Knowledge (XXG)

Drug carrier

Source đź“ť

262:(NDs) are carbon nanoparticles which can vary from ~4-100 nm in diameter. NDs are typically formed in two ways: from micron-sized diamond particles under high-pressure high-temperature conditions, called high-pressure high-temperature nanodiamonds (HPHT NDs) and by shock-wave compression, called detonation nanodiamonds (DNDs). The surfaces of these NDs can be modified by processes such as oxidation and aminification to alter adsorption properties. 355: 316: 275: 25: 237:. The addition of an amphiphilic block copolymer effectively lowers this critical micelle concentration by shifting the monomer exchange equilibrium. These carriers are comparable to liposomes, however the lack of an aqueous core makes polymeric micelles less accommodating to a wide variety of drugs. 442: 245:
Microspheres are hollow, micron-sized carriers often formed via self-assembly of polymeric compounds which are most often used to encapsulate the active drug for delivery. Drug release is often achieved by diffusion through pores in the microsphere structure or by degradation of the microsphere
205:. Disadvantages associated with using liposomes as drug carriers involve poor control over drug release. Drugs which have high membrane-permeability can readily 'leak' from the carrier, while optimization of 246:
shell. Some of the research currently being done uses advanced assembly techniques, such as precision particle fabrication (PPF), to create microspheres capable of sustained control over drug release.
209:
stability can cause drug release by diffusion to be a slow and inefficient process. Much of the current research involving liposomes is focused on improving the delivery of anticancer drugs such as
156:
A wide variety of drug carrier systems have been developed and studied, each of which has unique advantages and disadvantages. Some of the more popular types of drug carriers include
145:) or by triggered release at the drug's target by some stimulus, such as changes in pH, application of heat, and activation by light. Drug carriers are also used to improve the 201:
surrounding an aqueous core. This hydrophobic/hydrophilic composition is particularly useful for drug delivery as these carriers can accommodate a number of drugs of varying
408: 184:. Different types of drug carrier utilize different methods of attachment, and some carriers can even implement a variety of attachment methods. 169: 634: 744: 141:
into systemic circulation. This can be accomplished either by slow release of a particular drug over a long period of time (typically
787: 693: 497: 108: 606:
Berkland, Cory; Kim, Kyekyoon; Pack, Daniel (2009). "Precision Polymer Microparticles for Controlled-Release Drug Delivery".
234: 46: 89: 42: 61: 868: 788:"A Novel Macromolecular Prodrug Concept Exploiting Endogenous Serum Albumin as a Drug Carrier for Cancer Chemotherapy" 68: 850:
Designing Better Cancer Drugs Insight into Carrier Molecules' Functionality which may yield Safer Cancer Treatments
35: 692:
Mochalin, V.; Pentecost, A.; Li, X. M.; Neitzel, I.; Nelson, M.; Wei, C.; He, T.; Guo, F.; Gogotsi, Y. (2013).
75: 849: 226: 177: 134: 498:"Controllable Drug Release and Simultaneously Carrier Decomposition of SiO2-Drug Composite Nanoparticles" 57: 853: 477:. Washington, D.C.: American Chemical Society, Division of Colloid and Surface Chemistry. pp. 3–9. 743:
Nagy, Z. K.; Balogh, A.; Vajna, B.; Farkas, A.; Patyi, G.; Kramarics, A.; Marosi, G. (December 2011).
646: 745:"Comparison of Electrospun and Extruded Soluplus-Based Solid Dosage Forms of Improved Dissolution" 422: 417: 772: 815: 807: 764: 721: 713: 670: 662: 588: 525: 517: 478: 799: 756: 705: 654: 615: 578: 568: 509: 233:. These carriers form at some high concentration specific to the compounds used, called the 230: 172:. Different methods of attaching the drug to the carrier have been implemented, including 150: 146: 82: 650: 583: 556: 354: 315: 274: 862: 202: 198: 181: 165: 130: 694:"Adsorption of Drugs on Nanodiamond: Toward Development of a Drug Delivery Platform" 678: 786:
Kratz, F.; Muller-Driver, R.; Hofmann, I.; Drevs, J.; Unger, C. (10 March 2000).
557:"Nanoliposomes in Cancer Therapy: Marketed Products and Current Clinical Trials" 496:
Zhang, Silu; Chu, Zhiqin; Yin, Chun; Zhang, Chunyuan; Lin, Ge; Li, Quan (2013).
259: 210: 24: 619: 717: 666: 482: 214: 173: 823: 811: 729: 658: 533: 521: 142: 819: 768: 725: 674: 633:
Lin, Chung-Lun; Lin, Cheng-Huang; Chang, Huan-Cheng; Su, Meng-Chih (2015).
592: 529: 418:
Biodegradable hydrogels for bone regeneration through growth factor release
555:
Taléns-Visconti R, Díez-Sales O, de Julián-Ortiz JV, Nácher A (Apr 2022).
844: 840: 573: 537: 157: 153:, of many drugs with poor water solubility and/or membrane permeability. 133:
which serves to improve the selectivity, effectiveness, and/or safety of
472: 225:
Polymeric micelles are drug carriers formed by the aggregation of some
161: 803: 760: 709: 513: 541: 423:
Development of acid-sensitive copolymer micelles for drug delivery
138: 349: 310: 269: 18: 137:. Drug carriers are primarily used to control the release of 365: 326: 285: 197:
Liposomes are structures which consist of at least one
841:
Weighting cancer drugs to make them hit tumors harder
49:. Unsourced material may be challenged and removed. 826:on 10 February 2022 – via WorldCat, PubMed. 732:on 10 February 2022 – via WorldCat, PubMed. 681:on 10 February 2022 – via WorldCat, PubMed. 8: 561:International Journal of Molecular Sciences 443:"Pharmaceutical Vehicles | DrugBank Online" 16:Inert medium used in drug-delivery systems 582: 572: 466: 464: 462: 109:Learn how and when to remove this message 502:Journal of the American Chemical Society 775:on 10 February 2022 – via PubMed. 434: 176:, integration into the bulk structure, 129:is a substrate used in the process of 7: 635:"Protein Attachment on Nanodiamonds" 47:adding citations to reliable sources 639:The Journal of Physical Chemistry A 407:The following research papers from 749:Journal of Pharmaceutical Sciences 14: 353: 314: 273: 23: 34:needs additional citations for 792:Journal of Medicinal Chemistry 536:on 16 August 2021 – via 235:critical micelle concentration 1: 229:molecule with an amphiphilic 149:properties, specifically the 474:Carrier-based drug delivery 885: 620:10.1021/bk-2004-0879.ch014 659:10.1021/acs.jpca.5b01031 698:Molecular Pharmaceutics 614:(Chapter 14): 197–213. 471:Svenson, Sönke (2004). 346:Protein-drug conjugates 362:This section is empty. 323:This section is empty. 282:This section is empty. 227:amphiphile\amphiphilic 307:Protein-DNA complexes 854:TechnologyReview.com 608:ACS Symposium Series 574:10.3390/ijms23084249 43:improve this article 869:Medicinal chemistry 651:2015JPCA..119.7704L 135:drug administration 221:Polymeric micelles 804:10.1021/jm9905864 761:10.1002/jps.22731 710:10.1021/mp400213z 645:(28): 7704–7711. 514:10.1021/ja3123015 508:(15): 5709–5716. 411:are in pdf format 382: 381: 343: 342: 302: 301: 119: 118: 111: 93: 876: 852:at MIT magazine 828: 827: 822:. Archived from 798:(7): 1253–1256. 783: 777: 776: 771:. Archived from 740: 734: 733: 728:. Archived from 689: 683: 682: 677:. Archived from 630: 624: 623: 603: 597: 596: 586: 576: 552: 546: 545: 532:. Archived from 493: 487: 486: 468: 457: 456: 454: 453: 439: 377: 374: 364:You can help by 357: 350: 338: 335: 325:You can help by 318: 311: 297: 294: 284:You can help by 277: 270: 182:covalent bonding 114: 107: 103: 100: 94: 92: 51: 27: 19: 884: 883: 879: 878: 877: 875: 874: 873: 859: 858: 837: 832: 831: 785: 784: 780: 742: 741: 737: 691: 690: 686: 632: 631: 627: 605: 604: 600: 554: 553: 549: 495: 494: 490: 470: 469: 460: 451: 449: 447:go.drugbank.com 441: 440: 436: 431: 404: 399: 394: 389: 378: 372: 369: 348: 339: 333: 330: 309: 298: 292: 289: 268: 257: 252: 243: 231:block copolymer 223: 195: 190: 151:bioavailability 147:pharmacokinetic 115: 104: 98: 95: 52: 50: 40: 28: 17: 12: 11: 5: 882: 880: 872: 871: 861: 860: 857: 856: 847: 836: 835:External links 833: 830: 829: 778: 735: 684: 625: 598: 547: 488: 458: 433: 432: 430: 427: 426: 425: 420: 403: 400: 398: 395: 393: 390: 388: 385: 380: 379: 360: 358: 347: 344: 341: 340: 321: 319: 308: 305: 300: 299: 280: 278: 267: 264: 256: 253: 251: 250:Nanostructures 248: 242: 239: 222: 219: 194: 191: 189: 186: 117: 116: 58:"Drug carrier" 31: 29: 22: 15: 13: 10: 9: 6: 4: 3: 2: 881: 870: 867: 866: 864: 855: 851: 848: 846: 842: 839: 838: 834: 825: 821: 817: 813: 809: 805: 801: 797: 793: 789: 782: 779: 774: 770: 766: 762: 758: 755:(1): 322–32. 754: 750: 746: 739: 736: 731: 727: 723: 719: 715: 711: 707: 703: 699: 695: 688: 685: 680: 676: 672: 668: 664: 660: 656: 652: 648: 644: 640: 636: 629: 626: 621: 617: 613: 609: 602: 599: 594: 590: 585: 580: 575: 570: 566: 562: 558: 551: 548: 543: 539: 535: 531: 527: 523: 519: 515: 511: 507: 503: 499: 492: 489: 484: 480: 476: 475: 467: 465: 463: 459: 448: 444: 438: 435: 428: 424: 421: 419: 416: 415: 414: 412: 410: 401: 396: 391: 386: 384: 376: 373:February 2022 367: 363: 359: 356: 352: 351: 345: 337: 334:February 2022 328: 324: 320: 317: 313: 312: 306: 304: 296: 293:February 2022 287: 283: 279: 276: 272: 271: 265: 263: 261: 254: 249: 247: 240: 238: 236: 232: 228: 220: 218: 216: 212: 208: 204: 203:lipophilicity 200: 199:lipid bilayer 192: 188:Carrier types 187: 185: 183: 179: 178:encapsulation 175: 171: 170:nanoparticles 167: 163: 159: 154: 152: 148: 144: 140: 136: 132: 131:drug delivery 128: 124: 113: 110: 102: 91: 88: 84: 81: 77: 74: 70: 67: 63: 60: â€“  59: 55: 54:Find sources: 48: 44: 38: 37: 32:This article 30: 26: 21: 20: 824:the original 795: 791: 781: 773:the original 752: 748: 738: 730:the original 704:(10): 3729. 701: 697: 687: 679:the original 642: 638: 628: 611: 607: 601: 564: 560: 550: 534:the original 505: 501: 491: 473: 450:. Retrieved 446: 437: 406: 405: 387:Erythrocytes 383: 370: 366:adding to it 361: 331: 327:adding to it 322: 303: 290: 286:adding to it 281: 260:Nanodiamonds 258: 255:Nanodiamonds 244: 241:Microspheres 224: 206: 196: 166:microspheres 160:, polymeric 155: 127:drug vehicle 126: 123:drug carrier 122: 120: 105: 96: 86: 79: 72: 65: 53: 41:Please help 36:verification 33: 845:PhysOrg.com 567:(8): 4249. 211:doxorubicin 718:5144183581 667:5856831833 483:1132091618 452:2022-02-10 429:References 397:Dendrimers 266:Nanofibers 215:paclitaxel 174:adsorption 69:newspapers 812:122116158 522:841292280 402:Resources 392:Virosomes 193:Liposomes 158:liposomes 143:diffusion 99:July 2014 863:Category 820:10753462 769:21918982 726:23941665 675:25815400 593:35457065 538:WorldCat 530:23496255 162:micelles 647:Bibcode 584:9030431 207:in vivo 83:scholar 818:  810:  767:  724:  716:  673:  665:  591:  581:  542:PubMed 528:  520:  481:  180:, and 168:, and 85:  78:  71:  64:  56:  409:IUPAC 139:drugs 90:JSTOR 76:books 816:PMID 808:OCLC 765:PMID 722:PMID 714:OCLC 671:PMID 663:OCLC 589:PMID 526:PMID 518:OCLC 479:OCLC 213:and 62:news 843:at 800:doi 757:doi 753:101 706:doi 655:doi 643:119 616:doi 612:879 579:PMC 569:doi 510:doi 506:135 368:. 329:. 288:. 125:or 45:by 865:: 814:. 806:. 796:43 794:. 790:. 763:. 751:. 747:. 720:. 712:. 702:10 700:. 696:. 669:. 661:. 653:. 641:. 637:. 610:. 587:. 577:. 565:23 563:. 559:. 540:, 524:. 516:. 504:. 500:. 461:^ 445:. 413:: 217:. 164:, 121:A 802:: 759:: 708:: 657:: 649:: 622:. 618:: 595:. 571:: 544:. 512:: 485:. 455:. 375:) 371:( 336:) 332:( 295:) 291:( 112:) 106:( 101:) 97:( 87:· 80:· 73:· 66:· 39:.

Index


verification
improve this article
adding citations to reliable sources
"Drug carrier"
news
newspapers
books
scholar
JSTOR
Learn how and when to remove this message
drug delivery
drug administration
drugs
diffusion
pharmacokinetic
bioavailability
liposomes
micelles
microspheres
nanoparticles
adsorption
encapsulation
covalent bonding
lipid bilayer
lipophilicity
doxorubicin
paclitaxel
amphiphile\amphiphilic
block copolymer

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑