Knowledge

Direct sum

Source 📝

808:
product is an infinite sequence, such as (1,2,3,...) but in the direct sum, there is a requirement that all but finitely many coordinates be zero, so the sequence (1,2,3,...) would be an element of the direct product but not of the direct sum, while (1,2,0,0,0,...) would be an element of both. Often, if a + sign is used, all but finitely many coordinates must be zero, while if some form of multiplication is used, all but finitely many coordinates must be 1. In more technical language, if the summands are
38: 807:
In the case where infinitely many objects are combined, the direct sum and direct product are not isomorphic, even for abelian groups, vector spaces, or modules. As an example, consider the direct sum and direct product of (countably) infinitely many copies of the integers. An element in the direct
4557: 1539:
A distinction is made between internal and external direct sums, though the two are isomorphic. If the summands are defined first, and then the direct sum is defined in terms of the summands, we have an external direct sum. For example, if we define the real numbers
2217: 4369: 3610: 4468: 1530:
the phrase "direct product" is used. When the index set is infinite, the direct sum is not the same as the direct product since the direct sum has the extra requirement that all but finitely many coordinates must be zero.
1298: 5434: 2403: 5353: 2071: 4298: 649: 3372: 3292: 1889: 5572: 3097: 4241: 1590: 426: 5216:
if it is not a complemented subspace. For example, every vector subspace of a Hausdorff TVS that is not a closed subset is necessarily uncomplemented. Every closed vector subspace of a
2771: 2584: 2455: 2322: 895: 751: 1473: 5508: 5275: 3521: 1061: 5624: 2634: 3516: 3237: 1107: 528: 4149: 2831: 1762: 941: 852: 485: 1818: 5030: 3928: 981: 3178: 3139: 1985: 4289: 4267: 4211: 4189: 1560: 448: 4473: 352: 2066: 1950: 4084: 3856: 3830: 3801: 3483: 3456: 3204: 3000: 2044: 2011: 1367: 396: 218: 4151:
is an infinite collection of nontrivial rings, then the direct sum of the underlying additive groups can be equipped with termwise multiplication, but this produces a
4038: 2276: 1014: 3026: 2723:
of the mathematical objects in question. For example, in the category of abelian groups, direct sum is a coproduct. This is also true in the category of modules.
1424: 302: 276: 4012: 3980: 3429: 3402: 2802: 2513: 2486: 2247: 1398: 250: 557: 5210: 4933: 4888: 4803: 4712: 4639: 4413: 3761: 3678: 2536: 5462: 5187: 5167: 5147: 5127: 5106: 5077: 5057: 4998: 4978: 4954: 4910: 4865: 4845: 4825: 4776: 4756: 4732: 4689: 4666: 4612: 4592: 4463: 4443: 4058: 3948: 3896: 3876: 3738: 3718: 3698: 3652: 3632: 2972: 2951: 2931: 2911: 2888: 1733: 1713: 1693: 1673: 1653: 1633: 1613: 1528: 1508: 1341: 1321: 1130: 791: 771: 709: 689: 669: 577: 192: 172: 4552:{\displaystyle {\begin{alignedat}{4}\ \;&&M\times N&&\;\to \;&X\\&&(m,n)&&\;\mapsto \;&m+n\\\end{alignedat}}} 2846: 1490:. If the index set is finite, the direct sum is the same as the direct product. In the case of groups, if the group operation is written as 5880: 579:
are the same kinds of algebraic structures (e.g., all abelian groups, or all vector spaces). This relies on the fact that the direct sum is
1167: 5369: 3031: 5844: 5749: 154:. It is defined differently, but analogously, for different kinds of structures. As an example, the direct sum of two abelian groups 2331: 5288: 121: 5036:). In contrast to algebraic direct sums, the existence of such a complement is no longer guaranteed for topological direct sums. 592: 5657: 4669: 4383: 3297: 3242: 2284: 1823: 857: 5703: 59: 5872: 4091: 5780: 5521: 102: 2212:{\displaystyle \left(a_{1},b_{1}\right)\cdot \left(a_{2},b_{2}\right)=\left(a_{1}\circ a_{2},b_{1}\bullet b_{2}\right).} 5672: 74: 4105:
Use of direct sum terminology and notation is especially problematic when dealing with infinite families of rings: If
55: 4364:{\displaystyle \mathbf {A} \oplus \mathbf {B} ={\begin{bmatrix}\mathbf {A} &0\\0&\mathbf {B} \end{bmatrix}}.} 4216: 2837:. So for this category, a categorical direct sum is often simply called a coproduct to avoid any possible confusion. 1565: 401: 5652: 2864: 2734: 81: 5914: 2541: 2412: 5279: 5033: 4389: 2014: 1905: 718: 5467: 4095: 1429: 139: 88: 48: 5635: 5237: 4421: 2720: 1023: 143: 5586: 5085: 4379: 2856: 2694:
is an abstraction of the properties of the category of modules. In such a category, finite products and
2644: 2406: 451: 3488: 3209: 2593: 501: 70: 4108: 2807: 1738: 1069: 900: 811: 461: 5691: 5647: 2891: 2860: 2654: 1767: 492: 5003: 3901: 1132:
is infinite, because an element of the direct product can have infinitely many nonzero coordinates.
946: 3144: 3105: 2868: 2665: 1955: 1918: 4272: 4250: 4194: 4172: 1543: 1164:
axes intersect only at the origin (the zero vector). Addition is defined coordinate-wise, that is
431: 5662: 2834: 307: 2049: 1923: 4063: 3835: 3809: 3780: 3461: 3434: 3183: 2979: 2023: 1990: 1346: 357: 197: 5876: 5840: 5699: 4645: 4087: 3605:{\displaystyle g\mapsto {\begin{pmatrix}\rho _{V}(g)&0\\0&\rho _{W}(g)\end{pmatrix}}.} 2691: 2018: 4017: 2252: 986: 5894: 5224:
that is not a Hilbert space necessarily possess some uncomplemented closed vector subspace.
3772: 3005: 1403: 281: 255: 147: 17: 5890: 5756: 3985: 3953: 3407: 3380: 2780: 2491: 2464: 2225: 1376: 223: 5898: 5886: 4735: 4560: 4164: 2706: 2587: 533: 455: 5192: 4915: 4870: 4785: 4694: 4621: 4395: 3743: 3660: 2518: 95: 5447: 5172: 5152: 5132: 5112: 5091: 5062: 5042: 4983: 4963: 4939: 4895: 4850: 4830: 4810: 4761: 4741: 4717: 4674: 4651: 4642: 4597: 4577: 4448: 4428: 4043: 3933: 3881: 3861: 3804: 3723: 3703: 3683: 3637: 3617: 2957: 2936: 2916: 2896: 2873: 1718: 1698: 1678: 1658: 1638: 1618: 1598: 1513: 1493: 1370: 1326: 1306: 1148:, can be thought of as the direct sum of two one-dimensional vector spaces, namely the 1115: 1064: 801: 776: 756: 694: 674: 654: 562: 177: 157: 5908: 5217: 4571: 4152: 2673: 1913: 4098:. In the category of rings, the coproduct is given by a construction similar to the 5283: 5221: 4416: 4292: 4244: 4099: 2669: 2661: 1145: 488: 398:; in other words addition is defined coordinate-wise. For example, the direct sum 5667: 797: 712: 586: 580: 151: 37: 29:
Operation in abstract algebra composing objects into "more complicated" objects
5864: 5787: 4779: 4564: 3655: 804:. This is false, however, for some algebraic objects, like nonabelian groups. 1675:, then the direct sum is said to be internal. In this case, each element of 796:
The direct sum of finitely many abelian groups, vector spaces, or modules is
498:
We can also form direct sums with any finite number of summands, for example
5631: 4568: 2716: 2699: 2695: 2685: 2219:
This definition generalizes to direct sums of finitely many abelian groups.
1110: 5717: 2847:
Representation theory of finite groups § Direct sum of representations
5810: 2954: 2325: 1510:
the phrase "direct sum" is used, while if the group operation is written
2660:
The most familiar examples of this construction occur when considering
5875:, vol. 211 (Revised third ed.), New York: Springer-Verlag, 1695:
is expressible uniquely as an algebraic combination of an element of
1293:{\displaystyle (x_{1},y_{1})+(x_{2},y_{2})=(x_{1}+x_{2},y_{1}+y_{2})} 4090:, and should not be written as a direct sum. (The coproduct in the 5429:{\textstyle \alpha _{j}\colon \,A_{j}\to \bigoplus _{i\in I}A_{i}} 583: 5839:. Pallas Proefschriften. Amsterdam University Press. p. 26. 3099:
Another equivalent way of defining the direct sum is as follows:
5721: 3374:
is the natural map obtained by coordinate-wise action as above.
2398:{\textstyle \left(a_{i}\right)_{i\in I}\in \prod _{i\in I}A_{i}} 1595:
If, on the other hand, we first define some algebraic structure
5348:{\textstyle \pi _{j}\colon \,\bigoplus _{i\in I}A_{i}\to A_{j}} 487:. A similar process can be used to form the direct sum of two 31: 2773:(defined identically to the direct sum of abelian groups) is 644:{\displaystyle (A\oplus B)\oplus C\cong A\oplus (B\oplus C)} 3367:{\displaystyle \alpha :GL(V)\times GL(W)\to GL(V\oplus W)} 1917:
is a prototypical example of a direct sum. Given two such
3700:
is the field, then the direct sum of the representations
3287:{\displaystyle \alpha \circ (\rho _{V}\times \rho _{W}),} 1884:{\displaystyle \mathbb {Z} _{6}=\{0,2,4\}\oplus \{0,3\}} 5464:(with the same additional structure) and homomorphisms 4827:
is a vector subspace of a real or complex vector space
3982:
is not a ring homomorphism since it fails to send 1 to
5524: 5372: 5291: 5240: 4323: 3536: 2596: 2334: 1432: 1072: 1026: 5589: 5470: 5450: 5195: 5175: 5155: 5135: 5115: 5094: 5065: 5045: 5006: 4986: 4966: 4942: 4918: 4898: 4873: 4853: 4833: 4813: 4788: 4764: 4744: 4720: 4697: 4677: 4654: 4624: 4600: 4580: 4471: 4451: 4431: 4398: 4301: 4275: 4253: 4219: 4197: 4175: 4155:, that is, a ring without a multiplicative identity. 4111: 4066: 4046: 4020: 3988: 3956: 3936: 3904: 3884: 3864: 3838: 3812: 3783: 3746: 3726: 3706: 3686: 3663: 3640: 3620: 3524: 3491: 3464: 3437: 3410: 3383: 3300: 3245: 3212: 3186: 3147: 3108: 3034: 3008: 2982: 2960: 2939: 2919: 2899: 2876: 2810: 2783: 2737: 2544: 2521: 2494: 2467: 2415: 2287: 2255: 2228: 2074: 2052: 2026: 1993: 1958: 1926: 1826: 1770: 1741: 1735:. For an example of an internal direct sum, consider 1721: 1701: 1681: 1661: 1641: 1621: 1601: 1568: 1546: 1516: 1496: 1406: 1379: 1349: 1329: 1309: 1170: 1118: 989: 949: 903: 860: 814: 779: 759: 721: 697: 677: 657: 595: 565: 536: 504: 464: 434: 404: 360: 310: 284: 258: 226: 200: 180: 160: 5567:{\textstyle g\colon \,\bigoplus _{i\in I}A_{i}\to B} 2328:
of the direct product that consists of the elements
5813:
on direct sum of rings vs. direct product of rings.
4670:
topological direct sum of the topological subgroups
2727:
Direct sums versus coproducts in category of groups
62:. Unsourced material may be challenged and removed. 5618: 5566: 5502: 5456: 5428: 5347: 5269: 5204: 5181: 5161: 5141: 5121: 5100: 5071: 5051: 5024: 4992: 4972: 4948: 4927: 4904: 4882: 4859: 4839: 4819: 4797: 4770: 4750: 4726: 4706: 4683: 4660: 4633: 4606: 4586: 4551: 4457: 4437: 4407: 4363: 4283: 4261: 4235: 4205: 4183: 4143: 4078: 4052: 4032: 4006: 3974: 3942: 3922: 3890: 3870: 3850: 3824: 3795: 3755: 3732: 3712: 3692: 3672: 3646: 3626: 3604: 3510: 3477: 3450: 3423: 3396: 3366: 3286: 3231: 3198: 3172: 3133: 3091: 3020: 2994: 2966: 2945: 2925: 2905: 2882: 2825: 2796: 2765: 2628: 2578: 2530: 2507: 2480: 2449: 2397: 2316: 2270: 2241: 2211: 2060: 2038: 2005: 1979: 1944: 1883: 1812: 1756: 1727: 1707: 1687: 1667: 1647: 1627: 1607: 1584: 1554: 1522: 1502: 1467: 1418: 1392: 1361: 1335: 1315: 1292: 1124: 1101: 1055: 1008: 975: 935: 889: 846: 785: 765: 745: 703: 683: 663: 643: 571: 551: 522: 479: 442: 420: 390: 346: 296: 270: 244: 212: 186: 166: 4847:then there always exists another vector subspace 4291:if both are square matrices (and to an analogous 3858:does not receive natural ring homomorphisms from 3092:{\displaystyle g\cdot (v,w)=(g\cdot v,g\cdot w).} 2698:agree and the direct sum is either of them, cf. 1820:. This is expressible as an internal direct sum 5713: 5711: 5000:(which happens if and only if the addition map 4641:This is true if and only if when considered as 4236:{\displaystyle \mathbf {A} \oplus \mathbf {B} } 3404:are finite dimensional, then, given a basis of 1585:{\displaystyle \mathbb {R} \oplus \mathbb {R} } 421:{\displaystyle \mathbb {R} \oplus \mathbb {R} } 1764:(the integers modulo six), whose elements are 8: 2976:), the direct sum of the representations is 2766:{\displaystyle S_{3}\oplus \mathbb {Z} _{2}} 2668:. The construction may also be extended to 1878: 1866: 1860: 1842: 1807: 1771: 2579:{\displaystyle \left(A_{i}\right)_{i\in I}} 2450:{\displaystyle \left(a_{i}\right)_{i\in I}} 4533: 4529: 4499: 4495: 4479: 3777:Some authors will speak of the direct sum 304:. To add ordered pairs, we define the sum 5610: 5597: 5588: 5552: 5536: 5531: 5523: 5488: 5475: 5469: 5449: 5420: 5404: 5391: 5386: 5377: 5371: 5339: 5326: 5310: 5305: 5296: 5290: 5261: 5245: 5239: 5194: 5174: 5154: 5134: 5114: 5093: 5064: 5044: 5005: 4985: 4965: 4941: 4917: 4897: 4872: 4852: 4832: 4812: 4787: 4763: 4743: 4719: 4696: 4676: 4653: 4623: 4599: 4579: 4472: 4470: 4450: 4430: 4397: 4345: 4326: 4318: 4310: 4302: 4300: 4276: 4274: 4254: 4252: 4228: 4220: 4218: 4198: 4196: 4176: 4174: 4129: 4119: 4110: 4065: 4045: 4019: 3987: 3955: 3935: 3903: 3883: 3863: 3837: 3811: 3782: 3745: 3725: 3705: 3685: 3662: 3639: 3619: 3576: 3543: 3531: 3523: 3496: 3490: 3469: 3463: 3442: 3436: 3417: 3409: 3390: 3382: 3299: 3272: 3259: 3244: 3217: 3211: 3185: 3161: 3146: 3122: 3107: 3033: 3007: 2981: 2959: 2938: 2918: 2898: 2875: 2817: 2813: 2812: 2809: 2788: 2782: 2757: 2753: 2752: 2742: 2736: 2653:is a construction which combines several 2617: 2601: 2595: 2564: 2554: 2543: 2520: 2499: 2493: 2472: 2466: 2435: 2425: 2414: 2389: 2373: 2354: 2344: 2333: 2308: 2292: 2286: 2254: 2233: 2227: 2195: 2182: 2169: 2156: 2133: 2120: 2097: 2084: 2073: 2057: 2053: 2051: 2025: 1992: 1957: 1925: 1833: 1829: 1828: 1825: 1769: 1748: 1744: 1743: 1740: 1720: 1700: 1680: 1660: 1640: 1620: 1600: 1578: 1577: 1570: 1569: 1567: 1548: 1547: 1545: 1515: 1495: 1459: 1443: 1431: 1405: 1384: 1378: 1348: 1328: 1308: 1281: 1268: 1255: 1242: 1223: 1210: 1191: 1178: 1169: 1117: 1093: 1077: 1071: 1047: 1031: 1025: 994: 988: 967: 954: 948: 921: 911: 902: 881: 865: 859: 832: 822: 813: 778: 758: 720: 711:of the same kind. The direct sum is also 696: 676: 656: 594: 564: 535: 503: 471: 467: 466: 463: 436: 435: 433: 414: 413: 406: 405: 403: 359: 309: 283: 257: 225: 199: 179: 159: 122:Learn how and when to remove this message 4561:isomorphism of topological vector spaces 2317:{\displaystyle \bigoplus _{i\in I}A_{i}} 1300:, which is the same as vector addition. 890:{\displaystyle \bigoplus _{i\in I}A_{i}} 746:{\displaystyle A\oplus B\cong B\oplus A} 5684: 4648:(so scalar multiplication is ignored), 4374:Direct sum of topological vector spaces 1592:the direct sum is said to be external. 1468:{\textstyle A=\bigoplus _{i\in I}A_{i}} 5503:{\displaystyle g_{j}\colon A_{j}\to B} 3180:the vector space of the direct sum is 5837:Categorical Quantum Models and Logics 5737:The Theory of Groups: an Introduction 5444:. Given another algebraic structure 5270:{\textstyle \bigoplus _{i\in I}A_{i}} 5109:if there exists some vector subspace 2538:The direct sum of an infinite family 2017:. That is, the underlying set is the 1635:as a direct sum of two substructures 1056:{\textstyle \bigoplus _{i\in I}A_{i}} 7: 5822: 60:adding citations to reliable sources 3832:, but this should be avoided since 2853:direct sum of group representations 2841:Direct sum of group representations 1109:, but is strictly smaller when the 897:is defined to be the set of tuples 5619:{\displaystyle g\alpha _{j}=g_{j}} 2629:{\textstyle \prod _{i\in I}A_{i}.} 2222:For an arbitrary family of groups 25: 5518:, there is a unique homomorphism 5169:is the topological direct sum of 4165:Matrix addition § Direct sum 3511:{\displaystyle \rho _{V\oplus W}} 3485:are matrix-valued. In this case, 3232:{\displaystyle \rho _{V\oplus W}} 1535:Internal and external direct sums 1343:, their direct sum is written as 1102:{\textstyle \prod _{i\in I}A_{i}} 523:{\displaystyle A\oplus B\oplus C} 5658:Direct sum of topological groups 4384:Direct sum of topological groups 4346: 4327: 4311: 4303: 4277: 4255: 4229: 4221: 4199: 4177: 4144:{\displaystyle (R_{i})_{i\in I}} 3803:of two rings when they mean the 3740:is equal to their direct sum as 2826:{\displaystyle \mathbb {Z} _{2}} 1757:{\displaystyle \mathbb {Z} _{6}} 1426:, the direct sum may be written 936:{\displaystyle (a_{i})_{i\in I}} 847:{\displaystyle (A_{i})_{i\in I}} 480:{\displaystyle \mathbb {R} ^{2}} 220:consisting of the ordered pairs 36: 5739:, p. 177, Allyn and Bacon, 1965 3028:given component-wise, that is, 1813:{\displaystyle \{0,1,2,3,4,5\}} 47:needs additional citations for 5630:. Thus the direct sum is the 5558: 5494: 5397: 5332: 5025:{\displaystyle M\times N\to X} 5016: 4530: 4523: 4511: 4496: 4126: 4112: 4001: 3989: 3969: 3957: 3923:{\displaystyle R\to R\times S} 3908: 3588: 3582: 3555: 3549: 3528: 3361: 3349: 3340: 3337: 3331: 3319: 3313: 3278: 3252: 3167: 3148: 3128: 3109: 3083: 3059: 3053: 3041: 2715:is often, but not always, the 1971: 1959: 1939: 1927: 1287: 1235: 1229: 1203: 1197: 1171: 1156:axes. In this direct sum, the 976:{\displaystyle a_{i}\in A_{i}} 918: 904: 829: 815: 638: 626: 608: 596: 385: 361: 341: 329: 323: 311: 239: 227: 1: 5873:Graduate Texts in Mathematics 4092:category of commutative rings 3173:{\displaystyle (W,\rho _{W})} 3134:{\displaystyle (V,\rho _{V})} 2867:to it. Specifically, given a 1980:{\displaystyle (B,\bullet ),} 753:for any algebraic structures 651:for any algebraic structures 5220:is complemented. But every 5212:A vector subspace is called 4284:{\displaystyle \mathbf {B} } 4262:{\displaystyle \mathbf {A} } 4206:{\displaystyle \mathbf {B} } 4184:{\displaystyle \mathbf {A} } 1900:Direct sum of abelian groups 1555:{\displaystyle \mathbb {R} } 443:{\displaystyle \mathbb {R} } 18:Direct sum of abelian groups 4714:If this is the case and if 4169:For any arbitrary matrices 2664:, which are modules over a 2586:of non-trivial groups is a 2488:is the identity element of 2068:is defined component-wise: 347:{\displaystyle (a,b)+(c,d)} 5931: 5653:Direct sum of permutations 4377: 4162: 4086:is not a coproduct in the 3770: 3102:Given two representations 2844: 2777:a coproduct of the groups 2683: 2642: 2515:for all but finitely many 2061:{\displaystyle \,\cdot \,} 1945:{\displaystyle (A,\circ )} 1903: 1144:-plane, a two-dimensional 1016:for all but finitely many 4079:{\displaystyle R\times S} 3898:: in particular, the map 3851:{\displaystyle R\times S} 3825:{\displaystyle R\times S} 3796:{\displaystyle R\oplus S} 3478:{\displaystyle \rho _{W}} 3451:{\displaystyle \rho _{V}} 3199:{\displaystyle V\oplus W} 2995:{\displaystyle V\oplus W} 2953:(or, more generally, two 2039:{\displaystyle A\times B} 2006:{\displaystyle A\oplus B} 1362:{\displaystyle A\oplus B} 391:{\displaystyle (a+c,b+d)} 213:{\displaystyle A\oplus B} 194:is another abelian group 5698:, p.60, Springer, 1974, 5574:, called the sum of the 5034:vector space isomorphism 4892:algebraic complement of 4425:of two vector subspaces 4390:topological vector space 2731:However, the direct sum 2680:Direct sum in categories 2046:and the group operation 1906:Direct product of groups 715:up to isomorphism, i.e. 5673:Feferman-Vaught theorem 4616:topological complements 4096:tensor product of rings 4033:{\displaystyle 0\neq 1} 2409:, where by definition, 2271:{\displaystyle i\in I,} 1009:{\displaystyle a_{i}=0} 5835:Heunen, Chris (2009). 5620: 5568: 5504: 5458: 5430: 5349: 5277:comes equipped with a 5271: 5206: 5183: 5163: 5143: 5123: 5102: 5073: 5053: 5026: 4994: 4974: 4950: 4929: 4906: 4884: 4861: 4841: 4821: 4799: 4772: 4752: 4728: 4708: 4685: 4662: 4635: 4608: 4588: 4553: 4459: 4439: 4422:topological direct sum 4409: 4365: 4285: 4263: 4237: 4207: 4185: 4159:Direct sum of matrices 4145: 4080: 4054: 4034: 4008: 3976: 3944: 3924: 3892: 3872: 3852: 3826: 3797: 3757: 3734: 3714: 3694: 3674: 3648: 3628: 3614:Moreover, if we treat 3606: 3512: 3479: 3452: 3425: 3398: 3368: 3288: 3233: 3200: 3174: 3135: 3093: 3022: 3021:{\displaystyle g\in G} 2996: 2968: 2947: 2927: 2907: 2884: 2827: 2798: 2767: 2630: 2580: 2532: 2509: 2482: 2451: 2399: 2318: 2272: 2243: 2213: 2062: 2040: 2007: 1981: 1946: 1885: 1814: 1758: 1729: 1709: 1689: 1669: 1649: 1629: 1609: 1586: 1556: 1524: 1504: 1469: 1420: 1419:{\displaystyle i\in I} 1394: 1363: 1337: 1317: 1294: 1126: 1103: 1057: 1010: 977: 937: 891: 848: 798:canonically isomorphic 787: 767: 747: 705: 685: 665: 645: 573: 553: 524: 481: 444: 422: 392: 348: 298: 297:{\displaystyle b\in B} 272: 271:{\displaystyle a\in A} 246: 214: 188: 168: 5621: 5569: 5505: 5459: 5431: 5350: 5272: 5207: 5184: 5164: 5144: 5124: 5103: 5086:complemented subspace 5074: 5054: 5027: 4995: 4975: 4951: 4930: 4907: 4885: 4862: 4842: 4822: 4800: 4773: 4753: 4729: 4709: 4686: 4663: 4636: 4609: 4589: 4554: 4460: 4440: 4410: 4380:Complemented subspace 4366: 4286: 4264: 4245:block diagonal matrix 4238: 4208: 4186: 4146: 4081: 4055: 4035: 4009: 4007:{\displaystyle (1,1)} 3977: 3975:{\displaystyle (r,0)} 3945: 3925: 3893: 3873: 3853: 3827: 3798: 3758: 3735: 3715: 3695: 3675: 3649: 3629: 3607: 3513: 3480: 3453: 3426: 3424:{\displaystyle V,\,W} 3399: 3397:{\displaystyle V,\,W} 3369: 3289: 3234: 3206:and the homomorphism 3201: 3175: 3136: 3094: 3023: 2997: 2969: 2948: 2928: 2908: 2885: 2828: 2799: 2797:{\displaystyle S_{3}} 2768: 2651:direct sum of modules 2645:Direct sum of modules 2639:Direct sum of modules 2631: 2590:of the product group 2581: 2533: 2510: 2508:{\displaystyle A_{i}} 2483: 2481:{\displaystyle a_{i}} 2452: 2400: 2319: 2273: 2244: 2242:{\displaystyle A_{i}} 2214: 2063: 2041: 2013:is the same as their 2008: 1982: 1947: 1886: 1815: 1759: 1730: 1710: 1690: 1670: 1650: 1630: 1610: 1587: 1557: 1525: 1505: 1470: 1421: 1395: 1393:{\displaystyle A_{i}} 1364: 1338: 1318: 1303:Given two structures 1295: 1127: 1104: 1058: 1011: 978: 938: 892: 849: 800:to the corresponding 788: 768: 748: 706: 686: 666: 646: 574: 554: 525: 482: 452:real coordinate space 445: 423: 393: 349: 299: 273: 247: 245:{\displaystyle (a,b)} 215: 189: 169: 5692:Thomas W. Hungerford 5648:Direct sum of groups 5587: 5522: 5468: 5448: 5370: 5289: 5238: 5193: 5173: 5153: 5133: 5113: 5092: 5063: 5043: 5004: 4984: 4964: 4958:algebraic direct sum 4940: 4916: 4896: 4871: 4851: 4831: 4811: 4786: 4762: 4742: 4718: 4695: 4675: 4652: 4622: 4598: 4578: 4469: 4465:if the addition map 4449: 4429: 4396: 4299: 4273: 4251: 4217: 4195: 4173: 4109: 4064: 4044: 4018: 3986: 3954: 3934: 3902: 3882: 3862: 3836: 3810: 3781: 3744: 3724: 3704: 3684: 3661: 3654:as modules over the 3638: 3618: 3522: 3489: 3462: 3435: 3408: 3381: 3298: 3243: 3210: 3184: 3145: 3106: 3032: 3006: 2980: 2958: 2937: 2917: 2897: 2874: 2808: 2781: 2735: 2594: 2542: 2519: 2492: 2465: 2413: 2332: 2285: 2253: 2226: 2072: 2050: 2024: 1991: 1956: 1924: 1824: 1768: 1739: 1719: 1699: 1679: 1659: 1639: 1619: 1599: 1566: 1544: 1514: 1494: 1430: 1404: 1377: 1347: 1327: 1307: 1168: 1116: 1070: 1063:is contained in the 1024: 987: 947: 901: 858: 812: 777: 757: 719: 695: 675: 655: 593: 563: 552:{\displaystyle A,B,} 534: 502: 462: 432: 402: 358: 308: 282: 256: 224: 198: 178: 158: 56:improve this article 5634:in the appropriate 4563:(meaning that this 3767:Direct sum of rings 3002:with the action of 2657:into a new module. 1895:Types of direct sum 5811:Math StackExchange 5735:Joseph J. Rotman, 5663:Restricted product 5616: 5564: 5547: 5500: 5454: 5426: 5415: 5345: 5321: 5267: 5256: 5205:{\displaystyle N.} 5202: 5179: 5159: 5139: 5119: 5098: 5069: 5049: 5039:A vector subspace 5022: 4990: 4970: 4946: 4928:{\displaystyle X,} 4925: 4902: 4883:{\displaystyle X,} 4880: 4857: 4837: 4817: 4798:{\displaystyle X.} 4795: 4768: 4748: 4724: 4707:{\displaystyle N.} 4704: 4681: 4658: 4646:topological groups 4634:{\displaystyle X.} 4631: 4604: 4584: 4549: 4547: 4455: 4435: 4419:, is said to be a 4408:{\displaystyle X,} 4405: 4361: 4352: 4281: 4259: 4243:is defined as the 4233: 4203: 4181: 4141: 4076: 4050: 4030: 4004: 3972: 3940: 3920: 3888: 3868: 3848: 3822: 3793: 3756:{\displaystyle kG} 3753: 3730: 3710: 3690: 3673:{\displaystyle kG} 3670: 3644: 3624: 3602: 3593: 3508: 3475: 3448: 3421: 3394: 3364: 3284: 3229: 3196: 3170: 3131: 3089: 3018: 2992: 2964: 2943: 2923: 2903: 2880: 2859:of the underlying 2835:category of groups 2823: 2794: 2763: 2626: 2612: 2576: 2531:{\displaystyle i.} 2528: 2505: 2478: 2447: 2395: 2384: 2314: 2303: 2268: 2239: 2209: 2058: 2036: 2003: 1977: 1942: 1881: 1810: 1754: 1725: 1715:and an element of 1705: 1685: 1665: 1645: 1625: 1605: 1582: 1552: 1520: 1500: 1465: 1454: 1416: 1390: 1359: 1333: 1313: 1290: 1122: 1099: 1088: 1053: 1042: 1020:. The direct sum 1006: 973: 933: 887: 876: 844: 793:of the same kind. 783: 763: 743: 701: 681: 661: 641: 569: 549: 520: 477: 440: 418: 388: 344: 294: 268: 242: 210: 184: 164: 5882:978-0-387-95385-4 5532: 5457:{\displaystyle B} 5400: 5306: 5241: 5182:{\displaystyle M} 5162:{\displaystyle X} 5142:{\displaystyle X} 5122:{\displaystyle N} 5101:{\displaystyle X} 5079:is said to be a ( 5072:{\displaystyle X} 5052:{\displaystyle M} 4993:{\displaystyle N} 4973:{\displaystyle M} 4949:{\displaystyle X} 4905:{\displaystyle M} 4860:{\displaystyle N} 4840:{\displaystyle X} 4820:{\displaystyle M} 4771:{\displaystyle N} 4751:{\displaystyle M} 4727:{\displaystyle X} 4684:{\displaystyle M} 4661:{\displaystyle X} 4607:{\displaystyle N} 4587:{\displaystyle M} 4574:), in which case 4478: 4458:{\displaystyle N} 4438:{\displaystyle M} 4213:, the direct sum 4088:category of rings 4053:{\displaystyle S} 3943:{\displaystyle r} 3891:{\displaystyle S} 3871:{\displaystyle R} 3733:{\displaystyle W} 3713:{\displaystyle V} 3693:{\displaystyle k} 3647:{\displaystyle W} 3627:{\displaystyle V} 2967:{\displaystyle G} 2946:{\displaystyle G} 2926:{\displaystyle W} 2906:{\displaystyle V} 2883:{\displaystyle G} 2705:General case: In 2692:additive category 2597: 2405:that have finite 2369: 2288: 2019:Cartesian product 1987:their direct sum 1728:{\displaystyle W} 1708:{\displaystyle V} 1688:{\displaystyle S} 1668:{\displaystyle W} 1648:{\displaystyle V} 1628:{\displaystyle S} 1608:{\displaystyle S} 1523:{\displaystyle *} 1503:{\displaystyle +} 1439: 1336:{\displaystyle B} 1316:{\displaystyle A} 1125:{\displaystyle I} 1073: 1027: 861: 854:, the direct sum 786:{\displaystyle B} 766:{\displaystyle A} 704:{\displaystyle C} 684:{\displaystyle B} 664:{\displaystyle A} 572:{\displaystyle C} 187:{\displaystyle B} 167:{\displaystyle A} 132: 131: 124: 106: 16:(Redirected from 5922: 5915:Abstract algebra 5901: 5851: 5850: 5832: 5826: 5820: 5814: 5808: 5802: 5801: 5799: 5798: 5792: 5786:. Archived from 5785: 5777: 5771: 5770: 5768: 5767: 5761: 5755:. Archived from 5754: 5746: 5740: 5733: 5727: 5715: 5706: 5689: 5625: 5623: 5622: 5617: 5615: 5614: 5602: 5601: 5573: 5571: 5570: 5565: 5557: 5556: 5546: 5509: 5507: 5506: 5501: 5493: 5492: 5480: 5479: 5463: 5461: 5460: 5455: 5435: 5433: 5432: 5427: 5425: 5424: 5414: 5396: 5395: 5382: 5381: 5354: 5352: 5351: 5346: 5344: 5343: 5331: 5330: 5320: 5301: 5300: 5276: 5274: 5273: 5268: 5266: 5265: 5255: 5211: 5209: 5208: 5203: 5188: 5186: 5185: 5180: 5168: 5166: 5165: 5160: 5148: 5146: 5145: 5140: 5128: 5126: 5125: 5120: 5107: 5105: 5104: 5099: 5078: 5076: 5075: 5070: 5058: 5056: 5055: 5050: 5031: 5029: 5028: 5023: 4999: 4997: 4996: 4991: 4979: 4977: 4976: 4971: 4955: 4953: 4952: 4947: 4934: 4932: 4931: 4926: 4911: 4909: 4908: 4903: 4889: 4887: 4886: 4881: 4866: 4864: 4863: 4858: 4846: 4844: 4843: 4838: 4826: 4824: 4823: 4818: 4804: 4802: 4801: 4796: 4778:are necessarily 4777: 4775: 4774: 4769: 4757: 4755: 4754: 4749: 4733: 4731: 4730: 4725: 4713: 4711: 4710: 4705: 4690: 4688: 4687: 4682: 4667: 4665: 4664: 4659: 4640: 4638: 4637: 4632: 4613: 4611: 4610: 4605: 4593: 4591: 4590: 4585: 4558: 4556: 4555: 4550: 4548: 4527: 4509: 4508: 4493: 4481: 4476: 4464: 4462: 4461: 4456: 4444: 4442: 4441: 4436: 4414: 4412: 4411: 4406: 4370: 4368: 4367: 4362: 4357: 4356: 4349: 4330: 4314: 4306: 4290: 4288: 4287: 4282: 4280: 4268: 4266: 4265: 4260: 4258: 4242: 4240: 4239: 4234: 4232: 4224: 4212: 4210: 4209: 4204: 4202: 4190: 4188: 4187: 4182: 4180: 4150: 4148: 4147: 4142: 4140: 4139: 4124: 4123: 4085: 4083: 4082: 4077: 4059: 4057: 4056: 4051: 4039: 4037: 4036: 4031: 4013: 4011: 4010: 4005: 3981: 3979: 3978: 3973: 3949: 3947: 3946: 3941: 3929: 3927: 3926: 3921: 3897: 3895: 3894: 3889: 3877: 3875: 3874: 3869: 3857: 3855: 3854: 3849: 3831: 3829: 3828: 3823: 3802: 3800: 3799: 3794: 3773:Product of rings 3762: 3760: 3759: 3754: 3739: 3737: 3736: 3731: 3719: 3717: 3716: 3711: 3699: 3697: 3696: 3691: 3679: 3677: 3676: 3671: 3653: 3651: 3650: 3645: 3633: 3631: 3630: 3625: 3611: 3609: 3608: 3603: 3598: 3597: 3581: 3580: 3548: 3547: 3517: 3515: 3514: 3509: 3507: 3506: 3484: 3482: 3481: 3476: 3474: 3473: 3457: 3455: 3454: 3449: 3447: 3446: 3430: 3428: 3427: 3422: 3403: 3401: 3400: 3395: 3377:Furthermore, if 3373: 3371: 3370: 3365: 3293: 3291: 3290: 3285: 3277: 3276: 3264: 3263: 3238: 3236: 3235: 3230: 3228: 3227: 3205: 3203: 3202: 3197: 3179: 3177: 3176: 3171: 3166: 3165: 3140: 3138: 3137: 3132: 3127: 3126: 3098: 3096: 3095: 3090: 3027: 3025: 3024: 3019: 3001: 2999: 2998: 2993: 2973: 2971: 2970: 2965: 2952: 2950: 2949: 2944: 2932: 2930: 2929: 2924: 2912: 2910: 2909: 2904: 2889: 2887: 2886: 2881: 2855:generalizes the 2832: 2830: 2829: 2824: 2822: 2821: 2816: 2803: 2801: 2800: 2795: 2793: 2792: 2772: 2770: 2769: 2764: 2762: 2761: 2756: 2747: 2746: 2714: 2713: 2635: 2633: 2632: 2627: 2622: 2621: 2611: 2585: 2583: 2582: 2577: 2575: 2574: 2563: 2559: 2558: 2537: 2535: 2534: 2529: 2514: 2512: 2511: 2506: 2504: 2503: 2487: 2485: 2484: 2479: 2477: 2476: 2457:is said to have 2456: 2454: 2453: 2448: 2446: 2445: 2434: 2430: 2429: 2404: 2402: 2401: 2396: 2394: 2393: 2383: 2365: 2364: 2353: 2349: 2348: 2323: 2321: 2320: 2315: 2313: 2312: 2302: 2277: 2275: 2274: 2269: 2248: 2246: 2245: 2240: 2238: 2237: 2218: 2216: 2215: 2210: 2205: 2201: 2200: 2199: 2187: 2186: 2174: 2173: 2161: 2160: 2143: 2139: 2138: 2137: 2125: 2124: 2107: 2103: 2102: 2101: 2089: 2088: 2067: 2065: 2064: 2059: 2045: 2043: 2042: 2037: 2012: 2010: 2009: 2004: 1986: 1984: 1983: 1978: 1951: 1949: 1948: 1943: 1890: 1888: 1887: 1882: 1838: 1837: 1832: 1819: 1817: 1816: 1811: 1763: 1761: 1760: 1755: 1753: 1752: 1747: 1734: 1732: 1731: 1726: 1714: 1712: 1711: 1706: 1694: 1692: 1691: 1686: 1674: 1672: 1671: 1666: 1654: 1652: 1651: 1646: 1634: 1632: 1631: 1626: 1614: 1612: 1611: 1606: 1591: 1589: 1588: 1583: 1581: 1573: 1562:and then define 1561: 1559: 1558: 1553: 1551: 1529: 1527: 1526: 1521: 1509: 1507: 1506: 1501: 1474: 1472: 1471: 1466: 1464: 1463: 1453: 1425: 1423: 1422: 1417: 1399: 1397: 1396: 1391: 1389: 1388: 1368: 1366: 1365: 1360: 1342: 1340: 1339: 1334: 1322: 1320: 1319: 1314: 1299: 1297: 1296: 1291: 1286: 1285: 1273: 1272: 1260: 1259: 1247: 1246: 1228: 1227: 1215: 1214: 1196: 1195: 1183: 1182: 1131: 1129: 1128: 1123: 1108: 1106: 1105: 1100: 1098: 1097: 1087: 1062: 1060: 1059: 1054: 1052: 1051: 1041: 1015: 1013: 1012: 1007: 999: 998: 982: 980: 979: 974: 972: 971: 959: 958: 942: 940: 939: 934: 932: 931: 916: 915: 896: 894: 893: 888: 886: 885: 875: 853: 851: 850: 845: 843: 842: 827: 826: 792: 790: 789: 784: 772: 770: 769: 764: 752: 750: 749: 744: 710: 708: 707: 702: 690: 688: 687: 682: 670: 668: 667: 662: 650: 648: 647: 642: 578: 576: 575: 570: 558: 556: 555: 550: 529: 527: 526: 521: 486: 484: 483: 478: 476: 475: 470: 449: 447: 446: 441: 439: 427: 425: 424: 419: 417: 409: 397: 395: 394: 389: 353: 351: 350: 345: 303: 301: 300: 295: 277: 275: 274: 269: 251: 249: 248: 243: 219: 217: 216: 211: 193: 191: 190: 185: 173: 171: 170: 165: 148:abstract algebra 127: 120: 116: 113: 107: 105: 64: 40: 32: 21: 5930: 5929: 5925: 5924: 5923: 5921: 5920: 5919: 5905: 5904: 5883: 5863: 5860: 5855: 5854: 5847: 5834: 5833: 5829: 5821: 5817: 5809: 5805: 5796: 5794: 5790: 5783: 5779: 5778: 5774: 5765: 5763: 5759: 5752: 5748: 5747: 5743: 5734: 5730: 5716: 5709: 5690: 5686: 5681: 5644: 5606: 5593: 5585: 5584: 5582: 5548: 5520: 5519: 5484: 5471: 5466: 5465: 5446: 5445: 5416: 5387: 5373: 5368: 5367: 5335: 5322: 5292: 5287: 5286: 5257: 5236: 5235: 5234:The direct sum 5230: 5191: 5190: 5171: 5170: 5151: 5150: 5131: 5130: 5111: 5110: 5090: 5089: 5061: 5060: 5041: 5040: 5002: 5001: 4982: 4981: 4962: 4961: 4938: 4937: 4914: 4913: 4894: 4893: 4869: 4868: 4849: 4848: 4829: 4828: 4809: 4808: 4784: 4783: 4760: 4759: 4740: 4739: 4716: 4715: 4693: 4692: 4673: 4672: 4650: 4649: 4620: 4619: 4614:are said to be 4596: 4595: 4576: 4575: 4546: 4545: 4534: 4526: 4506: 4505: 4500: 4492: 4480: 4467: 4466: 4447: 4446: 4427: 4426: 4394: 4393: 4386: 4378:Main articles: 4376: 4351: 4350: 4343: 4337: 4336: 4331: 4319: 4297: 4296: 4271: 4270: 4249: 4248: 4215: 4214: 4193: 4192: 4171: 4170: 4167: 4161: 4125: 4115: 4107: 4106: 4062: 4061: 4042: 4041: 4016: 4015: 4014:(assuming that 3984: 3983: 3952: 3951: 3932: 3931: 3900: 3899: 3880: 3879: 3860: 3859: 3834: 3833: 3808: 3807: 3779: 3778: 3775: 3769: 3742: 3741: 3722: 3721: 3702: 3701: 3682: 3681: 3659: 3658: 3636: 3635: 3616: 3615: 3592: 3591: 3572: 3570: 3564: 3563: 3558: 3539: 3532: 3520: 3519: 3492: 3487: 3486: 3465: 3460: 3459: 3438: 3433: 3432: 3406: 3405: 3379: 3378: 3296: 3295: 3268: 3255: 3241: 3240: 3213: 3208: 3207: 3182: 3181: 3157: 3143: 3142: 3118: 3104: 3103: 3030: 3029: 3004: 3003: 2978: 2977: 2956: 2955: 2935: 2934: 2915: 2914: 2895: 2894: 2892:representations 2872: 2871: 2849: 2843: 2811: 2806: 2805: 2784: 2779: 2778: 2751: 2738: 2733: 2732: 2729: 2711: 2710: 2707:category theory 2688: 2682: 2647: 2641: 2613: 2592: 2591: 2588:proper subgroup 2550: 2546: 2545: 2540: 2539: 2517: 2516: 2495: 2490: 2489: 2468: 2463: 2462: 2421: 2417: 2416: 2411: 2410: 2385: 2340: 2336: 2335: 2330: 2329: 2304: 2283: 2282: 2251: 2250: 2229: 2224: 2223: 2191: 2178: 2165: 2152: 2151: 2147: 2129: 2116: 2115: 2111: 2093: 2080: 2079: 2075: 2070: 2069: 2048: 2047: 2022: 2021: 1989: 1988: 1954: 1953: 1922: 1921: 1908: 1902: 1897: 1827: 1822: 1821: 1766: 1765: 1742: 1737: 1736: 1717: 1716: 1697: 1696: 1677: 1676: 1657: 1656: 1637: 1636: 1617: 1616: 1615:and then write 1597: 1596: 1564: 1563: 1542: 1541: 1537: 1512: 1511: 1492: 1491: 1480: 1455: 1428: 1427: 1402: 1401: 1400:, indexed with 1380: 1375: 1374: 1345: 1344: 1325: 1324: 1305: 1304: 1277: 1264: 1251: 1238: 1219: 1206: 1187: 1174: 1166: 1165: 1138: 1114: 1113: 1089: 1068: 1067: 1043: 1022: 1021: 990: 985: 984: 963: 950: 945: 944: 917: 907: 899: 898: 877: 856: 855: 828: 818: 810: 809: 775: 774: 755: 754: 717: 716: 693: 692: 673: 672: 653: 652: 591: 590: 561: 560: 532: 531: 500: 499: 465: 460: 459: 456:Cartesian plane 430: 429: 400: 399: 356: 355: 306: 305: 280: 279: 254: 253: 222: 221: 196: 195: 176: 175: 156: 155: 128: 117: 111: 108: 65: 63: 53: 41: 30: 23: 22: 15: 12: 11: 5: 5928: 5926: 5918: 5917: 5907: 5906: 5903: 5902: 5881: 5859: 5856: 5853: 5852: 5846:978-9085550242 5845: 5827: 5825:, section I.11 5815: 5803: 5772: 5741: 5728: 5707: 5683: 5682: 5680: 5677: 5676: 5675: 5670: 5665: 5660: 5655: 5650: 5643: 5640: 5613: 5609: 5605: 5600: 5596: 5592: 5578: 5563: 5560: 5555: 5551: 5545: 5542: 5539: 5535: 5530: 5527: 5499: 5496: 5491: 5487: 5483: 5478: 5474: 5453: 5423: 5419: 5413: 5410: 5407: 5403: 5399: 5394: 5390: 5385: 5380: 5376: 5342: 5338: 5334: 5329: 5325: 5319: 5316: 5313: 5309: 5304: 5299: 5295: 5264: 5260: 5254: 5251: 5248: 5244: 5229: 5226: 5215: 5214:uncomplemented 5201: 5198: 5178: 5158: 5138: 5118: 5108: 5097: 5082: 5068: 5048: 5021: 5018: 5015: 5012: 5009: 4989: 4969: 4959: 4945: 4935: 4924: 4921: 4901: 4879: 4876: 4856: 4836: 4816: 4794: 4791: 4767: 4747: 4723: 4703: 4700: 4680: 4657: 4630: 4627: 4617: 4603: 4583: 4544: 4541: 4538: 4535: 4532: 4528: 4525: 4522: 4519: 4516: 4513: 4510: 4507: 4504: 4501: 4498: 4494: 4491: 4488: 4485: 4482: 4475: 4474: 4454: 4434: 4424: 4404: 4401: 4375: 4372: 4360: 4355: 4348: 4344: 4342: 4339: 4338: 4335: 4332: 4329: 4325: 4324: 4322: 4317: 4313: 4309: 4305: 4279: 4257: 4231: 4227: 4223: 4201: 4179: 4160: 4157: 4138: 4135: 4132: 4128: 4122: 4118: 4114: 4075: 4072: 4069: 4049: 4029: 4026: 4023: 4003: 4000: 3997: 3994: 3991: 3971: 3968: 3965: 3962: 3959: 3939: 3919: 3916: 3913: 3910: 3907: 3887: 3867: 3847: 3844: 3841: 3821: 3818: 3815: 3805:direct product 3792: 3789: 3786: 3771:Main article: 3768: 3765: 3752: 3749: 3729: 3709: 3689: 3669: 3666: 3643: 3623: 3601: 3596: 3590: 3587: 3584: 3579: 3575: 3571: 3569: 3566: 3565: 3562: 3559: 3557: 3554: 3551: 3546: 3542: 3538: 3537: 3535: 3530: 3527: 3505: 3502: 3499: 3495: 3472: 3468: 3445: 3441: 3420: 3416: 3413: 3393: 3389: 3386: 3363: 3360: 3357: 3354: 3351: 3348: 3345: 3342: 3339: 3336: 3333: 3330: 3327: 3324: 3321: 3318: 3315: 3312: 3309: 3306: 3303: 3283: 3280: 3275: 3271: 3267: 3262: 3258: 3254: 3251: 3248: 3226: 3223: 3220: 3216: 3195: 3192: 3189: 3169: 3164: 3160: 3156: 3153: 3150: 3130: 3125: 3121: 3117: 3114: 3111: 3088: 3085: 3082: 3079: 3076: 3073: 3070: 3067: 3064: 3061: 3058: 3055: 3052: 3049: 3046: 3043: 3040: 3037: 3017: 3014: 3011: 2991: 2988: 2985: 2963: 2942: 2922: 2902: 2879: 2842: 2839: 2820: 2815: 2791: 2787: 2776: 2760: 2755: 2750: 2745: 2741: 2728: 2725: 2684:Main article: 2681: 2678: 2674:Hilbert spaces 2643:Main article: 2640: 2637: 2625: 2620: 2616: 2610: 2607: 2604: 2600: 2573: 2570: 2567: 2562: 2557: 2553: 2549: 2527: 2524: 2502: 2498: 2475: 2471: 2460: 2459:finite support 2444: 2441: 2438: 2433: 2428: 2424: 2420: 2392: 2388: 2382: 2379: 2376: 2372: 2368: 2363: 2360: 2357: 2352: 2347: 2343: 2339: 2311: 2307: 2301: 2298: 2295: 2291: 2281: 2267: 2264: 2261: 2258: 2236: 2232: 2208: 2204: 2198: 2194: 2190: 2185: 2181: 2177: 2172: 2168: 2164: 2159: 2155: 2150: 2146: 2142: 2136: 2132: 2128: 2123: 2119: 2114: 2110: 2106: 2100: 2096: 2092: 2087: 2083: 2078: 2056: 2035: 2032: 2029: 2015:direct product 2002: 1999: 1996: 1976: 1973: 1970: 1967: 1964: 1961: 1941: 1938: 1935: 1932: 1929: 1914:abelian groups 1912:direct sum of 1904:Main article: 1901: 1898: 1896: 1893: 1880: 1877: 1874: 1871: 1868: 1865: 1862: 1859: 1856: 1853: 1850: 1847: 1844: 1841: 1836: 1831: 1809: 1806: 1803: 1800: 1797: 1794: 1791: 1788: 1785: 1782: 1779: 1776: 1773: 1751: 1746: 1724: 1704: 1684: 1664: 1644: 1624: 1604: 1580: 1576: 1572: 1550: 1536: 1533: 1519: 1499: 1484:direct summand 1478: 1462: 1458: 1452: 1449: 1446: 1442: 1438: 1435: 1415: 1412: 1409: 1387: 1383: 1373:of structures 1371:indexed family 1358: 1355: 1352: 1332: 1312: 1289: 1284: 1280: 1276: 1271: 1267: 1263: 1258: 1254: 1250: 1245: 1241: 1237: 1234: 1231: 1226: 1222: 1218: 1213: 1209: 1205: 1202: 1199: 1194: 1190: 1186: 1181: 1177: 1173: 1137: 1134: 1121: 1096: 1092: 1086: 1083: 1080: 1076: 1065:direct product 1050: 1046: 1040: 1037: 1034: 1030: 1005: 1002: 997: 993: 970: 966: 962: 957: 953: 930: 927: 924: 920: 914: 910: 906: 884: 880: 874: 871: 868: 864: 841: 838: 835: 831: 825: 821: 817: 802:direct product 782: 762: 742: 739: 736: 733: 730: 727: 724: 700: 680: 660: 640: 637: 634: 631: 628: 625: 622: 619: 616: 613: 610: 607: 604: 601: 598: 568: 548: 545: 542: 539: 519: 516: 513: 510: 507: 474: 469: 438: 416: 412: 408: 387: 384: 381: 378: 375: 372: 369: 366: 363: 343: 340: 337: 334: 331: 328: 325: 322: 319: 316: 313: 293: 290: 287: 267: 264: 261: 241: 238: 235: 232: 229: 209: 206: 203: 183: 163: 150:, a branch of 130: 129: 44: 42: 35: 28: 24: 14: 13: 10: 9: 6: 4: 3: 2: 5927: 5916: 5913: 5912: 5910: 5900: 5896: 5892: 5888: 5884: 5878: 5874: 5870: 5866: 5862: 5861: 5857: 5848: 5842: 5838: 5831: 5828: 5824: 5819: 5816: 5812: 5807: 5804: 5793:on 2006-09-17 5789: 5782: 5776: 5773: 5762:on 2013-05-22 5758: 5751: 5745: 5742: 5738: 5732: 5729: 5726: 5724: 5719: 5714: 5712: 5708: 5705: 5701: 5697: 5693: 5688: 5685: 5678: 5674: 5671: 5669: 5666: 5664: 5661: 5659: 5656: 5654: 5651: 5649: 5646: 5645: 5641: 5639: 5637: 5633: 5629: 5611: 5607: 5603: 5598: 5594: 5590: 5581: 5577: 5561: 5553: 5549: 5543: 5540: 5537: 5533: 5528: 5525: 5517: 5513: 5497: 5489: 5485: 5481: 5476: 5472: 5451: 5443: 5439: 5421: 5417: 5411: 5408: 5405: 5401: 5392: 5388: 5383: 5378: 5374: 5366: 5362: 5358: 5340: 5336: 5327: 5323: 5317: 5314: 5311: 5307: 5302: 5297: 5293: 5285: 5282: 5281: 5262: 5258: 5252: 5249: 5246: 5242: 5232: 5228:Homomorphisms 5227: 5225: 5223: 5219: 5218:Hilbert space 5213: 5199: 5196: 5176: 5156: 5136: 5116: 5095: 5087: 5084: 5081:topologically 5080: 5066: 5046: 5037: 5035: 5019: 5013: 5010: 5007: 4987: 4967: 4957: 4943: 4922: 4919: 4899: 4891: 4877: 4874: 4854: 4834: 4814: 4805: 4792: 4789: 4782:subspaces of 4781: 4765: 4745: 4737: 4721: 4701: 4698: 4678: 4671: 4655: 4647: 4644: 4628: 4625: 4615: 4601: 4581: 4573: 4572:homeomorphism 4570: 4566: 4562: 4542: 4539: 4536: 4520: 4517: 4514: 4502: 4489: 4486: 4483: 4452: 4432: 4423: 4420: 4418: 4402: 4399: 4391: 4385: 4381: 4373: 4371: 4358: 4353: 4340: 4333: 4320: 4315: 4307: 4294: 4246: 4225: 4166: 4158: 4156: 4154: 4136: 4133: 4130: 4120: 4116: 4103: 4101: 4097: 4093: 4089: 4073: 4070: 4067: 4047: 4027: 4024: 4021: 3998: 3995: 3992: 3966: 3963: 3960: 3937: 3917: 3914: 3911: 3905: 3885: 3865: 3845: 3842: 3839: 3819: 3816: 3813: 3806: 3790: 3787: 3784: 3774: 3766: 3764: 3750: 3747: 3727: 3707: 3687: 3667: 3664: 3657: 3641: 3621: 3612: 3599: 3594: 3585: 3577: 3573: 3567: 3560: 3552: 3544: 3540: 3533: 3525: 3503: 3500: 3497: 3493: 3470: 3466: 3443: 3439: 3418: 3414: 3411: 3391: 3387: 3384: 3375: 3358: 3355: 3352: 3346: 3343: 3334: 3328: 3325: 3322: 3316: 3310: 3307: 3304: 3301: 3281: 3273: 3269: 3265: 3260: 3256: 3249: 3246: 3224: 3221: 3218: 3214: 3193: 3190: 3187: 3162: 3158: 3154: 3151: 3123: 3119: 3115: 3112: 3100: 3086: 3080: 3077: 3074: 3071: 3068: 3065: 3062: 3056: 3050: 3047: 3044: 3038: 3035: 3015: 3012: 3009: 2989: 2986: 2983: 2975: 2961: 2940: 2920: 2900: 2893: 2877: 2870: 2866: 2862: 2858: 2854: 2848: 2840: 2838: 2836: 2818: 2789: 2785: 2774: 2758: 2748: 2743: 2739: 2726: 2724: 2722: 2718: 2708: 2703: 2701: 2697: 2693: 2687: 2679: 2677: 2675: 2671: 2670:Banach spaces 2667: 2663: 2662:vector spaces 2658: 2656: 2652: 2646: 2638: 2636: 2623: 2618: 2614: 2608: 2605: 2602: 2598: 2589: 2571: 2568: 2565: 2560: 2555: 2551: 2547: 2525: 2522: 2500: 2496: 2473: 2469: 2458: 2442: 2439: 2436: 2431: 2426: 2422: 2418: 2408: 2390: 2386: 2380: 2377: 2374: 2370: 2366: 2361: 2358: 2355: 2350: 2345: 2341: 2337: 2327: 2309: 2305: 2299: 2296: 2293: 2289: 2279: 2265: 2262: 2259: 2256: 2234: 2230: 2220: 2206: 2202: 2196: 2192: 2188: 2183: 2179: 2175: 2170: 2166: 2162: 2157: 2153: 2148: 2144: 2140: 2134: 2130: 2126: 2121: 2117: 2112: 2108: 2104: 2098: 2094: 2090: 2085: 2081: 2076: 2054: 2033: 2030: 2027: 2020: 2016: 2000: 1997: 1994: 1974: 1968: 1965: 1962: 1936: 1933: 1930: 1920: 1916: 1915: 1907: 1899: 1894: 1892: 1875: 1872: 1869: 1863: 1857: 1854: 1851: 1848: 1845: 1839: 1834: 1804: 1801: 1798: 1795: 1792: 1789: 1786: 1783: 1780: 1777: 1774: 1749: 1722: 1702: 1682: 1662: 1642: 1622: 1602: 1593: 1574: 1534: 1532: 1517: 1497: 1489: 1485: 1481: 1460: 1456: 1450: 1447: 1444: 1440: 1436: 1433: 1413: 1410: 1407: 1385: 1381: 1372: 1356: 1353: 1350: 1330: 1310: 1301: 1282: 1278: 1274: 1269: 1265: 1261: 1256: 1252: 1248: 1243: 1239: 1232: 1224: 1220: 1216: 1211: 1207: 1200: 1192: 1188: 1184: 1179: 1175: 1163: 1159: 1155: 1151: 1147: 1143: 1135: 1133: 1119: 1112: 1094: 1090: 1084: 1081: 1078: 1074: 1066: 1048: 1044: 1038: 1035: 1032: 1028: 1019: 1003: 1000: 995: 991: 968: 964: 960: 955: 951: 928: 925: 922: 912: 908: 882: 878: 872: 869: 866: 862: 839: 836: 833: 823: 819: 805: 803: 799: 794: 780: 760: 740: 737: 734: 731: 728: 725: 722: 714: 698: 678: 658: 635: 632: 629: 623: 620: 617: 614: 611: 605: 602: 599: 588: 585: 582: 566: 546: 543: 540: 537: 517: 514: 511: 508: 505: 496: 494: 490: 489:vector spaces 472: 457: 453: 410: 382: 379: 376: 373: 370: 367: 364: 338: 335: 332: 326: 320: 317: 314: 291: 288: 285: 265: 262: 259: 236: 233: 230: 207: 204: 201: 181: 161: 153: 149: 145: 141: 137: 126: 123: 115: 112:December 2013 104: 101: 97: 94: 90: 87: 83: 80: 76: 73: –  72: 68: 67:Find sources: 61: 57: 51: 50: 45:This article 43: 39: 34: 33: 27: 19: 5868: 5836: 5830: 5818: 5806: 5795:. Retrieved 5788:the original 5775: 5764:. Retrieved 5757:the original 5744: 5736: 5731: 5722: 5695: 5687: 5627: 5583:, such that 5579: 5575: 5515: 5511: 5441: 5437: 5365:coprojection 5364: 5360: 5356: 5284:homomorphism 5278: 5233: 5231: 5222:Banach space 5038: 4806: 4417:Banach space 4387: 4293:block matrix 4168: 4104: 4102:of groups.) 4100:free product 3776: 3613: 3518:is given as 3376: 3239:is given by 3101: 2865:group action 2852: 2850: 2730: 2704: 2689: 2659: 2650: 2648: 2221: 1911: 1909: 1594: 1538: 1487: 1483: 1482:is called a 1476: 1302: 1161: 1157: 1153: 1149: 1146:vector space 1141: 1139: 1017: 806: 795: 497: 135: 133: 118: 109: 99: 92: 85: 78: 71:"Direct sum" 66: 54:Please help 49:verification 46: 26: 5865:Lang, Serge 5668:Whitney sum 4295:, if not). 2863:, adding a 2249:indexed by 1369:. Given an 713:commutative 589:. That is, 587:isomorphism 581:associative 530:, provided 152:mathematics 5899:0984.00001 5858:References 5797:2014-01-14 5781:"Appendix" 5766:2014-01-14 5718:Direct Sum 5704:0387905189 5510:for every 5280:projection 5149:such that 4936:such that 4890:called an 4565:linear map 4415:such as a 4163:See also: 3656:group ring 2857:direct sum 2845:See also: 2712:direct sum 2696:coproducts 2280:direct sum 983:such that 144:structures 136:direct sum 82:newspapers 5823:Lang 2002 5632:coproduct 5595:α 5559:→ 5541:∈ 5534:⨁ 5529:: 5495:→ 5482:: 5436:for each 5409:∈ 5402:⨁ 5398:→ 5384:: 5375:α 5355:for each 5333:→ 5315:∈ 5308:⨁ 5303:: 5294:π 5250:∈ 5243:⨁ 5017:→ 5011:× 4736:Hausdorff 4569:bijective 4531:↦ 4497:→ 4487:× 4308:⊕ 4226:⊕ 4134:∈ 4071:× 4060:). Thus 4025:≠ 3915:× 3909:→ 3843:× 3817:× 3788:⊕ 3763:modules. 3574:ρ 3541:ρ 3529:↦ 3501:⊕ 3494:ρ 3467:ρ 3440:ρ 3356:⊕ 3341:→ 3323:× 3302:α 3270:ρ 3266:× 3257:ρ 3250:∘ 3247:α 3222:⊕ 3215:ρ 3191:⊕ 3159:ρ 3120:ρ 3078:⋅ 3066:⋅ 3039:⋅ 3013:∈ 2987:⊕ 2749:⊕ 2717:coproduct 2700:biproduct 2686:Coproduct 2606:∈ 2599:∏ 2569:∈ 2440:∈ 2378:∈ 2371:∏ 2367:∈ 2359:∈ 2297:∈ 2290:⨁ 2260:∈ 2189:∙ 2163:∘ 2109:⋅ 2055:⋅ 2031:× 1998:⊕ 1969:∙ 1937:∘ 1864:⊕ 1575:⊕ 1518:∗ 1448:∈ 1441:⨁ 1411:∈ 1354:⊕ 1111:index set 1082:∈ 1075:∏ 1036:∈ 1029:⨁ 961:∈ 926:∈ 870:∈ 863:⨁ 837:∈ 738:⊕ 732:≅ 726:⊕ 633:⊕ 624:⊕ 618:≅ 612:⊕ 603:⊕ 515:⊕ 509:⊕ 454:, is the 411:⊕ 289:∈ 263:∈ 205:⊕ 140:operation 5909:Category 5867:(2002), 5750:""p.45"" 5642:See also 5636:category 5626:for all 4643:additive 3930:sending 3680:, where 2974:-modules 2890:and two 2721:category 2326:subgroup 1475:. Each 1136:Examples 428:, where 142:between 5891:1878556 5869:Algebra 5720:at the 5696:Algebra 4956:is the 4668:is the 4094:is the 2861:modules 2833:in the 2719:in the 2655:modules 2407:support 2324:is the 493:modules 491:or two 96:scholar 5897:  5889:  5879:  5843:  5702:  5363:and a 4780:closed 4559:is an 4477:  4392:(TVS) 3294:where 2278:their 1919:groups 691:, and 354:to be 252:where 138:is an 98:  91:  84:  77:  69:  5791:(PDF) 5784:(PDF) 5760:(PDF) 5753:(PDF) 5679:Notes 5032:is a 4738:then 4567:is a 2869:group 2666:field 943:with 584:up to 103:JSTOR 89:books 5877:ISBN 5841:ISBN 5700:ISBN 5189:and 4980:and 4758:and 4691:and 4594:and 4445:and 4382:and 4269:and 4191:and 3878:and 3720:and 3634:and 3458:and 3141:and 2913:and 2851:The 2804:and 2709:the 2672:and 2649:The 1952:and 1910:The 1655:and 1323:and 1160:and 1152:and 1140:The 773:and 559:and 278:and 174:and 134:The 75:news 5895:Zbl 5725:Lab 5514:in 5440:in 5359:in 5129:of 5088:of 5059:of 4960:of 4912:in 4867:of 4807:If 4734:is 4618:in 4247:of 4153:rng 4040:in 3950:to 2933:of 2775:not 2690:An 2461:if 1486:of 450:is 146:in 58:by 5911:: 5893:, 5887:MR 5885:, 5871:, 5710:^ 5694:, 5638:. 5083:) 4388:A 3431:, 2702:. 2676:. 1891:. 1142:xy 671:, 495:. 458:, 5849:. 5800:. 5769:. 5723:n 5628:j 5612:j 5608:g 5604:= 5599:j 5591:g 5580:j 5576:g 5562:B 5554:i 5550:A 5544:I 5538:i 5526:g 5516:I 5512:j 5498:B 5490:j 5486:A 5477:j 5473:g 5452:B 5442:I 5438:j 5422:i 5418:A 5412:I 5406:i 5393:j 5389:A 5379:j 5361:I 5357:j 5341:j 5337:A 5328:i 5324:A 5318:I 5312:i 5298:j 5263:i 5259:A 5253:I 5247:i 5200:. 5197:N 5177:M 5157:X 5137:X 5117:N 5096:X 5067:X 5047:M 5020:X 5014:N 5008:M 4988:N 4968:M 4944:X 4923:, 4920:X 4900:M 4878:, 4875:X 4855:N 4835:X 4815:M 4793:. 4790:X 4766:N 4746:M 4722:X 4702:. 4699:N 4679:M 4656:X 4629:. 4626:X 4602:N 4582:M 4543:n 4540:+ 4537:m 4524:) 4521:n 4518:, 4515:m 4512:( 4503:X 4490:N 4484:M 4453:N 4433:M 4403:, 4400:X 4359:. 4354:] 4347:B 4341:0 4334:0 4328:A 4321:[ 4316:= 4312:B 4304:A 4278:B 4256:A 4230:B 4222:A 4200:B 4178:A 4137:I 4131:i 4127:) 4121:i 4117:R 4113:( 4074:S 4068:R 4048:S 4028:1 4022:0 4002:) 3999:1 3996:, 3993:1 3990:( 3970:) 3967:0 3964:, 3961:r 3958:( 3938:r 3918:S 3912:R 3906:R 3886:S 3866:R 3846:S 3840:R 3820:S 3814:R 3791:S 3785:R 3751:G 3748:k 3728:W 3708:V 3688:k 3668:G 3665:k 3642:W 3622:V 3600:. 3595:) 3589:) 3586:g 3583:( 3578:W 3568:0 3561:0 3556:) 3553:g 3550:( 3545:V 3534:( 3526:g 3504:W 3498:V 3471:W 3444:V 3419:W 3415:, 3412:V 3392:W 3388:, 3385:V 3362:) 3359:W 3353:V 3350:( 3347:L 3344:G 3338:) 3335:W 3332:( 3329:L 3326:G 3320:) 3317:V 3314:( 3311:L 3308:G 3305:: 3282:, 3279:) 3274:W 3261:V 3253:( 3225:W 3219:V 3194:W 3188:V 3168:) 3163:W 3155:, 3152:W 3149:( 3129:) 3124:V 3116:, 3113:V 3110:( 3087:. 3084:) 3081:w 3075:g 3072:, 3069:v 3063:g 3060:( 3057:= 3054:) 3051:w 3048:, 3045:v 3042:( 3036:g 3016:G 3010:g 2990:W 2984:V 2962:G 2941:G 2921:W 2901:V 2878:G 2819:2 2814:Z 2790:3 2786:S 2759:2 2754:Z 2744:3 2740:S 2624:. 2619:i 2615:A 2609:I 2603:i 2572:I 2566:i 2561:) 2556:i 2552:A 2548:( 2526:. 2523:i 2501:i 2497:A 2474:i 2470:a 2443:I 2437:i 2432:) 2427:i 2423:a 2419:( 2391:i 2387:A 2381:I 2375:i 2362:I 2356:i 2351:) 2346:i 2342:a 2338:( 2310:i 2306:A 2300:I 2294:i 2266:, 2263:I 2257:i 2235:i 2231:A 2207:. 2203:) 2197:2 2193:b 2184:1 2180:b 2176:, 2171:2 2167:a 2158:1 2154:a 2149:( 2145:= 2141:) 2135:2 2131:b 2127:, 2122:2 2118:a 2113:( 2105:) 2099:1 2095:b 2091:, 2086:1 2082:a 2077:( 2034:B 2028:A 2001:B 1995:A 1975:, 1972:) 1966:, 1963:B 1960:( 1940:) 1934:, 1931:A 1928:( 1879:} 1876:3 1873:, 1870:0 1867:{ 1861:} 1858:4 1855:, 1852:2 1849:, 1846:0 1843:{ 1840:= 1835:6 1830:Z 1808:} 1805:5 1802:, 1799:4 1796:, 1793:3 1790:, 1787:2 1784:, 1781:1 1778:, 1775:0 1772:{ 1750:6 1745:Z 1723:W 1703:V 1683:S 1663:W 1643:V 1623:S 1603:S 1579:R 1571:R 1549:R 1498:+ 1488:A 1479:i 1477:A 1461:i 1457:A 1451:I 1445:i 1437:= 1434:A 1414:I 1408:i 1386:i 1382:A 1357:B 1351:A 1331:B 1311:A 1288:) 1283:2 1279:y 1275:+ 1270:1 1266:y 1262:, 1257:2 1253:x 1249:+ 1244:1 1240:x 1236:( 1233:= 1230:) 1225:2 1221:y 1217:, 1212:2 1208:x 1204:( 1201:+ 1198:) 1193:1 1189:y 1185:, 1180:1 1176:x 1172:( 1162:y 1158:x 1154:y 1150:x 1120:I 1095:i 1091:A 1085:I 1079:i 1049:i 1045:A 1039:I 1033:i 1018:i 1004:0 1001:= 996:i 992:a 969:i 965:A 956:i 952:a 929:I 923:i 919:) 913:i 909:a 905:( 883:i 879:A 873:I 867:i 840:I 834:i 830:) 824:i 820:A 816:( 781:B 761:A 741:A 735:B 729:B 723:A 699:C 679:B 659:A 639:) 636:C 630:B 627:( 621:A 615:C 609:) 606:B 600:A 597:( 567:C 547:, 544:B 541:, 538:A 518:C 512:B 506:A 473:2 468:R 437:R 415:R 407:R 386:) 383:d 380:+ 377:b 374:, 371:c 368:+ 365:a 362:( 342:) 339:d 336:, 333:c 330:( 327:+ 324:) 321:b 318:, 315:a 312:( 292:B 286:b 266:A 260:a 240:) 237:b 234:, 231:a 228:( 208:B 202:A 182:B 162:A 125:) 119:( 114:) 110:( 100:· 93:· 86:· 79:· 52:. 20:)

Index

Direct sum of abelian groups

verification
improve this article
adding citations to reliable sources
"Direct sum"
news
newspapers
books
scholar
JSTOR
Learn how and when to remove this message
operation
structures
abstract algebra
mathematics
real coordinate space
Cartesian plane
vector spaces
modules
associative
up to
isomorphism
commutative
canonically isomorphic
direct product
direct product
index set
vector space
indexed family

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.