Knowledge (XXG)

Double-layer capacitance

Source 📝

752: 111: 308: 403:
ca. 0.3 nm, the Helmholtz model predicts a differential capacitance value of about 18 μF/cm. This value can be used to calculate capacitance values using the standard formula for conventional plate capacitors if only the surface of the electrodes is known. This capacitance can be calculated
160:
The amount of charge in the electrode is matched by the magnitude of counter-charges in the outer Helmholtz plane (OHP). This is the area close to the IHP, in which the polarized electrolyte ions are collected. This separation of two layers of polarized ions through the double-layer stores electrical
476:
Because an electrochemical capacitor is composed out of two electrodes, electric charge in the Helmholtz layer at one electrode is mirrored (with opposite polarity) in the second Helmholtz layer at the second electrode. Therefore, the total capacitance value of a double-layer capacitor is the result
171:
The "thickness" of a charged layer in the metallic electrode, i.e., the average extension perpendicular to the surface, is about 0.1 nm, and mainly depends on the electron density because the atoms in solid electrodes are stationary. In the electrolyte, the thickness depends on the size of the
136:
When a voltage is applied to the capacitor, two layers of polarized ions are generated at the electrode interfaces. One layer is within the solid electrode (at the surfaces of crystal grains from which it is made that are in contact with the electrolyte). The other layer, with opposite polarity,
285:, the dielectric layer of aluminum electrolytic capacitors, is approximately 1.4 nm/V. For a 6.3 V capacitor therefore the layer is 8.8 nm. The electric field is 6.3 V/8.8 nm = 716 kV/mm, around 7 times lower than in the double-layer. The 289:
of some 5000 kV/mm is unrealizable in conventional capacitors. No conventional dielectric material could prevent charge carrier breakthrough. In a double-layer capacitor the chemical stability of the solvent's molecular bonds prevents breakthrough.
132:
such as water. Where the liquid electrolyte contacts the electrode's conductive metallic surface, an interface is formed which represents a common boundary between the two phases of matter. It is at this interface that the double layer effect occurs.
311:
Structure and function of an ideal double-layer capacitor. Applying a voltage to the capacitor at both electrodes a Helmholtz double-layer will be formed separating the adhered ions in the electrolyte in a mirror charge distribution of opposite
468:
In real produced supercapacitors with a high amount of double-layer capacitance the capacitance value depends first on electrode surface and DL distance. Parameters such as electrode material and structure, electrolyte mixture, and amount of
272: 316:
The double-layer is like the dielectric layer in a conventional capacitor, but with the thickness of a single molecule. Using the early Helmholtz model to calculate the capacitance the model predicts a constant
699: 387: 477:
of two capacitors connected in series. If both electrodes have approximately the same capacitance value, as in symmetrical supercapacitors, the total value is roughly half that of one electrode.
293:
The forces that cause the adhesion of solvent molecules in the IHP are physical forces rather than chemical bonds. Chemical bonds exist within the adsorbed molecules, but they are polarized.
443: 128:
Every capacitor has two electrodes, mechanically separated by a separator. These are electrically connected via the electrolyte, a mixture of positive and negative ions dissolved in a
461:
and a small distance d between plates. Because activated carbon electrodes have a very high surface area and an extremely thin double-layer distance which is on the order of a few
296:
The magnitude of the electric charge that can accumulate in the layers corresponds to the concentration of the adsorbed ions and the electrodes surface. Up to the electrolyte's
114:
Simplified view of a double-layer of negative ions in the electrode and solvated positive ions in the liquid electrolyte, separated by a layer of polarized solvent molecules.
197: 145:
ions distributed in the electrolyte that have moved towards the polarized electrode. These two layers of polarized ions are separated by a monolayer of solvent
703: 791: 465:(0.3-0.8 nm), it is understandable why supercapacitors have the highest capacitance values among the capacitors (in the range of 10 to 40 μF/cm). 745: 517: 172:
solvent molecules and of the movement and concentration of ions in the solvent. It ranges from 0.1 to 10 nm as described by the
121:
laid the theoretical foundations for understanding the double layer phenomenon. The formation of double layers is exploited in every
341: 486: 684: 87: 23: 410: 800: 493: 46:
with opposing polarity form, one at the surface of the electrode, and one in the electrolyte. These two layers,
318: 300:, this arrangement behaves like a capacitor in which the stored electrical charge is linearly dependent on the 138: 751:
Download CHAPTER 2, ELECTRODE/ELECTROLYTE INTERFACES: STRUCTURE AND KINETICS OF CHARGE TRANSFER (pdf, 769 kB)
749: 168:
in the molecular IHP layer of the solvent molecules that corresponds to the strength of the applied voltage.
278: 153:
on the electrode surface and separates the oppositely polarized ions from each other, forming a molecular
118: 534: 297: 73:
The double-layer capacitance is the physical principle behind the electrostatic double-layer type of
829: 533:. Vol. 274. Graduate School of Arts and Sciences, University of Pennsylvania. pp. 55–79. 593:
Leitner, K. W.; Winter, M.; Besenhard, J. O. (2003-12-01). "Composite supercapacitor electrodes".
281:, the capacitors with the thinnest dielectric among conventional capacitors. The voltage proof of 618: 562: 550: 162: 267:{\displaystyle E={\frac {U}{d}}={\frac {2\ {\text{V}}}{0.4\ {\text{nm}}}}=5000\ {\text{kV/mm}}} 741: 647: 610: 513: 470: 639: 602: 583: 542: 505: 392:
If the electrolyte solvent is water then the influence of the high field strength creates a
764: 110: 50:
on the electrode and ions in the electrolyte, are typically separated by a single layer of
574: 307: 43: 277:
To compare this figure with values from other capacitor types requires an estimation for
538: 161:
charges in the same way as in a conventional capacitor. The double-layer charge forms a
149:. The molecular monolayer forms the inner Helmholtz plane (IHP). It adheres by physical 728: 585:
Electrochemical Supercapacitors: Scientific Fundamentals and Technological Applications
462: 286: 282: 165: 122: 105: 93: 74: 823: 740:
S. Srinivasan, Fuel Cells, From Fundamentals to Applications, Springer eBooks, 2006,
622: 554: 393: 173: 183:
over the separating solvent molecules. At a potential difference of, for example,
528: 497: 399:
of 6 (instead of 80 without an applied electric field) and the layer separation
66:. The amount of charge stored in double-layer capacitor depends on the applied 39: 327:
independent from the charge density, even depending on the dielectric constant
643: 606: 154: 150: 59: 651: 614: 509: 146: 142: 63: 35: 630:
Yu., M.; Volfkovich, T. M. (September 2002). "Electrochemical Capacitors".
546: 55: 47: 453:
is greatest in components made from materials with a high permittivity
301: 176:. The sum of the thicknesses is the total thickness of a double layer. 129: 67: 51: 27: 660:
Electrochemical Technologies for Energy Storage and Conversion, Band 1
727:
Berner Fachhochschule, Semesterarbeit in Technologie und Deutsch (
306: 109: 31: 502:
Carbons for Electrochemical Energy Storage and Conversion Systems
86:
Development of the double layer and pseudocapacitance model see
16:
Capacitance present in the interface between a surface and fluid
498:"8 Electrical Double-Layer Capacitors and Pseudocapacitors" 179:
The IHP's small thickness creates a strong electric field
382:{\displaystyle \ C_{d}={\frac {\epsilon }{4\pi \delta }}} 685:
Z. Stojek, The Electrical Double Layer and Its Structure
793:
A SURVEY OF ELECTROCHEMICAL SUPERCAPACITOR TECHNOLOGY
413: 344: 200: 763:Marin S. Halper, James C. Ellenbogen (March 2006). 725:
Supercap, Grundlagen - Eigenschaften – Anwendungen.
437: 381: 266: 92:Development of the electrochemical components see 58:to the surface of the electrode and act like a 191:= 0.4 nm, the electric field strength is 8: 438:{\displaystyle C={\frac {\varepsilon A}{d}}} 772:(Technical report). MITRE Nanosystems Group 504:. Taylor & Francis. pp. 329–375. 420: 412: 361: 352: 343: 259: 242: 229: 220: 207: 199: 26:which appears at the interface between a 680: 678: 676: 187:= 2 V and a molecular thickness of 672: 595:Journal of Solid State Electrochemistry 22:is the important characteristic of the 570: 560: 530:On the Structure of Charged Interfaces 473:also contribute to capacitance value. 457:, large electrode plate surface areas 694: 692: 7: 34:(for example, between a conductive 632:Russian Journal of Electrochemistry 799:(Technical report). Archived from 42:). At this boundary two layers of 14: 766:Supercapacitors: A Brief Overview 723:Daniel Gräser, Christoph Schmid: 331:and the charge layer separation 487:Double layer (surface science) 1: 700:"The electrical double layer" 588:(in German), Berlin: Springer 125:to store electrical energy. 846: 103: 88:Double layer (interfacial) 607:10.1007/s10008-003-0412-x 123:electrochemical capacitor 510:10.1201/9781420055405-c8 319:differential capacitance 20:Double-layer capacitance 644:10.1023/A:1020220425954 279:electrolytic capacitors 38:and an adjacent liquid 24:electrical double layer 790:Adam Marcus Namisnyk. 702:. 2011. Archived from 547:10.1098/rspa.1963.0114 527:Müller, Klaus (1963). 439: 383: 313: 268: 115: 662:(in German), Weinheim 582:B. E. Conway (1999), 440: 384: 310: 298:decomposition voltage 269: 113: 496:(18 November 2009). 494:Frackowiak, Elzbieta 411: 342: 198: 539:1963RSPSA.274...55B 492:Béguin, Francois; 435: 379: 314: 264: 116: 62:in a conventional 746:978-0-387-35402-6 519:978-1-4200-5307-4 471:pseudocapacitance 433: 377: 347: 262: 258: 248: 245: 241: 232: 228: 215: 837: 815: 814: 812: 811: 805: 798: 787: 781: 780: 778: 777: 771: 760: 754: 738: 732: 721: 715: 714: 712: 711: 696: 687: 682: 663: 655: 626: 589: 578: 572: 568: 566: 558: 523: 460: 456: 452: 449:The capacitance 444: 442: 441: 436: 434: 429: 421: 402: 398: 388: 386: 385: 380: 378: 376: 362: 357: 356: 345: 334: 330: 326: 273: 271: 270: 265: 263: 260: 256: 249: 247: 246: 243: 239: 234: 233: 230: 226: 221: 216: 208: 190: 186: 182: 845: 844: 840: 839: 838: 836: 835: 834: 820: 819: 818: 809: 807: 803: 796: 789: 788: 784: 775: 773: 769: 762: 761: 757: 739: 735: 722: 718: 709: 707: 698: 697: 690: 683: 674: 670: 658: 629: 592: 581: 569: 559: 526: 520: 491: 483: 458: 454: 450: 422: 409: 408: 400: 396: 366: 348: 340: 339: 332: 328: 325: 321: 235: 222: 196: 195: 188: 184: 180: 163:static electric 108: 102: 94:Supercapacitors 83: 75:supercapacitors 54:molecules that 44:electric charge 17: 12: 11: 5: 843: 841: 833: 832: 822: 821: 817: 816: 782: 755: 733: 716: 688: 671: 669: 666: 665: 664: 656: 638:(9): 935–959. 627: 590: 579: 524: 518: 489: 482: 479: 447: 446: 432: 428: 425: 419: 416: 390: 389: 375: 372: 369: 365: 360: 355: 351: 323: 287:field strength 283:aluminum oxide 275: 274: 255: 252: 238: 225: 219: 214: 211: 206: 203: 106:Supercapacitor 101: 98: 97: 96: 90: 82: 79: 15: 13: 10: 9: 6: 4: 3: 2: 842: 831: 828: 827: 825: 806:on 2014-12-22 802: 795: 794: 786: 783: 768: 767: 759: 756: 753: 750: 747: 743: 737: 734: 730: 726: 720: 717: 706:on 2011-05-31 705: 701: 695: 693: 689: 686: 681: 679: 677: 673: 667: 661: 657: 653: 649: 645: 641: 637: 633: 628: 624: 620: 616: 612: 608: 604: 600: 596: 591: 587: 586: 580: 576: 564: 556: 552: 548: 544: 540: 536: 532: 531: 525: 521: 515: 511: 507: 503: 499: 495: 490: 488: 485: 484: 480: 478: 474: 472: 466: 464: 430: 426: 423: 417: 414: 407: 406: 405: 395: 373: 370: 367: 363: 358: 353: 349: 338: 337: 336: 320: 309: 305: 303: 299: 294: 291: 288: 284: 280: 253: 250: 236: 223: 217: 212: 209: 204: 201: 194: 193: 192: 177: 175: 169: 167: 164: 158: 156: 152: 148: 144: 140: 134: 131: 126: 124: 120: 112: 107: 99: 95: 91: 89: 85: 84: 80: 78: 76: 71: 69: 65: 61: 57: 53: 49: 45: 41: 37: 33: 29: 25: 21: 808:. Retrieved 801:the original 792: 785: 774:. Retrieved 765: 758: 736: 724: 719: 708:. Retrieved 704:the original 659: 635: 631: 601:(1): 15–16. 598: 594: 584: 529: 501: 475: 467: 448: 394:permittivity 391: 315: 295: 292: 276: 178: 174:Debye length 170: 159: 135: 127: 117: 72: 19: 18: 571:|work= 137:forms from 100:Capacitance 40:electrolyte 830:Capacitors 810:2014-01-20 776:2014-01-20 710:2014-01-20 668:References 481:Literature 155:dielectric 151:adsorption 104:See also: 60:dielectric 652:1608-3342 615:1433-0768 573:ignored ( 563:cite book 463:ångströms 424:ε 374:δ 371:π 364:ϵ 147:molecules 139:dissolved 119:Helmholtz 64:capacitor 48:electrons 36:electrode 824:Category 623:95416761 555:94958336 312:polarity 143:solvated 535:Bibcode 302:voltage 130:solvent 81:History 68:voltage 52:solvent 28:surface 744:  650:  621:  613:  553:  516:  404:with: 346:  257:  240:  227:  56:adhere 30:and a 804:(PDF) 797:(PDF) 770:(PDF) 619:S2CID 551:S2CID 261:kV/mm 166:field 32:fluid 742:ISBN 648:ISSN 611:ISSN 575:help 514:ISBN 254:5000 141:and 729:PDF 640:doi 603:doi 543:doi 506:doi 237:0.4 826:: 731:). 691:^ 675:^ 646:. 636:38 634:. 617:. 609:. 597:. 567:: 565:}} 561:{{ 549:. 541:. 512:. 500:. 335:. 304:. 244:nm 157:. 77:. 70:. 813:. 779:. 748:, 713:. 654:. 642:: 625:. 605:: 599:8 577:) 557:. 545:: 537:: 522:. 508:: 459:A 455:ε 451:C 445:. 431:d 427:A 418:= 415:C 401:δ 397:ε 368:4 359:= 354:d 350:C 333:δ 329:ε 324:d 322:C 251:= 231:V 224:2 218:= 213:d 210:U 205:= 202:E 189:d 185:U 181:E

Index

electrical double layer
surface
fluid
electrode
electrolyte
electric charge
electrons
solvent
adhere
dielectric
capacitor
voltage
supercapacitors
Double layer (interfacial)
Supercapacitors
Supercapacitor

Helmholtz
electrochemical capacitor
solvent
dissolved
solvated
molecules
adsorption
dielectric
static electric
field
Debye length
electrolytic capacitors
aluminum oxide

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.