Knowledge (XXG)

Mie potential

Source 📝

28: 966:
co-workers. The Mie potential has also been used for coarse-grain modeling. Electronic tools are available for building Mie force field models for both united atom force fields and transferable force fields. The Mie potential has also been used for modeling small spherical molecules (i.e. directly the Mie substance - see above). The Table below gives some examples. There, the molecular models have only the parameters of the Mie potential itself.
705: 773:, where a theoretical substance exists that is defined by particles interacting by the Lennard-Jones potential, a substance class of Mie substances exists that are defined as single site spherical particles interacting by a given Mie potential. Since an infinite number of Mie potentials exist (using different 965:
Due to its flexibility, the Mie potential is a popular choice for modelling real fluids in force fields. It is used as an interaction potential many molecular models today. Several (reliable) united atom transferable force fields are based on the Mie potential, such as that developed by Potoff and
823:
Also, many theoretical (analytical) models have been developed for describing thermophysical properties of Mie substances and chain molecules formed from Mie particles, such as several thermodynamic equations of state and models for transport properties.
793:, have successfully been modelled as homogeneous chains of Mie particles. As such, the Mie potential is useful for modelling far more complex systems than those whose behaviour is accurately captured by "free" Mie particles. 375: 97:
describing the interactions between particles on the atomic level. It is mostly used for describing intermolecular interactions, but at times also for modeling intramolecular interaction, i.e. bonds.
292: 789:, where larger molecules, or even a collection of molecules, are simplified in their structure and described by a single Mie particle. However, more complex molecules, such as long-chained 796:
Thermophysical properties of both the Mie fluid, and chain molecules built from Mie particles have been the subject of numerous papers in recent years. Investigated properties include
932: 1170: 1015: 450: 1395: 1346: 1219: 1297: 1258: 1121: 1050: 1754: 994: 955: 470: 516: 138: 851: 759: 496: 79: 1093: 1072: 733: 404: 158: 53: 694: 625: 430: 649: 596: 576: 556: 536: 2335:"Revised Enskog theory for Mie fluids: Prediction of diffusion coefficients, thermal diffusion coefficients, viscosities, and thermal conductivities" 301: 2745:
Lafitte, Thomas; Apostolakou, Anastasia; Avendaño, Carlos; Galindo, Amparo; Adjiman, Claire S.; Müller, Erich A.; Jackson, George (2013-10-16).
1560:
Lafitte, Thomas; Apostolakou, Anastasia; Avendaño, Carlos; Galindo, Amparo; Adjiman, Claire S.; Müller, Erich A.; Jackson, George (2013-10-21).
3042: 1730: 1772: 1771:
Lafitte, Thomas; Apostolakou, Anastasia; Avendaño, Carlos; Galindo, Amparo; Adjiman, Claire S.; Müller, Erich A.; Jackson, George (2013).
2817:"Equation of state and force fields for Feynman–Hibbs-corrected Mie fluids. I. Application to pure helium, neon, hydrogen, and deuterium" 777:
parameters), equally many Mie substances exist, as opposed to Lennard-Jonesium, which is uniquely defined. For practical applications in
2945:"Simultaneous Description of Equilibrium, Interfacial, and Transport Properties of Fluids Using a Mie Chain Coarse-Grained Force Field" 2880:
Mick, Jason R.; Soroush Barhaghi, Mohammad; Jackman, Brock; Rushaidat, Kamel; Schwiebert, Loren; Potoff, Jeffrey J. (2015-09-16).
3037: 1899:
Galliero, Guillaume; Piñeiro, Manuel M.; Mendiboure, Bruno; Miqueu, Christelle; Lafitte, Thomas; Bessieres, David (2009-03-14).
2649:
Schmitt, Sebastian; Kanagalingam, Gajanan; Fleckenstein, Florian; Froescher, Daniel; Hasse, Hans; Stephan, Simon (2023-11-27).
762: 3032: 2984:"Accurate non-asymptotic thermodynamic properties of near-critical N2 and O2 computed from molecular dynamics simulations" 805: 715:
of a fluid consisting of particles interacting through a Mie potential with different values for the repulsive exponent (
165: 631:, whereas no justification for a certain value for the repulsive exponent is known. The repulsive steepness parameter 659:. Therefore, the Mie potential is a more flexible intermolecular potential than the simpler Lennard-Jones potential. 104:; yet the history of intermolecular potentials is more complicated. The Mie potential is the generalized case of the 2554:"Comparison of Force Fields for the Prediction of Thermophysical Properties of Long Linear and Branched Alkanes" 2466:
Mick, Jason R.; Soroush Barhaghi, Mohammad; Jackman, Brock; Schwiebert, Loren; Potoff, Jeffrey J. (2017-06-08).
2217:"Development of thermodynamically consistent machine-learning equations of state: Application to the Mie fluid" 2882:"Optimized Mie potentials for phase equilibria: Application to noble gases and their mixtures with n-alkanes" 2611: 3027: 812:
properties. Based on such studies the relation between the shape of the interaction potential (described by
786: 770: 709: 663: 628: 105: 82: 32: 2612:"Force-Field Parameters from the SAFT-γ Equation of State for Use in Coarse-Grained Molecular Simulations" 2983: 2893: 2828: 2758: 2704:
Dufal, Simon; Lafitte, Thomas; Galindo, Amparo; Jackson, George; Haslam, Andrew J. (September 2015).
2412: 2401:"A corresponding-states framework for the description of the Mie family of intermolecular potentials" 2346: 2228: 2173: 1977: 1955: 1912: 1849: 1784: 1573: 1443: 862: 809: 778: 1000: 435: 2925: 2862: 2686: 2589: 2448: 2378: 2315: 2142: 2001: 1967: 1881: 1748: 1701: 1646: 1626: 1539: 1143: 797: 667: 1901:"Interfacial properties of the Mie n−6 fluid: Molecular simulations and gradient theory results" 1368: 1319: 1192: 1020: 2982:
Nichele, Jakler; Abreu, Charlles R. A.; Alves, Leonardo S. de B.; Borges, Itamar (2018-05-01).
2815:
Aasen, Ailo; Hammer, Morten; Ervik, Åsmund; Müller, Erich A.; Wilhelmsen, Øivind (2019-08-13).
2507:"Mie Potentials for Phase Equilibria Calculations: Application to Alkanes and Perfluoroalkanes" 2068:"Mie Potentials for Phase Equilibria Calculations: Application to Alkanes and Perfluoroalkanes" 1280: 1241: 1104: 518:
is generally indicative of the size of the particles involved in the collision. The parameters
3003: 2964: 2917: 2909: 2854: 2794: 2786: 2727: 2706:"Developing intermolecular-potential models for use with the SAFT - VR M ie equation of state" 2678: 2670: 2631: 2581: 2573: 2534: 2526: 2487: 2440: 2370: 2362: 2307: 2264: 2256: 2197: 2189: 2134: 2095: 2087: 2048: 2040: 1993: 1936: 1928: 1873: 1865: 1812: 1736: 1726: 1693: 1685: 1607: 1599: 1531: 1492: 696:, whereas the repulsive exponent is used as an adjustable parameter during the model fitting. 2627: 979: 940: 651:
has a significant influence on the modeling of thermodynamic derivative properties, e.g. the
455: 2995: 2956: 2901: 2844: 2836: 2776: 2766: 2747:"Accurate statistical associating fluid theory for chain molecules formed from Mie segments" 2717: 2662: 2623: 2565: 2518: 2479: 2430: 2420: 2354: 2299: 2246: 2236: 2181: 2126: 2079: 2032: 1985: 1956:"Simultaneous description of bulk and interfacial properties of fluids by the Mie potential" 1920: 1857: 1802: 1792: 1773:"Accurate statistical associating fluid theory for chain molecules formed from Mie segments" 1677: 1638: 1589: 1581: 1562:"Accurate statistical associating fluid theory for chain molecules formed from Mie segments" 1523: 1482: 1451: 1512:"A child of prediction. On the History, Ontology, and Computation of the Lennard-Jonesium" 801: 652: 114: 830: 738: 501: 475: 58: 2897: 2832: 2762: 2416: 2350: 2232: 2177: 1981: 1916: 1853: 1788: 1577: 1447: 2282:
Pohl, Sven; Fingerhut, Robin; Thol, Monika; Vrabec, Jadran; Span, Roland (2023-02-27).
1078: 1057: 718: 656: 143: 94: 38: 383: 3021: 2866: 2690: 2593: 2552:
Schmitt, Sebastian; Fleckenstein, Florian; Hasse, Hans; Stephan, Simon (2023-03-02).
2382: 2319: 2146: 1705: 1650: 1543: 854: 712: 673: 604: 409: 2944: 2929: 2650: 2553: 2467: 2452: 2162:"Transport properties of Mie(14,7) fluids: Molecular dynamics simulation and theory" 2020: 2005: 1885: 1666:"Thermophysical Properties of the Lennard-Jones Fluid: Database and Data Assessment" 1665: 634: 581: 561: 541: 521: 17: 2425: 2400: 2160:
Eskandari Nasrabad, Afshin; Oghaz, Nader Mansoori; Haghighi, Behzad (2008-07-10).
2114: 1989: 2999: 2130: 1900: 1837: 1561: 1511: 2468:"Optimized Mie Potentials for Phase Equilibria: Application to Branched Alkanes" 1642: 1527: 1487: 1470: 1431: 1838:"Second virial coefficient properties of the n - m Lennard-Jones/Mie potential" 704: 370:{\displaystyle C={\frac {n}{n-m}}\left({\frac {n}{m}}\right)^{\frac {m}{n-m}}} 101: 3007: 2968: 2960: 2913: 2858: 2790: 2731: 2674: 2666: 2635: 2577: 2569: 2530: 2506: 2491: 2483: 2444: 2366: 2311: 2260: 2193: 2138: 2091: 2067: 2044: 2036: 2021:"Long Range Corrections for Inhomogeneous Simulations of Mie n – m Potential" 1997: 1932: 1869: 1740: 1689: 1681: 1603: 1535: 1496: 1455: 781:, the Mie substances are mostly relevant for modelling small molecules, e.g. 2251: 1954:
Werth, Stephan; Stöbener, Katrin; Horsch, Martin; Hasse, Hans (2017-06-18).
782: 27: 2943:
Hoang, Hai; Delage-Santacreu, Stéphanie; Galliero, Guillaume (2017-08-16).
2921: 2849: 2798: 2781: 2682: 2585: 2538: 2435: 2374: 2268: 2201: 2099: 2052: 1940: 1877: 1816: 1807: 1697: 1611: 1594: 1627:"Review and comparison of equations of state for the Lennard-Jones fluid" 1664:
Stephan, Simon; Thol, Monika; Vrabec, Jadran; Hasse, Hans (2019-10-28).
2399:
Ramrattan, N.S.; Avendaño, C.; Müller, E.A.; Galindo, A. (2015-05-19).
2283: 2905: 2840: 2771: 2746: 2722: 2705: 2522: 2358: 2303: 2241: 2216: 2185: 2083: 2019:
Janeček, Jiří; Said-Aizpuru, Olivier; Paricaud, Patrice (2017-09-12).
1924: 1861: 1797: 1585: 1720: 790: 2881: 2816: 2334: 2161: 1972: 498:, which is sometimes called the "collision radius." The parameter 380:
The Lennard-Jones potential corresponds to the special case where
1510:
Lenhard, Johannes; Stephan, Simon; Hasse, Hans (February 2024).
2651:"Extension of the MolMod Database to Transferable Force Fields" 1625:
Stephan, Simon; Staubach, Jens; Hasse, Hans (November 2020).
2505:
Potoff, Jeffrey J.; Bernard-Brunel, Damien A. (2009-11-05).
2066:
Potoff, Jeffrey J.; Bernard-Brunel, Damien A. (2009-11-05).
1471:"On the history of key empirical intermolecular potentials" 827:
It has been observed that many combinations of different (
1383: 1334: 1207: 1158: 820:) and the thermophysical properties has been elucidated. 857:, and that this degeneracy is captured by the parameter 160:, the distance between two particles, and is written as 108:, which is perhaps the most widely used pair potential. 2616:
Annual Review of Chemical and Biomolecular Engineering
676: 637: 607: 584: 564: 544: 524: 504: 412: 386: 100:
The Mie potential is named after the German physicist
2333:
Jervell, Vegard G.; Wilhelmsen, Øivind (2023-06-08).
1371: 1322: 1283: 1244: 1195: 1146: 1107: 1081: 1060: 1023: 1003: 982: 943: 865: 833: 741: 721: 670:. Typically, the attractive exponent is chosen to be 478: 458: 438: 304: 168: 146: 117: 61: 41: 937:
where fluids with different exponents, but the same
2288:
r,6) fluid with a repulsive exponent from 11 to 13"
2113:Stephan, Simon; Urschel, Maximilian (August 2023). 287:{\displaystyle V(r)=C\,\varepsilon \left,~~~~~~(1)} 55:), all depicted curves use the attractive exponent 2215:Chaparro, Gustavo; Müller, Erich A. (2023-05-10). 1469:Fischer, Johann; Wendland, Martin (October 2023). 1389: 1340: 1291: 1252: 1213: 1164: 1115: 1087: 1066: 1044: 1009: 988: 949: 926: 845: 753: 727: 688: 643: 619: 590: 570: 550: 530: 510: 490: 464: 444: 424: 398: 369: 286: 152: 132: 73: 47: 35:, for different values of the repulsive exponent ( 2605: 2603: 957:-parameter will exhibit the same phase behavior. 2610:Müller, Erich A.; Jackson, George (2014-06-07). 1432:"Zur kinetischen Theorie der einatomigen Körper" 2949:Industrial & Engineering Chemistry Research 700:Thermophysical properties of the Mie substance 578:describes the character of the repulsion and 8: 2655:Journal of Chemical Information and Modeling 1753:: CS1 maint: multiple names: authors list ( 1670:Journal of Chemical Information and Modeling 1516:Studies in History and Philosophy of Science 31:The potential curve of the Mie potential in 598:describes the character of the attraction. 2472:Journal of Chemical & Engineering Data 2025:Journal of Chemical Theory and Computation 2848: 2780: 2770: 2721: 2434: 2424: 2250: 2240: 1971: 1806: 1796: 1593: 1486: 1382: 1377: 1372: 1370: 1333: 1328: 1323: 1321: 1284: 1282: 1245: 1243: 1206: 1201: 1196: 1194: 1157: 1152: 1147: 1145: 1108: 1106: 1080: 1059: 1033: 1028: 1022: 1002: 981: 942: 901: 880: 864: 832: 740: 720: 675: 636: 606: 583: 563: 558:characterize the shape of the potential: 543: 523: 503: 477: 457: 437: 411: 385: 348: 334: 311: 303: 243: 229: 215: 201: 187: 167: 145: 116: 60: 40: 2628:10.1146/annurev-chembioeng-061312-103314 2115:"Characteristic curves of the Mie fluid" 968: 961:Mie potential used in molecular modeling 703: 662:The Mie potential is used today in many 26: 1422: 1746: 2810: 2808: 2394: 2392: 81:. The black curve corresponds to the 7: 1766: 1764: 1555: 1553: 735:), all with the attractive exponent 2988:The Journal of Supercritical Fluids 2558:The Journal of Physical Chemistry B 2511:The Journal of Physical Chemistry B 2072:The Journal of Physical Chemistry B 1722:The theory of intermolecular forces 25: 2284:"Equation of state for the Mie ( 1836:Sadus, Richard J. (2018-08-21). 472:indicates the distance at which 2886:The Journal of Chemical Physics 2821:The Journal of Chemical Physics 2751:The Journal of Chemical Physics 2339:The Journal of Chemical Physics 2292:The Journal of Chemical Physics 2221:The Journal of Chemical Physics 2166:The Journal of Chemical Physics 1905:The Journal of Chemical Physics 1842:The Journal of Chemical Physics 1777:The Journal of Chemical Physics 1566:The Journal of Chemical Physics 627:is physically justified by the 927:{\displaystyle \alpha =C\left} 452:is the dispersion energy, and 281: 275: 178: 172: 127: 121: 1: 3043:Quantum mechanical potentials 2426:10.1080/00268976.2015.1025112 1990:10.1080/00268976.2016.1206218 3000:10.1016/j.supflu.2018.01.011 2131:10.1016/j.molliq.2023.122088 2119:Journal of Molecular Liquids 1165:{\displaystyle {\ce {CH_4}}} 1010:{\displaystyle \varepsilon } 445:{\displaystyle \varepsilon } 106:Lennard-Jones (LJ) potential 1643:10.1016/j.fluid.2020.112772 1528:10.1016/j.shpsa.2023.11.007 1488:10.1016/j.fluid.2023.113876 1390:{\displaystyle {\ce {O_2}}} 1341:{\displaystyle {\ce {N_2}}} 1214:{\displaystyle {\ce {H_2}}} 3059: 1292:{\displaystyle {\ce {Kr}}} 1253:{\displaystyle {\ce {He}}} 1116:{\displaystyle {\ce {Ar}}} 1045:{\displaystyle k_{B}^{-1}} 761:. The cross indicates the 432:in Eq. (1). In Eq. (1), 2961:10.1021/acs.iecr.7b01397 2667:10.1021/acs.jcim.3c01484 2570:10.1021/acs.jpcb.2c07997 2484:10.1021/acs.jced.6b01036 2037:10.1021/acs.jctc.7b00212 1682:10.1021/acs.jcim.9b00620 1456:10.1002/andp.19033160802 806:vapor-liquid equilibrium 601:The attractive exponent 3038:Computational chemistry 989:{\displaystyle \sigma } 950:{\displaystyle \alpha } 629:London dispersion force 465:{\displaystyle \sigma } 83:Lennard-Jones potential 1725:. Oxford Univ. Press. 1719:J., Stone, A. (2013). 1631:Fluid Phase Equilibria 1475:Fluid Phase Equilibria 1391: 1342: 1293: 1254: 1215: 1166: 1117: 1089: 1068: 1046: 1011: 990: 951: 928: 847: 787:coarse grain modelling 766: 755: 729: 690: 645: 621: 592: 572: 552: 532: 512: 492: 466: 446: 426: 400: 371: 288: 154: 134: 86: 75: 49: 3033:Intermolecular forces 1392: 1343: 1294: 1255: 1216: 1167: 1118: 1090: 1069: 1047: 1012: 991: 952: 929: 848: 756: 730: 707: 691: 646: 622: 593: 573: 553: 533: 513: 493: 467: 447: 427: 401: 372: 289: 155: 135: 76: 50: 30: 1430:Mie, Gustav (1903). 1369: 1320: 1281: 1242: 1193: 1144: 1105: 1079: 1058: 1021: 1001: 980: 941: 863: 853:) can yield similar 831: 739: 719: 674: 635: 605: 582: 562: 542: 522: 511:{\textstyle \sigma } 502: 476: 456: 436: 410: 384: 302: 166: 144: 133:{\displaystyle V(r)} 115: 59: 39: 2898:2015JChPh.143k4504M 2833:2019JChPh.151f4508A 2763:2013JChPh.139o4504L 2517:(44): 14725–14731. 2417:2015MolPh.113..932R 2351:2023JChPh.158v4101J 2233:2023JChPh.158r4505C 2178:2008JChPh.129b4507E 2078:(44): 14725–14731. 1982:2017MolPh.115.1017W 1966:(9–12): 1017–1030. 1917:2009JChPh.130j4704G 1854:2018JChPh.149g4504S 1789:2013JChPh.139o4504L 1578:2013JChPh.139o4504L 1448:1903AnP...316..657M 1385: 1336: 1209: 1160: 1041: 970: 846:{\displaystyle n,m} 798:virial coefficients 779:molecular modelling 754:{\displaystyle m=6} 491:{\displaystyle V=0} 74:{\displaystyle m=6} 18:Draft:Mie potential 1436:Annalen der Physik 1387: 1373: 1338: 1324: 1289: 1250: 1211: 1197: 1162: 1148: 1113: 1085: 1064: 1042: 1024: 1007: 986: 969: 947: 924: 843: 767: 751: 725: 686: 668:molecular modeling 641: 617: 588: 568: 548: 528: 508: 488: 462: 442: 422: 396: 367: 284: 150: 130: 111:The Mie potential 93:is an interaction 87: 71: 45: 2955:(32): 9213–9226. 2906:10.1063/1.4930138 2841:10.1063/1.5111364 2772:10.1063/1.4819786 2723:10.1002/aic.14808 2661:(22): 7148–7158. 2523:10.1021/jp9072137 2411:(9–10): 932–947. 2405:Molecular Physics 2359:10.1063/5.0149865 2304:10.1063/5.0133412 2242:10.1063/5.0146634 2186:10.1063/1.2953331 2084:10.1021/jp9072137 1960:Molecular Physics 1925:10.1063/1.3085716 1862:10.1063/1.5041320 1798:10.1063/1.4819786 1732:978-0-19-175141-7 1676:(10): 4248–4265. 1586:10.1063/1.4819786 1414: 1413: 1376: 1327: 1287: 1248: 1200: 1151: 1111: 1088:{\displaystyle m} 1067:{\displaystyle n} 917: 896: 728:{\displaystyle n} 399:{\textstyle n=12} 364: 342: 327: 274: 271: 268: 265: 262: 259: 237: 209: 153:{\displaystyle r} 140:is a function of 48:{\displaystyle n} 16:(Redirected from 3050: 3012: 3011: 2979: 2973: 2972: 2940: 2934: 2933: 2877: 2871: 2870: 2852: 2812: 2803: 2802: 2784: 2774: 2742: 2736: 2735: 2725: 2716:(9): 2891–2912. 2701: 2695: 2694: 2646: 2640: 2639: 2607: 2598: 2597: 2564:(8): 1789–1802. 2549: 2543: 2542: 2502: 2496: 2495: 2478:(6): 1806–1818. 2463: 2457: 2456: 2438: 2428: 2396: 2387: 2386: 2330: 2324: 2323: 2279: 2273: 2272: 2254: 2244: 2212: 2206: 2205: 2157: 2151: 2150: 2110: 2104: 2103: 2063: 2057: 2056: 2031:(9): 4482–4491. 2016: 2010: 2009: 1975: 1951: 1945: 1944: 1896: 1890: 1889: 1833: 1827: 1826: 1824: 1823: 1810: 1800: 1768: 1759: 1758: 1752: 1744: 1716: 1710: 1709: 1661: 1655: 1654: 1622: 1616: 1615: 1597: 1557: 1548: 1547: 1507: 1501: 1500: 1490: 1466: 1460: 1459: 1427: 1396: 1394: 1393: 1388: 1386: 1384: 1381: 1374: 1347: 1345: 1344: 1339: 1337: 1335: 1332: 1325: 1298: 1296: 1295: 1290: 1288: 1285: 1259: 1257: 1256: 1251: 1249: 1246: 1220: 1218: 1217: 1212: 1210: 1208: 1205: 1198: 1171: 1169: 1168: 1163: 1161: 1159: 1156: 1149: 1122: 1120: 1119: 1114: 1112: 1109: 1094: 1092: 1091: 1086: 1073: 1071: 1070: 1065: 1051: 1049: 1048: 1043: 1040: 1032: 1016: 1014: 1013: 1008: 995: 993: 992: 987: 971: 956: 954: 953: 948: 933: 931: 930: 925: 923: 919: 918: 916: 902: 897: 895: 881: 852: 850: 849: 844: 771:Lennard-Jonesium 760: 758: 757: 752: 734: 732: 731: 726: 695: 693: 692: 689:{\textstyle m=6} 687: 650: 648: 647: 642: 626: 624: 623: 620:{\textstyle m=6} 618: 597: 595: 594: 589: 577: 575: 574: 569: 557: 555: 554: 549: 537: 535: 534: 529: 517: 515: 514: 509: 497: 495: 494: 489: 471: 469: 468: 463: 451: 449: 448: 443: 431: 429: 428: 425:{\textstyle m=6} 423: 405: 403: 402: 397: 376: 374: 373: 368: 366: 365: 363: 349: 347: 343: 335: 328: 326: 312: 293: 291: 290: 285: 272: 269: 266: 263: 260: 257: 253: 249: 248: 247: 242: 238: 230: 220: 219: 214: 210: 202: 159: 157: 156: 151: 139: 137: 136: 131: 80: 78: 77: 72: 54: 52: 51: 46: 21: 3058: 3057: 3053: 3052: 3051: 3049: 3048: 3047: 3018: 3017: 3016: 3015: 2981: 2980: 2976: 2942: 2941: 2937: 2879: 2878: 2874: 2814: 2813: 2806: 2744: 2743: 2739: 2703: 2702: 2698: 2648: 2647: 2643: 2609: 2608: 2601: 2551: 2550: 2546: 2504: 2503: 2499: 2465: 2464: 2460: 2398: 2397: 2390: 2332: 2331: 2327: 2281: 2280: 2276: 2214: 2213: 2209: 2159: 2158: 2154: 2112: 2111: 2107: 2065: 2064: 2060: 2018: 2017: 2013: 1953: 1952: 1948: 1898: 1897: 1893: 1835: 1834: 1830: 1821: 1819: 1770: 1769: 1762: 1745: 1733: 1718: 1717: 1713: 1663: 1662: 1658: 1624: 1623: 1619: 1559: 1558: 1551: 1509: 1508: 1504: 1468: 1467: 1463: 1429: 1428: 1424: 1419: 1367: 1366: 1318: 1317: 1279: 1278: 1240: 1239: 1191: 1190: 1142: 1141: 1103: 1102: 1077: 1076: 1056: 1055: 1019: 1018: 999: 998: 978: 977: 963: 939: 938: 906: 885: 879: 875: 861: 860: 855:phase behaviour 829: 828: 737: 736: 717: 716: 702: 672: 671: 653:compressibility 633: 632: 603: 602: 580: 579: 560: 559: 540: 539: 520: 519: 500: 499: 474: 473: 454: 453: 434: 433: 408: 407: 382: 381: 353: 330: 329: 316: 300: 299: 225: 224: 197: 196: 195: 191: 164: 163: 142: 141: 113: 112: 57: 56: 37: 36: 23: 22: 15: 12: 11: 5: 3056: 3054: 3046: 3045: 3040: 3035: 3030: 3028:Thermodynamics 3020: 3019: 3014: 3013: 2974: 2935: 2872: 2804: 2737: 2696: 2641: 2622:(1): 405–427. 2599: 2544: 2497: 2458: 2388: 2325: 2274: 2252:10044/1/104154 2207: 2152: 2105: 2058: 2011: 1946: 1911:(10): 104704. 1891: 1828: 1760: 1731: 1711: 1656: 1617: 1572:(15): 154504. 1549: 1502: 1461: 1442:(8): 657–697. 1421: 1420: 1418: 1415: 1412: 1411: 1409: 1406: 1403: 1400: 1397: 1380: 1363: 1362: 1360: 1357: 1354: 1351: 1348: 1331: 1314: 1313: 1311: 1308: 1305: 1302: 1299: 1275: 1274: 1272: 1269: 1266: 1263: 1260: 1236: 1235: 1233: 1230: 1227: 1224: 1221: 1204: 1187: 1186: 1184: 1181: 1178: 1175: 1172: 1155: 1138: 1137: 1135: 1132: 1129: 1126: 1123: 1099: 1098: 1095: 1084: 1074: 1063: 1053: 1039: 1036: 1031: 1027: 1006: 996: 985: 975: 962: 959: 946: 922: 915: 912: 909: 905: 900: 894: 891: 888: 884: 878: 874: 871: 868: 842: 839: 836: 763:critical point 750: 747: 744: 724: 701: 698: 685: 682: 679: 657:speed of sound 644:{\textstyle n} 640: 616: 613: 610: 591:{\textstyle m} 587: 571:{\textstyle n} 567: 551:{\textstyle m} 547: 531:{\textstyle n} 527: 507: 487: 484: 481: 461: 441: 421: 418: 415: 395: 392: 389: 362: 359: 356: 352: 346: 341: 338: 333: 325: 322: 319: 315: 310: 307: 283: 280: 277: 256: 252: 246: 241: 236: 233: 228: 223: 218: 213: 208: 205: 200: 194: 190: 186: 183: 180: 177: 174: 171: 149: 129: 126: 123: 120: 70: 67: 64: 44: 24: 14: 13: 10: 9: 6: 4: 3: 2: 3055: 3044: 3041: 3039: 3036: 3034: 3031: 3029: 3026: 3025: 3023: 3009: 3005: 3001: 2997: 2993: 2989: 2985: 2978: 2975: 2970: 2966: 2962: 2958: 2954: 2950: 2946: 2939: 2936: 2931: 2927: 2923: 2919: 2915: 2911: 2907: 2903: 2899: 2895: 2891: 2887: 2883: 2876: 2873: 2868: 2864: 2860: 2856: 2851: 2850:10044/1/72226 2846: 2842: 2838: 2834: 2830: 2826: 2822: 2818: 2811: 2809: 2805: 2800: 2796: 2792: 2788: 2783: 2782:10044/1/12859 2778: 2773: 2768: 2764: 2760: 2756: 2752: 2748: 2741: 2738: 2733: 2729: 2724: 2719: 2715: 2711: 2710:AIChE Journal 2707: 2700: 2697: 2692: 2688: 2684: 2680: 2676: 2672: 2668: 2664: 2660: 2656: 2652: 2645: 2642: 2637: 2633: 2629: 2625: 2621: 2617: 2613: 2606: 2604: 2600: 2595: 2591: 2587: 2583: 2579: 2575: 2571: 2567: 2563: 2559: 2555: 2548: 2545: 2540: 2536: 2532: 2528: 2524: 2520: 2516: 2512: 2508: 2501: 2498: 2493: 2489: 2485: 2481: 2477: 2473: 2469: 2462: 2459: 2454: 2450: 2446: 2442: 2437: 2436:10044/1/21432 2432: 2427: 2422: 2418: 2414: 2410: 2406: 2402: 2395: 2393: 2389: 2384: 2380: 2376: 2372: 2368: 2364: 2360: 2356: 2352: 2348: 2344: 2340: 2336: 2329: 2326: 2321: 2317: 2313: 2309: 2305: 2301: 2297: 2293: 2289: 2287: 2278: 2275: 2270: 2266: 2262: 2258: 2253: 2248: 2243: 2238: 2234: 2230: 2226: 2222: 2218: 2211: 2208: 2203: 2199: 2195: 2191: 2187: 2183: 2179: 2175: 2172:(2): 024507. 2171: 2167: 2163: 2156: 2153: 2148: 2144: 2140: 2136: 2132: 2128: 2124: 2120: 2116: 2109: 2106: 2101: 2097: 2093: 2089: 2085: 2081: 2077: 2073: 2069: 2062: 2059: 2054: 2050: 2046: 2042: 2038: 2034: 2030: 2026: 2022: 2015: 2012: 2007: 2003: 1999: 1995: 1991: 1987: 1983: 1979: 1974: 1969: 1965: 1961: 1957: 1950: 1947: 1942: 1938: 1934: 1930: 1926: 1922: 1918: 1914: 1910: 1906: 1902: 1895: 1892: 1887: 1883: 1879: 1875: 1871: 1867: 1863: 1859: 1855: 1851: 1848:(7): 074504. 1847: 1843: 1839: 1832: 1829: 1818: 1814: 1809: 1808:10044/1/12859 1804: 1799: 1794: 1790: 1786: 1782: 1778: 1774: 1767: 1765: 1761: 1756: 1750: 1742: 1738: 1734: 1728: 1724: 1723: 1715: 1712: 1707: 1703: 1699: 1695: 1691: 1687: 1683: 1679: 1675: 1671: 1667: 1660: 1657: 1652: 1648: 1644: 1640: 1636: 1632: 1628: 1621: 1618: 1613: 1609: 1605: 1601: 1596: 1595:10044/1/12859 1591: 1587: 1583: 1579: 1575: 1571: 1567: 1563: 1556: 1554: 1550: 1545: 1541: 1537: 1533: 1529: 1525: 1521: 1517: 1513: 1506: 1503: 1498: 1494: 1489: 1484: 1480: 1476: 1472: 1465: 1462: 1457: 1453: 1449: 1445: 1441: 1438:(in German). 1437: 1433: 1426: 1423: 1416: 1410: 1407: 1404: 1401: 1398: 1378: 1365: 1364: 1361: 1358: 1355: 1352: 1349: 1329: 1316: 1315: 1312: 1309: 1306: 1303: 1300: 1277: 1276: 1273: 1270: 1267: 1264: 1261: 1238: 1237: 1234: 1231: 1228: 1225: 1222: 1202: 1189: 1188: 1185: 1182: 1179: 1176: 1173: 1153: 1140: 1139: 1136: 1133: 1130: 1127: 1124: 1101: 1100: 1096: 1082: 1075: 1061: 1054: 1037: 1034: 1029: 1025: 1004: 997: 983: 976: 973: 972: 967: 960: 958: 944: 935: 920: 913: 910: 907: 903: 898: 892: 889: 886: 882: 876: 872: 869: 866: 858: 856: 840: 837: 834: 825: 821: 819: 815: 811: 807: 803: 799: 794: 792: 788: 784: 780: 776: 772: 764: 748: 745: 742: 722: 714: 713:phase diagram 711: 706: 699: 697: 683: 680: 677: 669: 665: 660: 658: 654: 638: 630: 614: 611: 608: 599: 585: 565: 545: 525: 505: 485: 482: 479: 459: 439: 419: 416: 413: 393: 390: 387: 378: 360: 357: 354: 350: 344: 339: 336: 331: 323: 320: 317: 313: 308: 305: 297: 294: 278: 254: 250: 244: 239: 234: 231: 226: 221: 216: 211: 206: 203: 198: 192: 188: 184: 181: 175: 169: 161: 147: 124: 118: 109: 107: 103: 98: 96: 92: 91:Mie potential 84: 68: 65: 62: 42: 34: 33:reduced units 29: 19: 2991: 2987: 2977: 2952: 2948: 2938: 2889: 2885: 2875: 2824: 2820: 2754: 2750: 2740: 2713: 2709: 2699: 2658: 2654: 2644: 2619: 2615: 2561: 2557: 2547: 2514: 2510: 2500: 2475: 2471: 2461: 2408: 2404: 2342: 2338: 2328: 2295: 2291: 2285: 2277: 2224: 2220: 2210: 2169: 2165: 2155: 2122: 2118: 2108: 2075: 2071: 2061: 2028: 2024: 2014: 1963: 1959: 1949: 1908: 1904: 1894: 1845: 1841: 1831: 1820:. Retrieved 1780: 1776: 1721: 1714: 1673: 1669: 1659: 1634: 1630: 1620: 1569: 1565: 1519: 1515: 1505: 1478: 1474: 1464: 1439: 1435: 1425: 964: 936: 859: 826: 822: 817: 813: 795: 774: 768: 664:force fields 661: 600: 379: 298: 295: 162: 110: 99: 90: 88: 2994:: 225–233. 1522:: 105–113. 802:interfacial 783:noble gases 769:As for the 3022:Categories 2125:: 122088. 1973:1611.07754 1822:2023-09-11 1637:: 112772. 1481:: 113876. 1417:References 785:, and for 102:Gustav Mie 3008:0896-8446 2969:0888-5885 2914:0021-9606 2867:202083098 2859:0021-9606 2791:0021-9606 2732:0001-1541 2691:265103133 2675:1549-9596 2636:1947-5438 2594:257068027 2578:1520-6106 2531:1520-6106 2492:0021-9568 2445:0026-8976 2383:259119498 2367:0021-9606 2320:257249977 2312:0021-9606 2261:0021-9606 2194:0021-9606 2147:258795513 2139:0167-7322 2092:1520-6106 2045:1549-9618 1998:0026-8976 1933:0021-9606 1870:0021-9606 1749:cite book 1741:915959704 1706:204545481 1690:1549-9596 1651:224844789 1604:0021-9606 1544:266440296 1536:0039-3681 1497:0378-3812 1035:− 1005:ε 984:σ 945:α 911:− 899:− 890:− 867:α 810:transport 506:σ 460:σ 440:ε 358:− 321:− 232:σ 222:− 204:σ 189:ε 95:potential 2930:43211598 2922:26395716 2799:24160524 2683:37947503 2586:36802607 2539:19824622 2453:27773511 2375:37290070 2269:37161943 2202:18624538 2100:19824622 2053:28742959 2006:49331008 1941:19292546 1886:52068374 1878:30134705 1817:24160524 1698:31609113 1612:24160524 655:and the 2894:Bibcode 2829:Bibcode 2759:Bibcode 2413:Bibcode 2347:Bibcode 2229:Bibcode 2174:Bibcode 1978:Bibcode 1913:Bibcode 1850:Bibcode 1785:Bibcode 1574:Bibcode 1444:Bibcode 1353:105.79 1304:176.10 1262:3.3530 1226:17.931 1223:3.2574 1177:153.36 1174:3.7412 1131:12.085 1128:117.84 974:Specie 791:alkanes 710:reduced 3006:  2967:  2928:  2920:  2912:  2892:(11). 2865:  2857:  2797:  2789:  2757:(15). 2730:  2689:  2681:  2673:  2634:  2592:  2584:  2576:  2537:  2529:  2490:  2451:  2443:  2381:  2373:  2365:  2345:(22). 2318:  2310:  2267:  2259:  2227:(18). 2200:  2192:  2145:  2137:  2098:  2090:  2051:  2043:  2004:  1996:  1939:  1931:  1884:  1876:  1868:  1815:  1783:(15). 1739:  1729:  1704:  1696:  1688:  1649:  1610:  1602:  1542:  1534:  1495:  1402:118.0 1356:14.08 1350:3.609 1301:3.645 1268:14.84 1180:12.65 1125:3.404 808:, and 273:  270:  267:  264:  261:  258:  2926:S2CID 2863:S2CID 2827:(6). 2687:S2CID 2590:S2CID 2449:S2CID 2379:S2CID 2316:S2CID 2298:(8). 2143:S2CID 2002:S2CID 1968:arXiv 1882:S2CID 1702:S2CID 1647:S2CID 1540:S2CID 1405:12.0 1399:3.46 1307:14.0 1265:4.44 1097:Ref. 296:with 3004:ISSN 2965:ISSN 2918:PMID 2910:ISSN 2855:ISSN 2795:PMID 2787:ISSN 2728:ISSN 2679:PMID 2671:ISSN 2632:ISSN 2582:PMID 2574:ISSN 2535:PMID 2527:ISSN 2488:ISSN 2441:ISSN 2371:PMID 2363:ISSN 2308:ISSN 2265:PMID 2257:ISSN 2198:PMID 2190:ISSN 2135:ISSN 2096:PMID 2088:ISSN 2049:PMID 2041:ISSN 1994:ISSN 1937:PMID 1929:ISSN 1874:PMID 1866:ISSN 1813:PMID 1755:link 1737:OCLC 1727:ISBN 1694:PMID 1686:ISSN 1608:PMID 1600:ISSN 1532:ISSN 1493:ISSN 1408:6.0 1359:6.0 1310:6.0 1271:6.0 1232:6.0 1229:8.0 1183:6.0 1134:6.0 816:and 800:and 775:n, m 708:The 538:and 406:and 89:The 2996:doi 2992:135 2957:doi 2902:doi 2890:143 2845:hdl 2837:doi 2825:151 2777:hdl 2767:doi 2755:139 2718:doi 2663:doi 2624:doi 2566:doi 2562:127 2519:doi 2515:113 2480:doi 2431:hdl 2421:doi 2409:113 2355:doi 2343:158 2300:doi 2296:158 2247:hdl 2237:doi 2225:158 2182:doi 2170:129 2127:doi 2123:383 2080:doi 2076:113 2033:doi 1986:doi 1964:115 1921:doi 1909:130 1858:doi 1846:149 1803:hdl 1793:doi 1781:139 1678:doi 1639:doi 1635:523 1590:hdl 1582:doi 1570:139 1524:doi 1520:103 1483:doi 1479:573 1452:doi 1440:316 666:in 3024:: 3002:. 2990:. 2986:. 2963:. 2953:56 2951:. 2947:. 2924:. 2916:. 2908:. 2900:. 2888:. 2884:. 2861:. 2853:. 2843:. 2835:. 2823:. 2819:. 2807:^ 2793:. 2785:. 2775:. 2765:. 2753:. 2749:. 2726:. 2714:61 2712:. 2708:. 2685:. 2677:. 2669:. 2659:63 2657:. 2653:. 2630:. 2618:. 2614:. 2602:^ 2588:. 2580:. 2572:. 2560:. 2556:. 2533:. 2525:. 2513:. 2509:. 2486:. 2476:62 2474:. 2470:. 2447:. 2439:. 2429:. 2419:. 2407:. 2403:. 2391:^ 2377:. 2369:. 2361:. 2353:. 2341:. 2337:. 2314:. 2306:. 2294:. 2290:. 2263:. 2255:. 2245:. 2235:. 2223:. 2219:. 2196:. 2188:. 2180:. 2168:. 2164:. 2141:. 2133:. 2121:. 2117:. 2094:. 2086:. 2074:. 2070:. 2047:. 2039:. 2029:13 2027:. 2023:. 2000:. 1992:. 1984:. 1976:. 1962:. 1958:. 1935:. 1927:. 1919:. 1907:. 1903:. 1880:. 1872:. 1864:. 1856:. 1844:. 1840:. 1811:. 1801:. 1791:. 1779:. 1775:. 1763:^ 1751:}} 1747:{{ 1735:. 1700:. 1692:. 1684:. 1674:59 1672:. 1668:. 1645:. 1633:. 1629:. 1606:. 1598:. 1588:. 1580:. 1568:. 1564:. 1552:^ 1538:. 1530:. 1518:. 1514:. 1491:. 1477:. 1473:. 1450:. 1434:. 1286:Kr 1247:He 1150:CH 1110:Ar 1052:] 934:, 804:, 394:12 377:. 3010:. 2998:: 2971:. 2959:: 2932:. 2904:: 2896:: 2869:. 2847:: 2839:: 2831:: 2801:. 2779:: 2769:: 2761:: 2734:. 2720:: 2693:. 2665:: 2638:. 2626:: 2620:5 2596:. 2568:: 2541:. 2521:: 2494:. 2482:: 2455:. 2433:: 2423:: 2415:: 2385:. 2357:: 2349:: 2322:. 2302:: 2286:λ 2271:. 2249:: 2239:: 2231:: 2204:. 2184:: 2176:: 2149:. 2129:: 2102:. 2082:: 2055:. 2035:: 2008:. 1988:: 1980:: 1970:: 1943:. 1923:: 1915:: 1888:. 1860:: 1852:: 1825:. 1805:: 1795:: 1787:: 1757:) 1743:. 1708:. 1680:: 1653:. 1641:: 1614:. 1592:: 1584:: 1576:: 1546:. 1526:: 1499:. 1485:: 1458:. 1454:: 1446:: 1379:2 1375:O 1330:2 1326:N 1203:2 1199:H 1154:4 1083:m 1062:n 1038:1 1030:B 1026:k 1017:[ 921:] 914:3 908:n 904:1 893:3 887:m 883:1 877:[ 873:C 870:= 841:m 838:, 835:n 818:m 814:n 765:. 749:6 746:= 743:m 723:n 684:6 681:= 678:m 639:n 615:6 612:= 609:m 586:m 566:n 546:m 526:n 486:0 483:= 480:V 420:6 417:= 414:m 391:= 388:n 361:m 355:n 351:m 345:) 340:m 337:n 332:( 324:m 318:n 314:n 309:= 306:C 282:) 279:1 276:( 255:, 251:] 245:m 240:) 235:r 227:( 217:n 212:) 207:r 199:( 193:[ 185:C 182:= 179:) 176:r 173:( 170:V 148:r 128:) 125:r 122:( 119:V 85:. 69:6 66:= 63:m 43:n 20:)

Index

Draft:Mie potential
The potential curve of the Mie potential in reduced units, for different values of the repulsive exponent ( n ), all depicted curves use the attractive exponent m = 6 . The black curve corresponds to the Lennard-Jones potential.
reduced units
Lennard-Jones potential
potential
Gustav Mie
Lennard-Jones (LJ) potential
London dispersion force
compressibility
speed of sound
force fields
molecular modeling

reduced
phase diagram
critical point
Lennard-Jonesium
molecular modelling
noble gases
coarse grain modelling
alkanes
virial coefficients
interfacial
vapor-liquid equilibrium
transport
phase behaviour
"Zur kinetischen Theorie der einatomigen Körper"
Bibcode
1903AnP...316..657M
doi

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.