Knowledge (XXG)

Diffuse field acoustic testing

Source 📝

326: 33: 500: 1008:
modulators. This system can generate sound pressure levels up to 160 dBSPL. Each acoustic chamber has its own configurations, but each siren is centered on a frequency where sound pressure levels are the highest. In some cases these sirens can be completed with electroacoustic systems to generate and
666: 103:
field where there is no privileged direction of the energy. In other words, when sound pressure is the same everywhere in the room. This is obtained with large rooms with no absorbent materials on walls, ceiling or floor. Diffusion is enhanced in asymmetric rooms. To obtain such conditions, the room
354:
Frequency is a main factor of a good diffused field. Some phenomena linked to frequency of the sound pressure field lead to poor homogeneity of a pressure field. The frequency response of a room is the amplification or reduction of some frequencies. It represents the repartition of pressure with
851:
Acoustic tests are mainly use for environmental tests on aircraft structures. Satellites are expensive products with high-engineering built-in components. To improve the resistance of a spacecraft during launch and during its orbital life, analysis is focused on tests in three categories :
333:
Many theoretical ways to model sound propagation are used. One of these is the geometrical approach. This represents sound waves as a ray of energy propagating. When it meets an obstacle, this ray has two possible behaviors: It can be reflected following the normal of the plan,
355:
respect to frequency. In low frequencies this can lead to mode apparition. These modes are due to standing waves that lead to maximum and minimum pressure according to the geometry of the room. To determine the frequency for which the pressure field can be considered diffused,
982:
To test a satellite, a sound generation system generates a broadband spectrum (Hz) simulating the maximum envelope of all launchers that the satellite may fly in. To qualify, three tests are realized with changing global gain compared to launcher spectrum:
186:. It can be obtained by measuring the sound pressure decrease after a sound impulse or by using approximate formulas such as Sabine's or Eyring's. In the case of a diffuse field (low absorption on the walls, and big volumes) Sabine's formula is used. 954:
Acoustics creates mechanical stresses during the first five seconds. Sound pressure levels can go up to 150 dBSPL. Acoustic tests are used to verify the mechanical resistance of the satellite and its elements to acoustic pressures generated.
118:
Reverberation is due to multiple reflections on walls with some delays that come back to the receptor. Summing up these contributions, a reverberant pressure field is created. The more reverberation, the more the field is diffused.
512: 91:, acoustic chambers are the main facilities for such tests. A chamber is a reverberant room that creates a diffuse sound field and is composed of an empty volume (from 1 m to 2900 m) and a multifrequency sound generation system. 442: 232: 269: 1050:
High frequency control : If no high frequency sirens or electroacoustic devices are included, only harmonics generated by distortion produce mid and high frequencies.
474: 309: 180: 150: 837: 810: 783: 756: 383: 729: 709: 689: 494: 289: 661:{\displaystyle f_{lmn}={\frac {c_{0}}{2}}{\sqrt {\left({\frac {l}{L_{x}}}\right)^{2}+\left({\frac {m}{L_{y}}}\right)^{2}+\left({\frac {n}{L_{z}}}\right)^{2}}}} 1148: 1121: 1094: 104:
must be reverberant. The source's direct field must be negligible compared to the reverberant field, avoiding privileged propagation.
1016:
To produce exact levels, piloting microphones check sound pressure levels and apply a realtime gain correction to adjust the level.
864:. This last test area is focused on the mechanical stresses that the specimen will meet during its life, especially during launch. 969:
Once the sound generation system is working, acceleration measurement is performed by accelerometers placed on the specimen.
390: 507:
For example, in the case of a rectangular room, low frequency modes are determined relative to the room dimensions as
17: 1086:
Acoustique générale: équations différentielles et intégrales, solutions en milieux fluides et solides, applications
853: 329:
Schematic representation of specular (in blue) and diffused (in green) reflections of an incident wave ray (in red)
191: 356: 1013:
appears that leads to higher harmonics. Loudspeakers are used in some chambers to control these frequencies.
1009:
control midrange and high frequencies. Sirens generate low frequencies, but with high sound pressure levels
239: 1181: 343: 1196: 320: 1176: 84:
is the testing of the mechanical resistance of a spacecraft to the acoustic pressures during launch.
62: 335: 43: 1201: 88: 997:
Before testing the satellite, an empty room test is performed to check the chamber's signature.
359:
is commonly used. It is obtained considering the frequency from which the modal overlap exceeds
1144: 1117: 1090: 325: 449: 338:. Alternatively it can be separated into many rays following a mathematical law (for example 294: 155: 125: 339: 815: 788: 761: 734: 1031:
Security : Control with piloting microphones that adjust the level or abort if needed
1028:
Low frequency generation : Very efficient low frequency generation (below 50 Hz)
857: 385:. Below this frequency, the field is not diffuse and standing waves create pressure modes 362: 1166: 1005: 714: 694: 674: 479: 274: 100: 182:. These values are the interval for the sound pressure level to the lower of 30 or 60 1190: 113: 1138: 1111: 1084: 1171: 1010: 122:
Two oft-used measures of reverberation time quantify this parameter,  :
964: 861: 52: 32: 1001: 503:
Schematic transverse cut view of pressure modes in a duct (closed-closed)
499: 1000:
This pressure field is generated by multifrequency sirens powered by
1140:
Satellite Communications Systems: Systems, Techniques and Technology
840: 498: 324: 183: 1034:
Representativeness : Faithful to real stresses during launch
1025:
Homogeneity : Spatial homogeneity guaranteed for ± 1.5 dBSPL
26: 1047:
Gas generation : May require large amounts of nitrogen
1037:
Well known process : Used by many aerospace industries
271:
is the equivalent absorption area involving the surface
57: 47: 1177:
NASA's Space Power Facility (SPF) Knowledge (XXG) page
437:{\displaystyle F_{s}=2000{\sqrt {\frac {RT_{60}}{V}}}} 818: 791: 764: 737: 717: 697: 677: 515: 482: 452: 393: 365: 297: 277: 242: 194: 158: 128: 18:
Draft:Diffuse field acoustic testing (space facility)
868:Mechanical forces applied during spacecraft launch 831: 804: 777: 750: 723: 703: 683: 660: 488: 468: 436: 377: 303: 283: 263: 226: 174: 144: 1110:Tustin, Wayne; Mercado, Robert (1 August 1984). 291:of the walls and their absorption coefficient 993:PFM (Proto Flight Model) : 0 dB SPL 99:Theoretically, diffuse field is defined as a 8: 350:Quantities involving diffuse pressure field 1083:Potel, Catherine; Bruneau, Michel (2006). 1060:Thales Alenia Space (Cannes) : 1000 m 884:Acoustic vibration and quasi-static loads 881:First Stage ignition and boosters ignition 476:is the reverberation time of the room and 227:{\displaystyle RT_{60}=0.16{\frac {V}{A}}} 823: 817: 796: 790: 769: 763: 742: 736: 716: 696: 676: 650: 638: 629: 615: 603: 594: 580: 568: 559: 552: 541: 535: 520: 514: 481: 460: 451: 421: 410: 398: 392: 364: 296: 276: 241: 214: 202: 193: 166: 157: 136: 127: 1137:Maral, Gerard; Bousquet, Michel (2009). 866: 731:are respectively the mode of the length 1075: 264:{\displaystyle A=\sum S\times \alpha } 7: 1167:Thales Alenia Space Official Website 990:Intermediate : - 4 dB SPL 1182:Intespace's acoustic test facility 1116:. Tustin Institute of Technology. 965:Vibration § Vibration testing 25: 876:Resulting mechanical aggressions 987:Low-Level : - 8 dB SPL 31: 1113:Random vibration in perspective 843:of sound in the working fluid. 1063:IABG (Ottobrunn) : 1378 m 82:Diffuse field acoustic testing 1: 1172:IABG Space Official Website 1218: 962: 318: 111: 959:Accelerometer measurement 948:Clamp band release shock 921:Second stage extinction 469:{\displaystyle RT_{60}} 304:{\displaystyle \alpha } 175:{\displaystyle RT_{60}} 145:{\displaystyle RT_{30}} 95:Diffuse field principle 46:, as no other articles 940:Sinusoidal vibrations 937:Third stage extinction 924:Sinusoidal vibrations 900:Sinusoidal vibrations 897:First stage Extinction 892:Sinusoidal vibrations 833: 806: 779: 752: 725: 705: 685: 662: 504: 490: 470: 438: 379: 330: 305: 285: 265: 228: 176: 146: 1143:(5 ed.). Wiley. 905:Second Stage ignition 847:Aerospace application 834: 832:{\displaystyle c_{0}} 807: 805:{\displaystyle L_{z}} 780: 778:{\displaystyle L_{y}} 753: 751:{\displaystyle L_{x}} 726: 706: 686: 663: 502: 491: 471: 439: 380: 357:Schroeder's frequency 328: 321:Geometrical acoustics 306: 286: 266: 229: 177: 147: 929:Third stage ignition 816: 789: 762: 735: 715: 695: 675: 513: 480: 450: 391: 363: 315:Geometrical approach 295: 275: 240: 192: 156: 126: 932:Quasi-static loads 908:Quasi-static loads 889:Boosters extinction 869: 378:{\displaystyle M=3} 344:diffused reflection 336:specular reflection 1066:NASA : 2860 m 945:Spacecraft release 916:Pyrotechnic shock 867: 829: 802: 775: 748: 721: 701: 681: 658: 505: 486: 466: 434: 375: 331: 301: 281: 261: 224: 172: 142: 108:Reverberation time 89:aerospace industry 65:for suggestions. 55:to this page from 1150:978-0-470-71458-4 1123:978-0-918247-00-1 1096:978-2-7298-2805-9 952: 951: 858:Radio-frequencies 724:{\displaystyle n} 704:{\displaystyle m} 684:{\displaystyle l} 656: 644: 609: 574: 550: 489:{\displaystyle V} 432: 431: 284:{\displaystyle S} 222: 79: 78: 16:(Redirected from 1209: 1155: 1154: 1134: 1128: 1127: 1107: 1101: 1100: 1080: 978:Sound generation 973:Acoustic chamber 870: 838: 836: 835: 830: 828: 827: 812:of the room and 811: 809: 808: 803: 801: 800: 784: 782: 781: 776: 774: 773: 757: 755: 754: 749: 747: 746: 730: 728: 727: 722: 710: 708: 707: 702: 690: 688: 687: 682: 667: 665: 664: 659: 657: 655: 654: 649: 645: 643: 642: 630: 620: 619: 614: 610: 608: 607: 595: 585: 584: 579: 575: 573: 572: 560: 553: 551: 546: 545: 536: 531: 530: 495: 493: 492: 487: 475: 473: 472: 467: 465: 464: 443: 441: 440: 435: 433: 427: 426: 425: 412: 411: 403: 402: 384: 382: 381: 376: 310: 308: 307: 302: 290: 288: 287: 282: 270: 268: 267: 262: 233: 231: 230: 225: 223: 215: 207: 206: 181: 179: 178: 173: 171: 170: 151: 149: 148: 143: 141: 140: 74: 71: 60: 58:related articles 35: 27: 21: 1217: 1216: 1212: 1211: 1210: 1208: 1207: 1206: 1187: 1186: 1163: 1158: 1151: 1136: 1135: 1131: 1124: 1109: 1108: 1104: 1097: 1082: 1081: 1077: 1073: 1057: 1044: 1022: 980: 975: 967: 961: 913:Fairing release 849: 819: 814: 813: 792: 787: 786: 765: 760: 759: 738: 733: 732: 713: 712: 693: 692: 673: 672: 670: 634: 625: 624: 599: 590: 589: 564: 555: 554: 537: 516: 511: 510: 478: 477: 456: 448: 447: 417: 413: 394: 389: 388: 361: 360: 352: 323: 317: 293: 292: 273: 272: 238: 237: 198: 190: 189: 162: 154: 153: 132: 124: 123: 116: 110: 97: 75: 69: 66: 56: 53:introduce links 36: 23: 22: 15: 12: 11: 5: 1215: 1213: 1205: 1204: 1199: 1189: 1188: 1185: 1184: 1179: 1174: 1169: 1162: 1161:External links 1159: 1157: 1156: 1149: 1129: 1122: 1102: 1095: 1074: 1072: 1069: 1068: 1067: 1064: 1061: 1056: 1053: 1052: 1051: 1048: 1043: 1040: 1039: 1038: 1035: 1032: 1029: 1026: 1021: 1018: 1006:compressed air 995: 994: 991: 988: 979: 976: 974: 971: 960: 957: 950: 949: 946: 942: 941: 938: 934: 933: 930: 926: 925: 922: 918: 917: 914: 910: 909: 906: 902: 901: 898: 894: 893: 890: 886: 885: 882: 878: 877: 874: 848: 845: 826: 822: 799: 795: 772: 768: 745: 741: 720: 700: 680: 653: 648: 641: 637: 633: 628: 623: 618: 613: 606: 602: 598: 593: 588: 583: 578: 571: 567: 563: 558: 549: 544: 540: 534: 529: 526: 523: 519: 485: 463: 459: 455: 430: 424: 420: 416: 409: 406: 401: 397: 374: 371: 368: 351: 348: 316: 313: 300: 280: 260: 257: 254: 251: 248: 245: 221: 218: 213: 210: 205: 201: 197: 169: 165: 161: 139: 135: 131: 109: 106: 101:Sound pressure 96: 93: 77: 76: 63:Find link tool 39: 37: 30: 24: 14: 13: 10: 9: 6: 4: 3: 2: 1214: 1203: 1200: 1198: 1195: 1194: 1192: 1183: 1180: 1178: 1175: 1173: 1170: 1168: 1165: 1164: 1160: 1152: 1146: 1142: 1141: 1133: 1130: 1125: 1119: 1115: 1114: 1106: 1103: 1098: 1092: 1088: 1087: 1079: 1076: 1070: 1065: 1062: 1059: 1058: 1054: 1049: 1046: 1045: 1042:Disadvantages 1041: 1036: 1033: 1030: 1027: 1024: 1023: 1019: 1017: 1014: 1012: 1007: 1003: 998: 992: 989: 986: 985: 984: 977: 972: 970: 966: 958: 956: 947: 944: 943: 939: 936: 935: 931: 928: 927: 923: 920: 919: 915: 912: 911: 907: 904: 903: 899: 896: 895: 891: 888: 887: 883: 880: 879: 875: 872: 871: 865: 863: 859: 855: 846: 844: 842: 824: 820: 797: 793: 770: 766: 743: 739: 718: 698: 678: 668: 651: 646: 639: 635: 631: 626: 621: 616: 611: 604: 600: 596: 591: 586: 581: 576: 569: 565: 561: 556: 547: 542: 538: 532: 527: 524: 521: 517: 508: 501: 497: 483: 461: 457: 453: 444: 428: 422: 418: 414: 407: 404: 399: 395: 386: 372: 369: 366: 358: 349: 347: 345: 341: 340:Lambert's law 337: 327: 322: 314: 312: 298: 278: 258: 255: 252: 249: 246: 243: 234: 219: 216: 211: 208: 203: 199: 195: 187: 185: 167: 163: 159: 137: 133: 129: 120: 115: 114:Reverberation 107: 105: 102: 94: 92: 90: 85: 83: 73: 64: 59: 54: 50: 49: 45: 40:This article 38: 34: 29: 28: 19: 1197:Astronautics 1139: 1132: 1112: 1105: 1089:. Ellipses. 1085: 1078: 1015: 999: 996: 981: 968: 953: 873:Launch steps 850: 669: 509: 506: 496:its volume. 445: 387: 353: 332: 235: 188: 121: 117: 98: 86: 81: 80: 67: 41: 1191:Categories 1071:References 1020:Advantages 1011:distortion 963:See also: 862:Vibrations 319:See also: 112:See also: 61:; try the 48:link to it 1202:Acoustics 299:α 259:α 256:× 250:∑ 70:June 2016 51:. Please 1055:Examples 1002:nitrogen 841:celerity 854:Thermal 87:In the 1147:  1120:  1093:  671:Where 446:Where 236:Where 44:orphan 42:is an 184:dBSPL 1145:ISBN 1118:ISBN 1091:ISBN 860:and 839:the 785:and 711:and 408:2000 212:0.16 152:and 1004:or 342:), 1193:: 856:, 758:, 691:, 462:60 423:60 346:. 311:. 204:60 168:60 138:30 1153:. 1126:. 1099:. 825:0 821:c 798:z 794:L 771:y 767:L 744:x 740:L 719:n 699:m 679:l 652:2 647:) 640:z 636:L 632:n 627:( 622:+ 617:2 612:) 605:y 601:L 597:m 592:( 587:+ 582:2 577:) 570:x 566:L 562:l 557:( 548:2 543:0 539:c 533:= 528:n 525:m 522:l 518:f 484:V 458:T 454:R 429:V 419:T 415:R 405:= 400:s 396:F 373:3 370:= 367:M 279:S 253:S 247:= 244:A 220:A 217:V 209:= 200:T 196:R 164:T 160:R 134:T 130:R 72:) 68:( 20:)

Index

Draft:Diffuse field acoustic testing (space facility)

orphan
link to it
introduce links
related articles
Find link tool
aerospace industry
Sound pressure
Reverberation
dBSPL
Geometrical acoustics

specular reflection
Lambert's law
diffused reflection
Schroeder's frequency

celerity
Thermal
Radio-frequencies
Vibrations
Vibration § Vibration testing
nitrogen
compressed air
distortion
Acoustique générale: équations différentielles et intégrales, solutions en milieux fluides et solides, applications
ISBN
978-2-7298-2805-9
Random vibration in perspective

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.