311: 3292: 3256: 3240: 3218: 3177: 3161: 3139: 3083: 3067: 3045: 3007: 2991: 2969: 2890: 2874: 2852: 2805: 2786: 2767: 2731: 2715: 2699: 2657: 2641: 2595: 2559: 2543: 2521: 2474: 2458: 2433: 2413:Meaning that if: 2394: 2370: 2359: 2331: 2329: 2309: 2293: 2235: 2202: 2169: 2133: 2117: 2097: 2085: 2042: 2014: 2003: 1983: 1981: 1964: 1920: 1909: 1884: 1882: 1865: 1829: 1796: 1755: 1744: 1723: 1703: 1694: 1667:{\displaystyle l} 1641: 1617: 1586: 1553: 1390: 1348: 1321: 1270: 1228: 1201: 1160: 1129: 1096: 1058: 1031: 1012: 974: 947: 928: 866: 842: 806: 745: 721: 643: 605: 575: 548: 511: 484:periodic function 481:three-dimensional 459: 419: 409: 382: 345: 304: 294: 270: 233: 200: 176: 146: 113: 94:Fourier transform 90:crystal structure 7945: 7913: 7912: 7901: 7900: 7709:Bodo von Borries 7694: 7454:Photoemission EM 7417: 7266: 7259: 7252: 7243: 7236: 7235: 7225: 7185: 7179: 7178: 7168: 7135: 7129: 7128: 7118: 7086: 7080: 7079: 7059: 7053: 7052: 7008: 7002: 7001: 6984:(5): 1087–1106. 6973: 6967: 6966: 6938: 6929: 6928: 6922: 6918: 6916: 6908: 6888: 6872: 6866: 6865: 6853: 6847: 6846: 6818: 6812: 6811: 6767: 6754: 6753: 6751: 6727: 6721: 6720: 6718: 6672: 6663: 6662: 6660: 6636: 6630: 6629: 6609: 6603: 6602: 6582: 6372:computer program 6258: 6256: 6255: 6250: 6248: 6247: 6198:Gerchberg-Saxton 6181: 6179: 6178: 6173: 6168: 6167: 6148: 6146: 6145: 6140: 6135: 6134: 6115: 6113: 6112: 6107: 6102: 6101: 6079: 6077: 6076: 6071: 6057: 6056: 6042: 6023: 6015: 6014: 6002: 5994: 5993: 5975: 5974: 5948: 5946: 5945: 5940: 5935: 5934: 5911: 5909: 5908: 5903: 5898: 5897: 5878: 5876: 5875: 5870: 5865: 5864: 5837: 5835: 5834: 5829: 5824: 5823: 5804: 5802: 5801: 5796: 5791: 5790: 5769: 5767: 5766: 5761: 5759: 5758: 5753: 5752: 5745: 5744: 5743: 5742: 5737: 5736: 5726: 5725: 5704: 5695: 5694: 5688: 5687: 5682: 5673: 5672: 5660: 5649: 5648: 5628: 5626: 5625: 5620: 5618: 5617: 5616: 5615: 5610: 5609: 5599: 5598: 5577: 5565: 5564: 5546: 5545: 5492: 5490: 5489: 5484: 5482: 5474: 5473: 5458: 5457: 5442: 5441: 5429: 5417: 5415: 5414: 5409: 5407: 5399: 5398: 5383: 5382: 5367: 5366: 5354: 5342: 5340: 5339: 5334: 5329: 5328: 5309: 5307: 5306: 5301: 5296: 5295: 5273: 5271: 5270: 5265: 5260: 5259: 5247: 5242: 5240: 5238: 5234: 5233: 5220: 5218: 5217: 5213: 5212: 5186: 5185: 5163: 5161: 5160: 5155: 5150: 5149: 5130: 5128: 5127: 5122: 5120: 5119: 5097: 5095: 5094: 5089: 5087: 5079: 5078: 5066: 5058: 5050: 5049: 5037: 5030: 5018: 5015: 5011: 5010: 4992: 4991: 4959: 4957: 4956: 4951: 4946: 4945: 4926: 4924: 4923: 4918: 4913: 4912: 4893: 4891: 4890: 4885: 4870: 4868: 4867: 4862: 4857: 4856: 4837: 4835: 4834: 4829: 4824: 4823: 4804: 4802: 4801: 4796: 4791: 4790: 4767: 4765: 4764: 4759: 4754: 4753: 4731: 4729: 4728: 4723: 4715: 4714: 4696: 4695: 4677: 4676: 4649: 4648: 4627: 4626: 4608: 4607: 4589: 4588: 4562: 4560: 4559: 4554: 4546: 4545: 4527: 4526: 4508: 4507: 4480: 4478: 4476: 4472: 4471: 4456: 4455: 4440: 4439: 4426: 4421: 4420: 4399: 4398: 4380: 4379: 4361: 4360: 4273: 4271: 4270: 4265: 4263: 4261: 4257: 4256: 4238: 4237: 4216: 4208: 4207: 4192: 4191: 4170: 4169: 4157: 4151: 4141: 4137: 4136: 4118: 4117: 4096: 4088: 4087: 4072: 4071: 4050: 4049: 4037: 4031: 4021: 4010: 4009: 3975: 3973: 3972: 3967: 3962: 3961: 3939: 3937: 3936: 3931: 3929: 3928: 3921: 3920: 3902: 3901: 3883: 3882: 3855: 3847: 3846: 3831: 3830: 3815: 3814: 3802: 3796: 3764: 3763: 3748: 3747: 3726: 3725: 3706: 3678: 3676: 3675: 3670: 3665: 3664: 3645: 3643: 3642: 3637: 3632: 3631: 3612: 3610: 3609: 3604: 3599: 3598: 3579: 3577: 3576: 3571: 3569: 3568: 3549: 3547: 3546: 3541: 3536: 3535: 3517: 3516: 3498: 3497: 3477: 3475: 3474: 3469: 3444: 3441: 3422: 3421: 3403: 3402: 3384: 3383: 3350: 3348: 3347: 3342: 3340: 3339: 3332: 3331: 3313: 3312: 3294: 3293: 3266: 3258: 3257: 3242: 3241: 3220: 3219: 3207: 3179: 3178: 3163: 3162: 3141: 3140: 3112: 3110: 3109: 3104: 3102: 3101: 3100: 3099: 3094: 3085: 3084: 3069: 3068: 3047: 3046: 3034: 3009: 3008: 2993: 2992: 2971: 2970: 2926: 2924: 2923: 2918: 2907: 2906: 2901: 2892: 2891: 2876: 2875: 2854: 2853: 2841: 2823: 2821: 2820: 2815: 2807: 2806: 2788: 2787: 2769: 2768: 2741: 2733: 2732: 2717: 2716: 2701: 2700: 2688: 2674: 2673: 2668: 2659: 2658: 2643: 2642: 2630: 2625: 2624: 2612: 2611: 2606: 2597: 2596: 2584: 2576: 2575: 2570: 2561: 2560: 2545: 2544: 2523: 2522: 2510: 2492: 2490: 2489: 2484: 2476: 2475: 2460: 2459: 2435: 2434: 2409: 2407: 2406: 2401: 2396: 2395: 2380: 2379: 2378: 2377: 2372: 2371: 2361: 2360: 2339: 2330: 2322: 2311: 2310: 2295: 2294: 2250: 2248: 2247: 2242: 2237: 2236: 2217: 2215: 2214: 2209: 2204: 2203: 2184: 2182: 2181: 2176: 2171: 2170: 2148: 2146: 2145: 2140: 2135: 2134: 2119: 2118: 2105: 2087: 2086: 2064: 2062: 2061: 2056: 2054: 2053: 2044: 2043: 2022: 2021: 2016: 2015: 2005: 2004: 1991: 1982: 1974: 1966: 1965: 1940: 1938: 1937: 1932: 1930: 1929: 1928: 1927: 1922: 1921: 1911: 1910: 1892: 1883: 1875: 1867: 1866: 1844: 1842: 1841: 1836: 1831: 1830: 1811: 1809: 1808: 1803: 1798: 1797: 1775: 1773: 1772: 1767: 1765: 1764: 1763: 1762: 1757: 1756: 1746: 1745: 1725: 1724: 1711: 1696: 1695: 1673: 1671: 1670: 1665: 1653: 1651: 1650: 1645: 1643: 1642: 1629: 1627: 1626: 1621: 1619: 1618: 1601: 1599: 1598: 1593: 1588: 1587: 1568: 1566: 1565: 1560: 1555: 1554: 1530:electron-density 1420: 1418: 1417: 1412: 1407: 1406: 1401: 1392: 1391: 1379: 1365: 1364: 1359: 1350: 1349: 1337: 1323: 1322: 1300: 1298: 1297: 1292: 1287: 1286: 1281: 1272: 1271: 1259: 1245: 1244: 1239: 1230: 1229: 1217: 1203: 1202: 1172: 1170: 1169: 1164: 1162: 1161: 1144: 1142: 1141: 1136: 1131: 1130: 1111: 1109: 1108: 1103: 1098: 1097: 1075: 1073: 1072: 1067: 1065: 1064: 1060: 1059: 1033: 1032: 1014: 1013: 991: 989: 988: 983: 981: 980: 976: 975: 949: 948: 930: 929: 893: 891: 890: 885: 883: 882: 877: 868: 867: 855: 844: 843: 821: 819: 818: 813: 808: 807: 785: 783: 782: 777: 775: 774: 773: 772: 755: 747: 746: 734: 723: 722: 700: 698: 697: 692: 690: 689: 688: 687: 663: 661: 660: 655: 653: 645: 644: 632: 620: 618: 617: 612: 607: 606: 587: 585: 584: 579: 577: 576: 563: 561: 560: 555: 550: 549: 526: 524: 523: 518: 513: 512: 477:structure factor 474: 472: 471: 466: 461: 460: 439: 437: 436: 431: 423: 422: 421: 420: 411: 410: 384: 383: 370: 365: 347: 346: 324: 322: 321: 316: 308: 307: 306: 305: 296: 295: 272: 271: 258: 253: 235: 234: 212: 210: 209: 204: 202: 201: 188: 186: 185: 180: 178: 177: 161: 159: 158: 153: 148: 147: 128: 126: 125: 120: 115: 114: 86:reciprocal space 7953: 7952: 7948: 7947: 7946: 7944: 7943: 7942: 7928: 7927: 7926: 7921: 7885: 7834: 7783: 7764:Ondrej Krivanek 7685: 7548: 7496: 7458: 7444:Liquid-Phase EM 7408: 7367:Instrumentation 7362: 7320: 7311: 7275: 7270: 7240: 7239: 7187: 7186: 7182: 7137: 7136: 7132: 7088: 7087: 7083: 7061: 7060: 7056: 7019:(6902): 55–58. 7010: 7009: 7005: 6975: 6974: 6970: 6940: 6939: 6932: 6919: 6909: 6905: 6874: 6873: 6869: 6855: 6854: 6850: 6820: 6819: 6815: 6769: 6768: 6757: 6729: 6728: 6724: 6698: 6691: 6674: 6673: 6666: 6638: 6637: 6633: 6611: 6610: 6606: 6584: 6583: 6576: 6571: 6528:Crystallography 6524: 6496: 6452: 6397: 6368: 6363: 6324:thermoelectrics 6297:magnesium oxide 6288: 6239: 6234: 6233: 6221: 6200: 6188: 6151: 6150: 6118: 6117: 6085: 6084: 5958: 5957: 5918: 5917: 5881: 5880: 5848: 5847: 5807: 5806: 5774: 5773: 5746: 5730: 5706: 5677: 5632: 5631: 5603: 5579: 5529: 5528: 5420: 5419: 5345: 5344: 5312: 5311: 5279: 5278: 5221: 5193: 5169: 5168: 5133: 5132: 5103: 5102: 4975: 4974: 4929: 4928: 4896: 4895: 4873: 4872: 4840: 4839: 4807: 4806: 4774: 4773: 4737: 4736: 4566: 4565: 4427: 4338: 4337: 4289: 4280: 4142: 4022: 3981: 3980: 3945: 3944: 3783: 3693: 3692: 3685: 3683:Tangent Formula 3648: 3647: 3615: 3614: 3582: 3581: 3560: 3555: 3554: 3481: 3480: 3367: 3366: 3192: 3118: 3117: 3089: 3022: 2948: 2947: 2896: 2829: 2828: 2663: 2616: 2601: 2565: 2501: 2500: 2418: 2417: 2365: 2341: 2272: 2271: 2257: 2220: 2219: 2187: 2186: 2154: 2153: 2070: 2069: 2045: 2009: 1949: 1948: 1915: 1894: 1850: 1849: 1814: 1813: 1781: 1780: 1750: 1729: 1679: 1678: 1656: 1655: 1632: 1631: 1608: 1607: 1571: 1570: 1538: 1537: 1518: 1513: 1476: 1436:introduced the 1430: 1396: 1354: 1306: 1305: 1276: 1234: 1186: 1185: 1151: 1150: 1114: 1113: 1081: 1080: 1037: 997: 996: 953: 913: 912: 872: 827: 826: 791: 790: 764: 756: 706: 705: 679: 671: 666: 665: 623: 622: 590: 589: 566: 565: 533: 532: 496: 495: 444: 443: 388: 330: 329: 276: 218: 217: 191: 190: 167: 166: 131: 130: 98: 97: 80:potential. The 70: 65: 25:crystallography 21: 12: 11: 5: 7951: 7949: 7941: 7940: 7930: 7929: 7923: 7922: 7920: 7919: 7907: 7894: 7891: 7890: 7887: 7886: 7884: 7883: 7878: 7873: 7871:Direct methods 7868: 7863: 7858: 7853: 7848: 7842: 7840: 7836: 7835: 7833: 7832: 7827: 7822: 7817: 7812: 7807: 7802: 7797: 7791: 7789: 7785: 7784: 7782: 7781: 7776: 7771: 7766: 7761: 7756: 7751: 7746: 7741: 7736: 7731: 7726: 7721: 7719:Ernst G. Bauer 7716: 7711: 7706: 7700: 7698: 7691: 7687: 7686: 7684: 7683: 7678: 7673: 7668: 7663: 7658: 7653: 7648: 7643: 7638: 7633: 7628: 7623: 7618: 7613: 7612: 7611: 7601: 7596: 7591: 7586: 7581: 7576: 7571: 7566: 7560: 7558: 7554: 7553: 7550: 7549: 7547: 7546: 7541: 7540: 7539: 7529: 7524: 7519: 7518: 7517: 7506: 7504: 7498: 7497: 7495: 7494: 7489: 7484: 7479: 7474: 7468: 7466: 7460: 7459: 7457: 7456: 7451: 7446: 7441: 7436: 7431: 7425: 7423: 7414: 7410: 7409: 7407: 7406: 7401: 7396: 7391: 7386: 7381: 7376: 7370: 7368: 7364: 7363: 7361: 7360: 7355: 7350: 7345: 7340: 7335: 7333:Bremsstrahlung 7330: 7324: 7322: 7313: 7312: 7310: 7309: 7304: 7299: 7294: 7289: 7283: 7281: 7277: 7276: 7271: 7269: 7268: 7261: 7254: 7246: 7238: 7237: 7180: 7151:(4): 399–402. 7145:Nature Methods 7130: 7101:(2): 267–282. 7081: 7054: 7003: 6968: 6949:(4): 601–612. 6930: 6921:|journal= 6903: 6886:10.1.1.75.9091 6867: 6848: 6829:(952): 68–82. 6813: 6778:(5): 399–410. 6755: 6742:(8): 473–478. 6722: 6709:(8): 635–651. 6696: 6689: 6664: 6631: 6604: 6573: 6572: 6570: 6567: 6566: 6565: 6560: 6555: 6550: 6545: 6540: 6535: 6530: 6523: 6520: 6495: 6492: 6466:ne-wavelength 6451: 6448: 6432:non-commercial 6416:Laurence Marks 6396: 6393: 6367: 6364: 6362: 6359: 6340:intermetallics 6287: 6284: 6246: 6242: 6220: 6217: 6199: 6196: 6187: 6186:Implementation 6184: 6171: 6161: 6158: 6138: 6128: 6125: 6105: 6095: 6092: 6081: 6080: 6069: 6066: 6063: 6060: 6050: 6047: 6041: 6038: 6035: 6032: 6029: 6026: 6022: 6018: 6008: 6005: 6001: 5997: 5987: 5984: 5981: 5978: 5968: 5965: 5938: 5928: 5925: 5901: 5891: 5888: 5868: 5858: 5855: 5827: 5817: 5814: 5794: 5784: 5781: 5771: 5770: 5757: 5751: 5741: 5729: 5719: 5716: 5713: 5709: 5703: 5699: 5693: 5686: 5681: 5676: 5666: 5663: 5659: 5655: 5652: 5642: 5639: 5629: 5614: 5602: 5592: 5589: 5586: 5582: 5576: 5572: 5568: 5558: 5555: 5552: 5549: 5539: 5536: 5517: 5516: 5481: 5477: 5467: 5464: 5461: 5451: 5448: 5445: 5435: 5432: 5428: 5406: 5402: 5392: 5389: 5386: 5376: 5373: 5370: 5360: 5357: 5353: 5332: 5322: 5319: 5299: 5289: 5286: 5275: 5274: 5263: 5253: 5250: 5246: 5237: 5227: 5224: 5216: 5206: 5203: 5200: 5196: 5192: 5189: 5179: 5176: 5153: 5143: 5140: 5113: 5110: 5099: 5098: 5086: 5082: 5072: 5069: 5065: 5061: 5057: 5053: 5043: 5040: 5036: 5029: 5026: 5023: 5014: 5004: 5001: 4998: 4995: 4985: 4982: 4968: 4967: 4949: 4939: 4936: 4916: 4906: 4903: 4883: 4880: 4860: 4850: 4847: 4827: 4817: 4814: 4794: 4784: 4781: 4757: 4747: 4744: 4733: 4732: 4721: 4718: 4708: 4705: 4702: 4699: 4689: 4686: 4683: 4680: 4670: 4667: 4664: 4661: 4658: 4655: 4652: 4642: 4639: 4636: 4633: 4630: 4620: 4617: 4614: 4611: 4601: 4598: 4595: 4592: 4582: 4579: 4576: 4573: 4563: 4552: 4549: 4539: 4536: 4533: 4530: 4520: 4517: 4514: 4511: 4501: 4498: 4495: 4492: 4489: 4486: 4483: 4475: 4465: 4462: 4459: 4449: 4446: 4443: 4433: 4430: 4424: 4414: 4411: 4408: 4405: 4402: 4392: 4389: 4386: 4383: 4373: 4370: 4367: 4364: 4354: 4351: 4348: 4345: 4316: 4315: 4300: 4299: 4288: 4285: 4279: 4276: 4275: 4274: 4260: 4250: 4247: 4244: 4241: 4231: 4228: 4225: 4222: 4219: 4215: 4211: 4201: 4198: 4195: 4185: 4182: 4179: 4176: 4173: 4163: 4160: 4156: 4150: 4146: 4140: 4130: 4127: 4124: 4121: 4111: 4108: 4105: 4102: 4099: 4095: 4091: 4081: 4078: 4075: 4065: 4062: 4059: 4056: 4053: 4043: 4040: 4036: 4030: 4026: 4019: 4016: 4013: 4003: 4000: 3997: 3994: 3991: 3988: 3965: 3955: 3952: 3941: 3940: 3927: 3924: 3914: 3911: 3908: 3905: 3895: 3892: 3889: 3886: 3876: 3873: 3870: 3867: 3864: 3861: 3858: 3854: 3850: 3840: 3837: 3834: 3824: 3821: 3818: 3808: 3805: 3801: 3795: 3791: 3786: 3782: 3779: 3776: 3773: 3770: 3767: 3757: 3754: 3751: 3741: 3738: 3735: 3732: 3729: 3719: 3716: 3713: 3710: 3705: 3701: 3684: 3681: 3668: 3658: 3655: 3635: 3625: 3622: 3602: 3592: 3589: 3567: 3563: 3551: 3550: 3539: 3529: 3526: 3523: 3520: 3510: 3507: 3504: 3501: 3491: 3488: 3478: 3467: 3464: 3461: 3458: 3455: 3452: 3449: 3440: 3437: 3434: 3431: 3428: 3425: 3415: 3412: 3409: 3406: 3396: 3393: 3390: 3387: 3377: 3374: 3352: 3351: 3338: 3335: 3325: 3322: 3319: 3316: 3306: 3303: 3300: 3297: 3287: 3284: 3281: 3278: 3275: 3272: 3269: 3265: 3261: 3251: 3248: 3245: 3235: 3232: 3229: 3226: 3223: 3213: 3210: 3206: 3202: 3199: 3195: 3191: 3188: 3185: 3182: 3172: 3169: 3166: 3156: 3153: 3150: 3147: 3144: 3134: 3131: 3128: 3125: 3114: 3113: 3098: 3093: 3088: 3078: 3075: 3072: 3062: 3059: 3056: 3053: 3050: 3040: 3037: 3033: 3029: 3025: 3021: 3018: 3015: 3012: 3002: 2999: 2996: 2986: 2983: 2980: 2977: 2974: 2964: 2961: 2958: 2955: 2916: 2913: 2910: 2905: 2900: 2895: 2885: 2882: 2879: 2869: 2866: 2863: 2860: 2857: 2847: 2844: 2840: 2836: 2825: 2824: 2813: 2810: 2800: 2797: 2794: 2791: 2781: 2778: 2775: 2772: 2762: 2759: 2756: 2753: 2750: 2747: 2744: 2740: 2736: 2726: 2723: 2720: 2710: 2707: 2704: 2694: 2691: 2687: 2683: 2680: 2677: 2672: 2667: 2662: 2652: 2649: 2646: 2636: 2633: 2629: 2623: 2619: 2615: 2610: 2605: 2600: 2590: 2587: 2583: 2579: 2574: 2569: 2564: 2554: 2551: 2548: 2538: 2535: 2532: 2529: 2526: 2516: 2513: 2509: 2494: 2493: 2482: 2479: 2469: 2466: 2463: 2453: 2450: 2447: 2444: 2441: 2438: 2428: 2425: 2411: 2410: 2399: 2389: 2386: 2383: 2376: 2364: 2354: 2351: 2348: 2344: 2338: 2334: 2328: 2325: 2320: 2317: 2314: 2304: 2301: 2298: 2288: 2285: 2282: 2279: 2256: 2253: 2240: 2230: 2227: 2207: 2197: 2194: 2174: 2164: 2161: 2150: 2149: 2138: 2128: 2125: 2122: 2112: 2109: 2104: 2100: 2096: 2093: 2090: 2080: 2077: 2066: 2065: 2052: 2048: 2037: 2034: 2031: 2028: 2025: 2020: 2008: 1998: 1995: 1990: 1986: 1980: 1977: 1972: 1969: 1959: 1956: 1942: 1941: 1926: 1914: 1904: 1901: 1897: 1891: 1887: 1881: 1878: 1873: 1870: 1860: 1857: 1834: 1824: 1821: 1801: 1791: 1788: 1777: 1776: 1761: 1749: 1739: 1736: 1732: 1728: 1718: 1715: 1710: 1706: 1702: 1699: 1689: 1686: 1663: 1591: 1581: 1578: 1558: 1548: 1545: 1517: 1514: 1512: 1509: 1475: 1472: 1438:Sayre equation 1429: 1426: 1422: 1421: 1410: 1405: 1400: 1395: 1385: 1382: 1378: 1374: 1371: 1368: 1363: 1358: 1353: 1343: 1340: 1336: 1332: 1329: 1326: 1316: 1313: 1302: 1301: 1290: 1285: 1280: 1275: 1265: 1262: 1258: 1254: 1251: 1248: 1243: 1238: 1233: 1223: 1220: 1216: 1212: 1209: 1206: 1196: 1193: 1134: 1124: 1121: 1101: 1091: 1088: 1077: 1076: 1063: 1053: 1050: 1047: 1044: 1040: 1036: 1026: 1023: 1020: 1017: 1007: 1004: 993: 992: 979: 969: 966: 963: 960: 956: 952: 942: 939: 936: 933: 923: 920: 895: 894: 881: 876: 871: 861: 858: 854: 850: 847: 837: 834: 811: 801: 798: 787: 786: 771: 767: 763: 759: 754: 750: 740: 737: 733: 729: 726: 716: 713: 686: 682: 678: 674: 652: 648: 638: 635: 631: 610: 600: 597: 553: 543: 540: 516: 506: 503: 464: 454: 451: 441: 440: 429: 426: 414: 404: 401: 398: 395: 391: 387: 377: 374: 369: 364: 361: 357: 353: 350: 340: 337: 326: 325: 314: 311: 299: 289: 286: 283: 279: 275: 265: 262: 257: 252: 249: 245: 241: 238: 228: 225: 151: 141: 138: 118: 108: 105: 69: 66: 64: 61: 29:direct methods 13: 10: 9: 6: 4: 3: 2: 7950: 7939: 7936: 7935: 7933: 7918: 7917: 7908: 7906: 7905: 7896: 7895: 7892: 7882: 7879: 7877: 7874: 7872: 7869: 7867: 7864: 7862: 7859: 7857: 7854: 7852: 7849: 7847: 7844: 7843: 7841: 7837: 7831: 7828: 7826: 7823: 7821: 7818: 7816: 7813: 7811: 7808: 7806: 7803: 7801: 7798: 7796: 7795:Carl Zeiss AG 7793: 7792: 7790: 7788:Manufacturers 7786: 7780: 7777: 7775: 7772: 7770: 7767: 7765: 7762: 7760: 7757: 7755: 7752: 7750: 7747: 7745: 7742: 7740: 7739:James Hillier 7737: 7735: 7732: 7730: 7727: 7725: 7722: 7720: 7717: 7715: 7712: 7710: 7707: 7705: 7702: 7701: 7699: 7695: 7692: 7688: 7682: 7679: 7677: 7674: 7672: 7669: 7667: 7664: 7662: 7659: 7657: 7654: 7652: 7649: 7647: 7644: 7642: 7639: 7637: 7634: 7632: 7629: 7627: 7624: 7622: 7619: 7617: 7614: 7610: 7607: 7606: 7605: 7602: 7600: 7597: 7595: 7592: 7590: 7587: 7585: 7582: 7580: 7577: 7575: 7572: 7570: 7567: 7565: 7562: 7561: 7559: 7555: 7545: 7542: 7538: 7535: 7534: 7533: 7530: 7528: 7525: 7523: 7520: 7516: 7513: 7512: 7511: 7508: 7507: 7505: 7503: 7499: 7493: 7492:Ultrafast SEM 7490: 7488: 7485: 7483: 7480: 7478: 7475: 7473: 7470: 7469: 7467: 7465: 7461: 7455: 7452: 7450: 7449:Low-energy EM 7447: 7445: 7442: 7440: 7437: 7435: 7432: 7430: 7427: 7426: 7424: 7422: 7418: 7415: 7411: 7405: 7402: 7400: 7399:Magnetic lens 7397: 7395: 7392: 7390: 7387: 7385: 7382: 7380: 7377: 7375: 7372: 7371: 7369: 7365: 7359: 7356: 7354: 7351: 7349: 7348:Kikuchi lines 7346: 7344: 7341: 7339: 7336: 7334: 7331: 7329: 7326: 7325: 7323: 7318: 7314: 7308: 7305: 7303: 7300: 7298: 7295: 7293: 7290: 7288: 7285: 7284: 7282: 7278: 7274: 7267: 7262: 7260: 7255: 7253: 7248: 7247: 7244: 7233: 7229: 7224: 7219: 7215: 7211: 7207: 7203: 7199: 7195: 7191: 7184: 7181: 7176: 7172: 7167: 7162: 7158: 7154: 7150: 7146: 7142: 7134: 7131: 7126: 7122: 7117: 7112: 7108: 7104: 7100: 7096: 7092: 7085: 7082: 7077: 7073: 7069: 7065: 7058: 7055: 7050: 7046: 7042: 7038: 7034: 7030: 7026: 7022: 7018: 7014: 7007: 7004: 6999: 6995: 6991: 6987: 6983: 6979: 6972: 6969: 6964: 6960: 6956: 6952: 6948: 6944: 6937: 6935: 6931: 6926: 6914: 6906: 6904:9780120147373 6900: 6896: 6892: 6887: 6882: 6878: 6871: 6868: 6864:(2): 237–246. 6863: 6859: 6852: 6849: 6844: 6840: 6836: 6832: 6828: 6824: 6817: 6814: 6809: 6805: 6801: 6797: 6793: 6789: 6785: 6781: 6777: 6773: 6766: 6764: 6762: 6760: 6756: 6750: 6745: 6741: 6737: 6733: 6726: 6723: 6717: 6712: 6708: 6704: 6700: 6695: 6688: 6684: 6680: 6671: 6669: 6665: 6659: 6654: 6650: 6646: 6642: 6635: 6632: 6627: 6623: 6619: 6615: 6608: 6605: 6600: 6596: 6592: 6588: 6581: 6579: 6575: 6568: 6564: 6561: 6559: 6556: 6554: 6551: 6549: 6546: 6544: 6541: 6539: 6536: 6534: 6531: 6529: 6526: 6525: 6521: 6519: 6517: 6512: 6508: 6507: 6501: 6500:seminvariants 6493: 6491: 6489: 6485: 6481: 6477: 6474:cattering or 6473: 6469: 6465: 6461: 6457: 6449: 6447: 6445: 6441: 6437: 6433: 6429: 6425: 6421: 6417: 6414:by Professor 6413: 6409: 6405: 6401: 6394: 6392: 6390: 6385: 6381: 6377: 6373: 6365: 6360: 6358: 6356: 6352: 6348: 6343: 6341: 6337: 6333: 6329: 6325: 6321: 6317: 6312: 6310: 6306: 6302: 6298: 6294: 6285: 6283: 6281: 6277: 6273: 6269: 6265: 6260: 6244: 6231: 6227: 6218: 6212: 6208: 6205: 6197: 6195: 6193: 6185: 6183: 6156: 6123: 6090: 6067: 6064: 6061: 6045: 6039: 6036: 6033: 6030: 6027: 6024: 6003: 5982: 5979: 5963: 5956: 5955: 5954: 5952: 5923: 5915: 5886: 5853: 5845: 5841: 5812: 5779: 5755: 5739: 5727: 5717: 5714: 5711: 5707: 5701: 5697: 5684: 5661: 5653: 5637: 5630: 5612: 5600: 5590: 5587: 5584: 5580: 5574: 5570: 5553: 5550: 5527: 5526: 5525: 5523: 5515: 5512: 5511: 5510: 5508: 5504: 5499: 5497: 5462: 5446: 5430: 5387: 5371: 5355: 5317: 5284: 5248: 5244: 5222: 5201: 5198: 5194: 5190: 5174: 5167: 5166: 5165: 5138: 5108: 5067: 5059: 5038: 5027: 5024: 5021: 4999: 4996: 4980: 4973: 4972: 4971: 4966: 4963: 4962: 4961: 4934: 4901: 4881: 4878: 4845: 4812: 4779: 4771: 4770:normalization 4742: 4703: 4700: 4684: 4681: 4665: 4659: 4656: 4653: 4637: 4634: 4615: 4612: 4596: 4593: 4577: 4571: 4564: 4534: 4531: 4515: 4512: 4496: 4490: 4487: 4484: 4481: 4460: 4444: 4428: 4409: 4406: 4387: 4384: 4368: 4365: 4349: 4343: 4336: 4335: 4334: 4332: 4327: 4325: 4321: 4314: 4311: 4310: 4309: 4306: 4298: 4295: 4294: 4293: 4286: 4284: 4277: 4245: 4242: 4226: 4223: 4220: 4217: 4196: 4180: 4177: 4174: 4158: 4148: 4144: 4125: 4122: 4106: 4103: 4100: 4097: 4076: 4060: 4057: 4054: 4038: 4028: 4024: 4017: 3998: 3992: 3989: 3986: 3979: 3978: 3977: 3950: 3909: 3906: 3890: 3887: 3871: 3865: 3862: 3859: 3856: 3835: 3819: 3803: 3793: 3789: 3784: 3780: 3777: 3774: 3771: 3752: 3736: 3733: 3730: 3714: 3708: 3703: 3699: 3691: 3690: 3689: 3682: 3680: 3653: 3620: 3587: 3565: 3524: 3521: 3505: 3502: 3486: 3479: 3465: 3462: 3459: 3456: 3453: 3450: 3447: 3438: 3435: 3432: 3429: 3426: 3410: 3407: 3391: 3388: 3372: 3365: 3364: 3363: 3361: 3357: 3320: 3317: 3301: 3298: 3282: 3276: 3273: 3270: 3267: 3246: 3230: 3227: 3224: 3208: 3200: 3197: 3193: 3189: 3186: 3167: 3151: 3148: 3145: 3129: 3123: 3116: 3115: 3096: 3073: 3057: 3054: 3051: 3035: 3027: 3023: 3019: 3016: 2997: 2981: 2978: 2975: 2959: 2953: 2946: 2945: 2944: 2942: 2938: 2937:distributions 2934: 2930: 2914: 2911: 2903: 2880: 2864: 2861: 2858: 2842: 2795: 2792: 2776: 2773: 2757: 2751: 2748: 2745: 2742: 2721: 2705: 2689: 2681: 2678: 2675: 2670: 2647: 2631: 2621: 2617: 2613: 2608: 2585: 2577: 2572: 2549: 2533: 2530: 2527: 2511: 2499: 2498: 2497: 2464: 2448: 2442: 2439: 2423: 2416: 2415: 2414: 2384: 2381: 2374: 2362: 2352: 2349: 2346: 2342: 2336: 2332: 2326: 2323: 2318: 2299: 2283: 2277: 2270: 2269: 2268: 2266: 2261: 2254: 2252: 2225: 2192: 2159: 2123: 2107: 2102: 2098: 2094: 2091: 2075: 2068: 2067: 2050: 2032: 2029: 2026: 2018: 2006: 1993: 1988: 1984: 1978: 1975: 1970: 1954: 1947: 1946: 1945: 1924: 1912: 1902: 1899: 1895: 1889: 1885: 1879: 1876: 1871: 1855: 1848: 1847: 1846: 1819: 1786: 1759: 1747: 1737: 1734: 1730: 1713: 1708: 1704: 1700: 1684: 1677: 1676: 1675: 1661: 1605: 1576: 1543: 1534: 1531: 1527: 1523: 1515: 1510: 1508: 1506: 1502: 1498: 1494: 1490: 1486: 1482: 1473: 1471: 1469: 1465: 1461: 1457: 1453: 1449: 1445: 1444: 1439: 1435: 1427: 1425: 1403: 1380: 1369: 1361: 1327: 1311: 1304: 1303: 1283: 1260: 1249: 1241: 1218: 1207: 1191: 1184: 1183: 1182: 1180: 1176: 1148: 1119: 1086: 1048: 1045: 1042: 1038: 1021: 1018: 995: 994: 964: 961: 958: 954: 937: 934: 918: 911: 910: 909: 907: 906:wave function 903: 898: 879: 856: 848: 832: 825: 824: 823: 796: 769: 765: 761: 757: 735: 727: 711: 704: 703: 702: 684: 680: 676: 672: 633: 595: 538: 530: 501: 493: 489: 485: 482: 478: 449: 427: 424: 412: 402: 399: 396: 393: 389: 372: 359: 355: 351: 335: 328: 327: 312: 309: 297: 287: 284: 281: 277: 260: 247: 243: 239: 223: 216: 215: 214: 165: 136: 103: 95: 91: 87: 83: 79: 75: 68:Phase Problem 67: 62: 60: 58: 54: 50: 46: 42: 41:phase problem 38: 34: 30: 26: 19: 7914: 7902: 7870: 7856:EM Data Bank 7820:Nion Company 7714:Dennis Gabor 7704:Albert Crewe 7482:Confocal SEM 7379:Electron gun 7328:Auger effect 7197: 7193: 7183: 7148: 7144: 7133: 7098: 7094: 7084: 7070:(23): 7833. 7067: 7064:CrystEngComm 7063: 7057: 7016: 7012: 7006: 6981: 6977: 6971: 6946: 6942: 6876: 6870: 6861: 6857: 6851: 6826: 6822: 6816: 6775: 6771: 6739: 6735: 6725: 6706: 6702: 6693: 6686: 6682: 6678: 6651:(1): 68–73. 6648: 6644: 6634: 6620:(1): 65–67. 6617: 6613: 6607: 6593:(1): 60–65. 6590: 6586: 6510: 6504: 6497: 6483: 6479: 6475: 6471: 6467: 6463: 6453: 6407: 6403: 6399: 6398: 6370:DIRDIF is a 6369: 6344: 6313: 6289: 6272:feasible set 6267: 6261: 6226:bond lengths 6222: 6201: 6189: 6082: 5772: 5518: 5513: 5500: 5276: 5100: 4969: 4964: 4734: 4328: 4317: 4312: 4301: 4296: 4290: 4281: 3942: 3686: 3552: 3353: 2826: 2495: 2412: 2262: 2260:shown here. 2258: 2151: 1943: 1778: 1535: 1519: 1477: 1441: 1431: 1423: 1078: 899: 896: 788: 442: 71: 36: 28: 22: 7800:FEI Company 7734:Harald Rose 7724:Ernst Ruska 7413:Microscopes 7321:with matter 7319:interaction 6538:Diffraction 6482:somorphous 6428:GNU license 6219:Constraints 5838:, which is 2939:tend to be 1505:kinematical 1464:Nobel Prize 1452:Zachariasen 1434:David Sayre 1147:exponential 904:, the exit 57:reflections 49:statistical 33:diffraction 7881:Multislice 7697:Developers 7557:Techniques 7302:Microscope 7297:Micrograph 7200:(1): 1–8. 6569:References 6349:technique 6311:surfaces. 6192:algorithms 5522:channeling 5498:formula. 4305:scattering 2251:is known. 1520:The Sayre 492:experiment 82:real space 63:Background 7749:Max Knoll 7404:Stigmator 7214:2397-8554 6923:ignored ( 6913:cite book 6881:CiteSeerX 6511:ab-initio 6506:ab initio 6498:The SIR ( 6470:nomalous 6301:germanium 6280:solutions 6241:Σ 6065:± 5728:⋅ 5715:π 5698:∑ 5601:⋅ 5588:π 5571:∑ 5535:Ψ 5202:ϕ 4879:≈ 4768:contains 4704:ϕ 4701:− 4685:ϕ 4682:− 4666:ϕ 4616:ϕ 4613:− 4597:ϕ 4594:− 4578:ϕ 4535:ϕ 4532:− 4516:ϕ 4513:− 4497:ϕ 4482:× 4388:ϕ 4385:− 4369:ϕ 4366:− 4350:ϕ 4331:logarithm 4320:amorphous 4246:ϕ 4227:ϕ 4175:− 4145:∑ 4126:ϕ 4107:ϕ 4055:− 4025:∑ 4018:≈ 3999:φ 3951:ϕ 3910:ϕ 3907:− 3891:ϕ 3888:− 3872:ϕ 3857:× 3790:∑ 3772:≈ 3731:− 3700:∏ 3654:ϕ 3621:ϕ 3588:ϕ 3562:Σ 3525:ϕ 3522:− 3506:ϕ 3503:≈ 3487:ϕ 3436:π 3427:≈ 3411:ϕ 3408:− 3392:ϕ 3389:− 3373:ϕ 3358:for this 3321:ϕ 3318:− 3302:ϕ 3299:− 3283:ϕ 3268:× 3225:− 3187:≈ 3146:− 3052:− 3028:− 3017:≈ 2976:− 2909:⟩ 2859:− 2835:⟨ 2796:ϕ 2793:− 2777:ϕ 2774:− 2758:ϕ 2743:× 2676:− 2528:− 2481:⟩ 2446:⟨ 2440:≈ 2363:⋅ 2350:π 2333:∑ 2316:⟩ 2281:⟨ 2099:∑ 2007:− 1994:δ 1985:∑ 1913:⋅ 1903:π 1886:∑ 1748:⋅ 1738:π 1705:∑ 1501:dynamical 1493:molecules 1489:particles 1468:Chemistry 1432:In 1952, 1409:⟩ 1373:⟨ 1367:⟩ 1339:Ψ 1331:⟨ 1289:⟩ 1253:⟨ 1247:⟩ 1219:ψ 1211:⟨ 1049:ϕ 1043:− 1003:Ψ 965:ϕ 959:− 919:ψ 766:ϕ 681:ϕ 488:intensity 413:⋅ 400:π 394:− 368:∞ 363:∞ 360:− 356:∫ 298:⋅ 285:π 256:∞ 251:∞ 248:− 244:∫ 53:amplitude 35:data and 7932:Category 7904:Category 7851:CrysTBox 7839:Software 7510:Cryo-TEM 7317:Electron 7232:30167465 7175:28192420 7125:25866663 7041:12214229 6963:10927270 6808:20112743 6800:19771696 6522:See also 6509:and non- 6402:lectron 6361:Software 6320:zeolites 6286:Examples 6230:symmetry 5496:Blackman 2941:Gaussian 2265:randomly 1522:equation 1497:proteins 1456:Hauptman 564:, where 43:, where 37:a priori 7916:Commons 7564:4D STEM 7537:4D STEM 7515:Cryo-ET 7487:SEM-XRF 7477:CryoSEM 7434:Cryo-EM 7292:History 7223:6112783 7166:5376236 7116:4392419 7049:4384784 7021:Bibcode 6986:Bibcode 6831:Bibcode 6780:Bibcode 6460:acronym 6384:Fortran 6355:enzymes 6293:silicon 5840:complex 4894:, then 4772:terms, 1602:is the 1487:-sized 1448:Cochran 1428:History 1177:of the 1175:average 164:vectors 78:crystal 7861:EMsoft 7846:CASINO 7825:TESCAN 7690:Others 7589:cryoEM 7280:Basics 7230:  7220:  7212:  7173:  7163:  7123:  7113:  7047:  7039:  7013:Nature 6961:  6901:  6883:  6806:  6798:  6681:222, 2 6478:ingle 6406:irect 6366:DIRDIF 6338:, and 6328:oxides 6307:, and 6305:copper 6276:convex 6268:et al. 6043:  5844:states 5031:  5019:  5016:  3445:  3442:  2929:cosine 2496:Then: 1630:, and 1511:Theory 1495:, and 1485:micron 1179:moduli 1079:Where 7815:Leica 7661:PINEM 7527:HRTEM 7522:EFTEM 7095:IUCrJ 7045:S2CID 6858:Optik 6804:S2CID 6685:22, 3 6450:OASIS 5951:plane 1526:atoms 1481:nano- 1460:Karle 531:form 529:polar 45:phase 7876:IUCr 7810:JEOL 7681:WBDF 7676:WDXS 7626:EBIC 7621:EELS 7616:ECCI 7604:EBSD 7584:CBED 7532:STEM 7228:PMID 7210:ISSN 7171:PMID 7121:PMID 7037:PMID 6959:PMID 6925:help 6899:ISBN 6796:PMID 6692:2, 3 6202:The 5912:, a 5505:and 5101:Let 5060:> 4997:> 4322:and 3613:and 3466:2... 2263:For 2185:and 1483:and 1458:and 1450:and 1112:and 189:and 84:and 7646:FEM 7641:FIB 7609:TKD 7599:EDS 7502:TEM 7464:SEM 7439:EMP 7218:PMC 7202:doi 7161:PMC 7153:doi 7111:PMC 7103:doi 7072:doi 7029:doi 7017:419 6994:doi 6951:doi 6891:doi 6839:doi 6827:173 6788:doi 6744:doi 6711:doi 6653:doi 6622:doi 6595:doi 6494:SIR 6420:C++ 6395:EDM 6259:). 5455:k-h 5380:k-h 4943:k,h 4910:k,h 4854:k,h 4821:k,h 4693:k-h 4646:k,h 4605:k-h 4524:k-h 4453:k-h 4418:k,h 4377:k-h 4235:k-h 4189:k-h 4115:k-h 4069:k-h 3899:k-h 3828:k-h 3745:k-h 3596:k-h 3514:k-h 3400:k-h 3310:k-h 3239:k-h 3160:k-h 3066:k-h 2990:k-h 2873:k-h 2785:k-h 2714:k-h 2640:k-h 2542:k-h 2457:k-h 2292:k-h 2168:k-h 2116:k-h 1466:in 72:In 23:In 7934:: 7421:EM 7226:. 7216:. 7208:. 7196:. 7192:. 7169:. 7159:. 7149:14 7147:. 7143:. 7119:. 7109:. 7097:. 7093:. 7068:14 7066:. 7043:. 7035:. 7027:. 7015:. 6992:. 6982:05 6980:. 6957:. 6947:55 6945:. 6933:^ 6917:: 6915:}} 6911:{{ 6897:. 6889:. 6862:35 6860:. 6837:. 6825:. 6802:. 6794:. 6786:. 6774:. 6758:^ 6738:. 6734:. 6705:. 6701:. 6699:2" 6667:^ 6647:. 6643:. 6616:. 6589:. 6577:^ 6518:. 6490:. 6422:, 6391:. 6357:. 6334:, 6330:, 6326:, 6322:, 6303:, 6299:, 6295:, 6228:, 5953:: 5076:k' 5008:k' 1845:: 1674:: 1491:, 1446:, 1181:: 822:: 494:. 59:. 27:, 7265:e 7258:t 7251:v 7234:. 7204:: 7198:2 7177:. 7155:: 7127:. 7105:: 7099:2 7078:. 7074:: 7051:. 7031:: 7023:: 7000:. 6996:: 6988:: 6965:. 6953:: 6927:) 6907:. 6893:: 6845:. 6841:: 6833:: 6810:. 6790:: 6782:: 6776:9 6752:. 6746:: 6740:8 6719:. 6713:: 6707:9 6697:2 6694:P 6690:1 6687:P 6683:P 6679:P 6661:. 6655:: 6649:5 6628:. 6624:: 6618:5 6601:. 6597:: 6591:5 6484:S 6480:I 6476:S 6472:S 6468:A 6464:O 6424:C 6408:M 6404:D 6400:E 6245:2 6170:) 6165:r 6160:( 6157:b 6137:) 6132:r 6127:( 6124:b 6104:) 6099:k 6094:( 6091:B 6068:1 6062:= 6059:) 6054:k 6049:( 6046:S 6040:e 6037:r 6034:e 6031:h 6028:w 6025:, 6021:| 6017:) 6012:k 6007:( 6004:A 6000:| 5996:) 5991:k 5986:( 5983:S 5980:= 5977:) 5972:k 5967:( 5964:B 5937:) 5932:k 5927:( 5924:A 5900:) 5895:k 5890:( 5887:B 5867:) 5862:k 5857:( 5854:A 5826:) 5821:r 5816:( 5813:a 5793:) 5788:k 5783:( 5780:A 5756:2 5750:| 5740:l 5734:r 5723:k 5718:i 5712:2 5708:e 5702:l 5692:| 5685:2 5680:| 5675:) 5670:k 5665:( 5662:A 5658:| 5654:= 5651:) 5646:k 5641:( 5638:I 5613:l 5607:r 5596:k 5591:i 5585:2 5581:e 5575:l 5567:) 5562:k 5557:( 5554:A 5551:= 5548:) 5543:k 5538:( 5480:| 5476:) 5471:h 5466:( 5463:T 5460:) 5450:( 5447:T 5444:) 5439:k 5434:( 5431:T 5427:| 5405:| 5401:) 5396:h 5391:( 5388:F 5385:) 5375:( 5372:F 5369:) 5364:k 5359:( 5356:F 5352:| 5331:) 5326:k 5321:( 5318:F 5298:) 5293:k 5288:( 5285:T 5262:) 5257:k 5252:( 5249:N 5245:/ 5236:) 5231:k 5226:( 5223:I 5215:) 5210:k 5205:( 5199:i 5195:e 5191:= 5188:) 5183:k 5178:( 5175:T 5152:) 5147:k 5142:( 5139:N 5117:k 5112:( 5109:T 5085:| 5081:) 5071:( 5068:F 5064:| 5056:| 5052:) 5047:k 5042:( 5039:F 5035:| 5028:f 5025:f 5022:i 5013:) 5003:( 5000:I 4994:) 4989:k 4984:( 4981:I 4948:) 4938:( 4935:D 4915:) 4905:( 4902:B 4882:0 4859:) 4849:( 4846:D 4826:) 4816:( 4813:B 4793:) 4788:k 4783:( 4780:I 4756:) 4751:k 4746:( 4743:A 4720:) 4717:) 4712:h 4707:( 4698:) 4688:( 4679:) 4674:k 4669:( 4663:( 4660:s 4657:o 4654:c 4651:) 4641:( 4638:B 4635:= 4632:) 4629:) 4624:h 4619:( 4610:) 4600:( 4591:) 4586:k 4581:( 4575:( 4572:D 4551:) 4548:) 4543:h 4538:( 4529:) 4519:( 4510:) 4505:k 4500:( 4494:( 4491:s 4488:o 4485:c 4474:) 4469:h 4464:( 4461:I 4458:) 4448:( 4445:I 4442:) 4437:k 4432:( 4429:I 4423:) 4413:( 4410:A 4407:= 4404:) 4401:) 4396:h 4391:( 4382:) 4372:( 4363:) 4358:k 4353:( 4347:( 4344:D 4259:) 4254:h 4249:( 4243:+ 4240:) 4230:( 4224:s 4221:o 4218:c 4214:| 4210:) 4205:h 4200:( 4197:U 4194:) 4184:( 4181:U 4178:N 4172:) 4167:k 4162:( 4159:U 4155:| 4149:h 4139:) 4134:h 4129:( 4123:+ 4120:) 4110:( 4104:n 4101:i 4098:s 4094:| 4090:) 4085:h 4080:( 4077:U 4074:) 4064:( 4061:U 4058:N 4052:) 4047:k 4042:( 4039:U 4035:| 4029:h 4015:) 4012:) 4007:k 4002:( 3996:( 3993:n 3990:a 3987:t 3964:) 3959:h 3954:( 3926:) 3923:) 3918:h 3913:( 3904:) 3894:( 3885:) 3880:k 3875:( 3869:( 3866:s 3863:o 3860:c 3853:| 3849:) 3844:k 3839:( 3836:U 3833:) 3823:( 3820:U 3817:) 3812:k 3807:( 3804:U 3800:| 3794:h 3785:e 3781:C 3778:N 3775:2 3769:) 3766:) 3761:k 3756:( 3753:U 3750:) 3740:( 3737:U 3734:N 3728:) 3723:k 3718:( 3715:U 3712:( 3709:P 3704:h 3667:) 3662:k 3657:( 3634:) 3629:h 3624:( 3601:) 3591:( 3566:2 3538:) 3533:h 3528:( 3519:) 3509:( 3500:) 3495:k 3490:( 3463:, 3460:1 3457:, 3454:0 3451:= 3448:n 3439:, 3433:n 3430:2 3424:) 3419:h 3414:( 3405:) 3395:( 3386:) 3381:k 3376:( 3337:) 3334:) 3329:h 3324:( 3315:) 3305:( 3296:) 3291:k 3286:( 3280:( 3277:s 3274:o 3271:c 3264:| 3260:) 3255:k 3250:( 3247:U 3244:) 3234:( 3231:U 3228:N 3222:) 3217:k 3212:( 3209:U 3205:| 3201:N 3198:2 3194:e 3190:D 3184:) 3181:) 3176:k 3171:( 3168:U 3165:) 3155:( 3152:U 3149:N 3143:) 3138:k 3133:( 3130:U 3127:( 3124:P 3097:2 3092:| 3087:) 3082:k 3077:( 3074:U 3071:) 3061:( 3058:U 3055:N 3049:) 3044:k 3039:( 3036:U 3032:| 3024:e 3020:C 3014:) 3011:) 3006:k 3001:( 2998:U 2995:) 2985:( 2982:U 2979:N 2973:) 2968:k 2963:( 2960:U 2957:( 2954:P 2915:0 2912:= 2904:2 2899:| 2894:) 2889:k 2884:( 2881:U 2878:) 2868:( 2865:U 2862:N 2856:) 2851:k 2846:( 2843:U 2839:| 2812:) 2809:) 2804:h 2799:( 2790:) 2780:( 2771:) 2766:k 2761:( 2755:( 2752:s 2749:o 2746:c 2739:| 2735:) 2730:h 2725:( 2722:U 2719:) 2709:( 2706:U 2703:) 2698:k 2693:( 2690:U 2686:| 2682:N 2679:2 2671:2 2666:| 2661:) 2656:h 2651:( 2648:U 2645:) 2635:( 2632:U 2628:| 2622:2 2618:N 2614:+ 2609:2 2604:| 2599:) 2594:k 2589:( 2586:U 2582:| 2578:= 2573:2 2568:| 2563:) 2558:k 2553:( 2550:U 2547:) 2537:( 2534:U 2531:N 2525:) 2520:k 2515:( 2512:U 2508:| 2478:) 2473:h 2468:( 2465:U 2462:) 2452:( 2449:U 2443:N 2437:) 2432:k 2427:( 2424:U 2398:) 2393:k 2388:( 2385:U 2382:= 2375:l 2369:r 2358:k 2353:i 2347:2 2343:e 2337:l 2327:N 2324:1 2319:= 2313:) 2308:h 2303:( 2300:U 2297:) 2287:( 2284:U 2278:N 2239:) 2234:k 2229:( 2226:U 2206:) 2201:h 2196:( 2193:U 2173:) 2163:( 2160:U 2137:) 2132:h 2127:( 2124:U 2121:) 2111:( 2108:U 2103:h 2095:N 2092:= 2089:) 2084:k 2079:( 2076:U 2051:2 2047:) 2041:r 2036:( 2033:u 2030:N 2027:= 2024:) 2019:l 2013:r 2002:r 1997:( 1989:l 1979:N 1976:1 1971:= 1968:) 1963:r 1958:( 1955:u 1925:l 1919:r 1908:k 1900:2 1896:e 1890:l 1880:N 1877:1 1872:= 1869:) 1864:k 1859:( 1856:U 1833:) 1828:k 1823:( 1820:f 1800:) 1795:k 1790:( 1787:U 1760:l 1754:r 1743:k 1735:2 1731:e 1727:) 1722:k 1717:( 1714:f 1709:l 1701:= 1698:) 1693:k 1688:( 1685:F 1662:l 1640:r 1616:k 1590:) 1585:k 1580:( 1577:f 1557:) 1552:k 1547:( 1544:F 1404:2 1399:| 1394:) 1389:u 1384:( 1381:A 1377:| 1370:= 1362:2 1357:| 1352:) 1347:u 1342:( 1335:| 1328:= 1325:) 1320:u 1315:( 1312:I 1284:2 1279:| 1274:) 1269:r 1264:( 1261:a 1257:| 1250:= 1242:2 1237:| 1232:) 1227:r 1222:( 1215:| 1208:= 1205:) 1200:r 1195:( 1192:I 1159:u 1133:) 1128:u 1123:( 1120:A 1100:) 1095:r 1090:( 1087:a 1062:) 1057:u 1052:( 1046:i 1039:e 1035:) 1030:u 1025:( 1022:A 1019:= 1016:) 1011:u 1006:( 978:) 973:r 968:( 962:i 955:e 951:) 946:r 941:( 938:a 935:= 932:) 927:r 922:( 880:2 875:| 870:) 865:g 860:( 857:F 853:| 849:= 846:) 841:g 836:( 833:I 810:) 805:g 800:( 797:I 770:g 762:i 758:e 753:| 749:) 744:g 739:( 736:F 732:| 728:= 725:) 720:g 715:( 712:F 685:g 677:i 673:e 651:| 647:) 642:g 637:( 634:F 630:| 609:) 604:g 599:( 596:F 574:g 552:) 547:g 542:( 539:F 515:) 510:k 505:( 502:F 463:) 458:k 453:( 450:F 428:r 425:d 418:r 408:k 403:i 397:2 390:e 386:) 381:r 376:( 373:f 352:= 349:) 344:k 339:( 336:F 313:k 310:d 303:r 293:k 288:i 282:2 278:e 274:) 269:k 264:( 261:F 240:= 237:) 232:r 227:( 224:f 199:k 175:r 150:) 145:k 140:( 137:F 117:) 112:r 107:( 104:f 20:.

Index

Direct methods (crystallography)
crystallography
diffraction
phase problem
phase
statistical
amplitude
reflections
electron diffraction
crystal
real space
reciprocal space
crystal structure
Fourier transform
vectors
structure factor
three-dimensional
periodic function
intensity
experiment
polar
transmission electron microscope
wave function
exponential
average
moduli
David Sayre
Sayre equation
Acta Crystallographica
Cochran

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.