Knowledge

Elimination reaction

Source đź“ť

364: 31: 232: 393: 613:β-Elimination, with loss of electrofuge and nucleofuge on vicinal carbon atoms, is by far the most common type of elimination. The ability to form a stable product containing a C=C or C=X bond, as well as orbital alignment considerations, strongly favors β-elimination over other elimination processes. However, other types are known, generally for systems where β-elimination cannot occur. 1034: 617: 1022: 643:, as a reactive intermediate. On the other hand, formic acid undergoes α-elimination to afford the stable products water and carbon monoxide under acidic conditions. α-Elimination may also occur on a metal center, one particularly common result of which is lowering of both the metal oxidation state and coordination number by 2 units in a process known as 658:
In certain special cases, γ- and higher eliminations to form three-membered or larger rings is also possible in both organic and organometallic processes. For instance, certain Pt(II) complexes undergo γ- and δ-elimination to give metallocycles. More recently, γ-silyl elimination of a silylcyclobutyl
801:
In rare cases in which β hydrogens are unavailable but substitution is disfavored, α-elimination to form a carbene can sometimes occur. In particular: (1) Trihalomethanes like chloroform can react with NaOH to form dihalocarbenes (substitution is electronically disfavored). (2) Allyl and benzyl
974:
Kelly, Christopher B.; Colthart, Allison M.; Constant, Brad D.; Corning, Sean R.; Dubois, Lily N. E.; Genovese, Jacqueline T.; Radziewicz, Julie L.; Sletten, Ellen M.; Whitaker, Katherine R. (2011-04-01). "Enabling the Synthesis of Perfluoroalkyl Bicyclobutanes via 1,3 Îł-Silyl Elimination".
70:. The numbers refer not to the number of steps in the mechanism, but rather to the kinetics of the reaction: E2 is bimolecular (second-order) while E1 is unimolecular (first-order). In cases where the molecule is able to stabilize an anion but possesses a poor 568:
2 substitution is hard to achieve when strong bases are used, as alkene products arising from elimination are almost always observed to some degree. On the other hand, clean E2 can be achieved by simply selecting a sterically hindered base (e.g., potassium
457:
being favored. Fluoride is not a good leaving group, so eliminations with fluoride as the leaving group have slower rates than other halogens . There is a certain level of competition between the elimination reaction and
542:> 11, e.g., hydroxide, alkoxide, acetylide), the result is generally elimination by E2, while weaker bases that are still good nucleophiles (e.g., acetate, azide, cyanide, iodide) will give primarily S 604:
2 reaction because in this reaction type the C-H bonds tighten in the transition state. The KIE's for the ethyl (0.99) and isopropyl (1.72) analogues suggest competition between the two reaction modes.
4678: 623:
The next most common type of elimination reaction is α-elimination. For a carbon center, the result of α-elimination is the formation of a carbene, which includes "stable carbenes" such as
939:
Moore, Stephen S.; DiCosimo, Robert; Sowinski, Allan F.; Whitesides, George M. (1981-02-01). "Ring strain in bis(triethylphosphine)-3,3-dimethylplatinacyclobutane is small".
577:
1 almost always result in a product mixture contaminated by some E1 product (again, with the exception of cases where the lack of β hydrogens makes elimination impossible).
3794: 837:
Stephanie M. Villano; Shuji Kato; Veronica M. Bierbaum (2006). "Deuterium Kinetic Isotope Effects in Gas-Phase SN2 and E2 Reactions: Comparison of Experiment and Theory".
3739: 4507: 3849: 765:
Nash, J. J.; Leininger, M. A.; Keyes, K. (April 2008). "Pyrolysis of Aryl Sulfonate Esters in the Absence of Solvent: E1 or E2? A Puzzle for the Organic Laboratory".
655:
refer to processes that result in formation of a metal-carbene complex. In these reactions, it is the carbon adjacent to the metal that undergoes α-elimination.)
3999: 2633: 4728: 1066: 4502: 3604: 2328: 802:
chloride can react with lithium tetramethylpiperide (LiTMP) to form vinylcarbene and phenylcarbene, respectively (substitution is sterically disfavored).
414:
Highly substituted carbocations are more stable than methyl or primary substituted cations. Such stability gives time for the two-step E1 mechanism to occur.
363: 3374: 1525: 564:
In general, with the exception of reactions in which E2 is impossible because β hydrogens are unavailable (e.g. methyl, allyl, and benzyl halides), clean S
4174: 2118: 525:
2 reaction) to essentially only 1° haloalkanes; 2° haloalkanes generally do not give synthetically useful yields, while 3° haloalkanes fail completely.
4269: 2373: 4249: 3744: 2911: 2792: 2348: 4339: 4094: 1561: 513:
For example, when a 3° haloalkane is reacts with an alkoxide, due to strong basic character of the alkoxide and unreactivity of 3° group towards S
183:
conformation with higher energy. The reaction mechanism involving staggered conformation is more favorable for E2 reactions (unlike E1 reactions).
2926: 4572: 4029: 528:
With strong base, 3° haloalkanes give elimination by E2. With weak bases, mixtures of elimination and substitution products form by competing S
4522: 4134: 4114: 4074: 2881: 4668: 4593: 4477: 3089: 2493: 1824: 411:
Highly substituted alkyl halides are bulky, limiting the room for the E2 one-step mechanism; therefore, the two-step E1 mechanism is favored.
4663: 4492: 4149: 4004: 3634: 3479: 2716: 326:
The reaction usually occurs in the complete absence of a base or the presence of only a weak base (acidic conditions and high temperature).
3839: 3329: 3004: 1278: 4743: 4527: 3549: 1155: 4104: 4738: 4452: 4314: 4069: 1112: 1038: 145:
It is typically undergone by primary substituted alkyl halides, but is possible with some secondary alkyl halides and other compounds.
4628: 4099: 4014: 3984: 3964: 3829: 3824: 3199: 3124: 2767: 2721: 2588: 1849: 1419: 4567: 1059: 915: 821: 742: 4733: 4693: 4643: 4119: 3869: 3799: 2288: 4329: 3934: 2827: 2548: 4319: 1859: 4487: 4244: 4194: 2984: 2916: 2807: 2383: 2138: 2063: 1844: 392: 231: 4199: 4009: 3484: 3394: 1518: 1026: 315:
is influenced only by the concentration of the alkyl halide because carbocation formation is the slowest step, as known as the
4773: 4557: 4497: 3899: 3874: 3784: 3364: 3244: 2278: 1774: 4827: 4822: 4658: 4144: 3939: 2208: 1327: 1322: 1132: 882: 4763: 4349: 3859: 3369: 3314: 3159: 3119: 2951: 2706: 2423: 2273: 1487: 4723: 4284: 4239: 3729: 3584: 1492: 767: 4758: 4673: 4532: 4447: 4344: 3419: 3074: 2742: 2153: 1714: 4832: 4648: 4623: 4608: 4304: 4169: 4124: 3889: 3434: 3284: 2498: 2178: 2123: 1052: 4653: 4598: 4129: 3544: 3259: 3254: 2747: 2563: 2553: 2268: 2128: 2078: 2073: 2048: 1954: 4708: 4309: 4229: 3844: 3809: 3654: 3079: 3039: 2936: 2711: 2463: 2408: 2008: 1719: 1709: 1684: 4683: 4384: 4189: 3624: 3189: 3164: 3104: 2696: 2403: 2053: 2238: 3974: 3509: 2961: 2183: 2148: 1744: 1679: 1511: 1457: 1147: 518: 4542: 4164: 3224: 3149: 2673: 2508: 2193: 1969: 1929: 1674: 4783: 4688: 4422: 4394: 4364: 4279: 4209: 4139: 4059: 3959: 3919: 3614: 3234: 2533: 2528: 1990: 1854: 1184: 1084: 680: 459: 75: 4748: 4618: 4482: 4324: 4184: 3704: 2678: 2228: 2188: 1939: 4638: 4234: 4204: 4079: 4034: 3864: 3774: 3589: 3579: 3409: 2966: 2906: 2871: 2658: 2618: 2393: 2263: 1779: 1769: 1699: 1414: 341: 213: 159:
Because the E2 mechanism results in the formation of a pi bond, the two leaving groups (often a hydrogen and a
4214: 3194: 2218: 1764: 1644: 4427: 4718: 4577: 4369: 4294: 4274: 3994: 3944: 3804: 3769: 3709: 3639: 2941: 2921: 2653: 2573: 2468: 2428: 2398: 2333: 2203: 2113: 2103: 1979: 1689: 1462: 1263: 668: 506: 546:
2. Finally, weakly nucleophilic species (e.g., water, alcohols, carboxylic acids) will give a mixture of S
62:
are removed from a molecule in either a one- or two-step mechanism. The one-step mechanism is known as the
4457: 4179: 3929: 3909: 3884: 3834: 3749: 3724: 3679: 3649: 3629: 3599: 3564: 3519: 3494: 3469: 3354: 3279: 3059: 2752: 2688: 2488: 2213: 2133: 1819: 1794: 1571: 1566: 1217: 581: 561:
2 when the nucleophile is also unhindered. However, strongly basic and hindered nucleophiles favor E2.
386: 172: 4793: 3539: 2163: 517:
2, only alkene formation by E2 elimination is observed. Thus, elimination by E2 limits the scope of the
4379: 4334: 4049: 4019: 3989: 3924: 3904: 3819: 3814: 3779: 3734: 3719: 3714: 3694: 3684: 3619: 3609: 3489: 3009: 2812: 2388: 2343: 2173: 1909: 1629: 1591: 1447: 1379: 1237: 1227: 644: 316: 209: 194: 153: 1839: 1834: 4432: 4562: 4512: 4462: 4442: 4289: 4264: 3979: 3969: 3854: 3669: 3664: 3594: 3379: 3179: 3139: 3069: 3034: 2989: 2956: 2822: 2797: 2598: 2558: 2518: 2483: 2413: 2168: 2038: 2013: 1442: 776: 305: 4778: 4768: 4753: 4399: 4374: 4359: 4354: 4084: 4039: 4024: 3914: 3894: 3789: 3674: 3659: 3504: 3449: 3439: 3429: 3404: 3169: 3044: 3019: 2931: 2787: 2772: 2757: 2613: 2578: 2523: 2293: 2143: 2088: 1959: 1874: 1734: 1659: 1452: 1384: 1369: 1312: 1804: 30: 4517: 4467: 4437: 4299: 4089: 3879: 3764: 3699: 3689: 3454: 3384: 3349: 3344: 3324: 3319: 3264: 3174: 3024: 2886: 2876: 2782: 2568: 2513: 2443: 2363: 2258: 2158: 2093: 2018: 1864: 1729: 1664: 1477: 1247: 1076: 248: 127: 1649: 4254: 3574: 3459: 3424: 3389: 3334: 3289: 3249: 3204: 3184: 3134: 3129: 3099: 3084: 2994: 2901: 2837: 2802: 2628: 2503: 2378: 2303: 2283: 2198: 2033: 2028: 1974: 1884: 1789: 1749: 1704: 1586: 1581: 1546: 1472: 1467: 1429: 1374: 1293: 1273: 1209: 1000: 992: 956: 921: 911: 888: 878: 855: 839: 817: 748: 738: 732: 701: 260: 4788: 4633: 4603: 4547: 4472: 4404: 4159: 4109: 3954: 3759: 3534: 3529: 3474: 3464: 3239: 3049: 3029: 2999: 2896: 2832: 2817: 2648: 2603: 2593: 2583: 2478: 2458: 2453: 2438: 2433: 2313: 2308: 2248: 2233: 2223: 2068: 2058: 1924: 1914: 1904: 1814: 1809: 1784: 1724: 1576: 1535: 1404: 1353: 1307: 984: 948: 847: 784: 710: 589: 482: 187: 168: 139: 55: 271:
E1 is a model to explain a particular type of chemical elimination reaction. E1 stands for
4698: 4389: 4224: 4219: 3514: 3499: 3444: 3399: 3359: 3309: 3274: 3269: 3214: 3209: 3144: 3094: 3014: 2842: 2726: 2701: 2663: 2638: 2623: 2608: 2543: 2418: 2368: 2358: 2338: 2298: 2108: 2098: 2083: 1879: 1799: 1624: 1619: 1482: 1394: 1343: 636: 624: 593: 352: 1669: 1639: 780: 422:
1 and E1 pathways are competing, the E1 pathway can be favored by increasing the heat.
4703: 4613: 4552: 3644: 3554: 3524: 3299: 3154: 2891: 2668: 2538: 2353: 2323: 2023: 1919: 1694: 1556: 1189: 1178: 667:
Many of the concepts and terminology related to elimination reactions were proposed by
553:
For 1° haloalkanes with β-branching, E2 elimination is still generally preferred over S
164: 4816: 4713: 4414: 4259: 4154: 3949: 3339: 3304: 3294: 3229: 3219: 3109: 2946: 2762: 2473: 2448: 2318: 1964: 1949: 1934: 1829: 1759: 1739: 1654: 1437: 1409: 1317: 1268: 1242: 535:
The case of 2° haloalkanes is relatively complex. For strongly basic nucleophiles (p
442: 320: 312: 296: 176: 149: 71: 43: 27:
Reaction where 2 substituents are removed from a molecule in a 1 or 2 step mechanism
3754: 3114: 2866: 2643: 2243: 2043: 1894: 1889: 1754: 1609: 1389: 1195: 1102: 1092: 471: 463: 407:
E1 eliminations happen with highly substituted alkyl halides for two main reasons.
330: 220: 97: 35: 584:(KIE) was determined for the gas phase reaction of several alkyl halides with the 227:
mechanism if the base can also act as a nucleophile (true for many common bases).
2253: 1899: 1869: 1634: 1348: 1283: 728: 502: 491: 290: 59: 39: 4537: 4064: 3414: 1503: 628: 616: 286: 156:, because it's influenced by both the alkyl halide and the base (bimolecular). 996: 960: 925: 752: 734:
Advanced Organic Chemistry: Reactions, Mechanisms, and Structure, 3rd edition
714: 635:) in the presence of strong base is a classic approach for the generation of 1399: 1044: 1033: 892: 348: 256: 82: 1004: 859: 17: 1021: 1944: 1614: 585: 404:
is the reaction of tert-butylbromide with potassium ethoxide in ethanol.
244: 180: 86: 952: 631:. For instance, α-elimination the elements of HCl from chloroform (CHCl 1604: 495: 454: 446: 356: 252: 160: 90: 988: 851: 788: 615: 557:
2 for strongly basic nucleophiles. Unhindered 1° haloalkanes favor S
450: 93: 600:
2 possible) on the other hand has a KIE of 0.85 consistent with a S
1302: 877:. Dougherty, Dennis A., 1952-. Sausalito, CA: University Science. 29: 376:
results from antiperiplanar elimination. The presence of product
308:
alkyl halides, but is possible with some secondary alkyl halides.
1988: 1507: 1048: 1122: 190:. It must be strong enough to remove a weakly acidic hydrogen. 659:
tosylate has been used to prepare strained bicyclic systems.
367:
E1 elimination Nash 2008, antiperiplanar relationship in blue
588:
ion. In accordance with an E2 elimination the reaction with
573:-butoxide). Similarly, attempts to effect substitution by S 391: 362: 230: 478:. Generally, elimination is favored over substitution when 647:. (Confusingly, in organometallic terminology, the terms 347:
There is no antiperiplanar requirement. An example is the
344:
of slightly larger than 1 (commonly 1 - 1.5) is observed.
96:
proceed through an "internal" elimination mechanism, the
699:
Coleman, G. H.; Johnstone, H. F. (1925). "Cyclohexene".
462:. More precisely, there are competitions between E2 and 337:
because they share a common carbocationic intermediate.
908:
The organometallic chemistry of the transition metals
4679:
Erlenmeyer–Plöchl azlactone and amino-acid synthesis
816:(5th ed.). New York: McGraw-Hill. p. 350. 4586: 4413: 4048: 3563: 3058: 2975: 2855: 2735: 2687: 1997: 1428: 1362: 1336: 1292: 1256: 1208: 1169: 1146: 1083: 380:
is an indication that an E1 mechanism is occurring.
3740:Divinylcyclopropane-cycloheptadiene rearrangement 432:Independent of concentration and basicity of base 138:E2 is a single step elimination, with a single 4000:Thermal rearrangement of aromatic hydrocarbons 2634:Thermal rearrangement of aromatic hydrocarbons 609:Elimination reactions other than β-elimination 216:much larger than 1 (commonly 2-6) is observed. 134:The specifics of the reaction are as follows: 4729:Lectka enantioselective beta-lactam synthesis 1519: 1060: 66:, and the two-step mechanism is known as the 8: 4508:Inverse electron-demand Diels–Alder reaction 2329:Heterogeneous metal catalyzed cross-coupling 193:In order for the pi bond to be created, the 3850:Lobry de Bruyn–Van Ekenstein transformation 289:: the carbon-halogen bond breaks to give a 4410: 2684: 1985: 1526: 1512: 1504: 1067: 1053: 1045: 4340:Petrenko-Kritschenko piperidone synthesis 3795:Fritsch–Buttenberg–Wiechell rearrangement 279:It is a two-step process of elimination: 116:, involves a one-step mechanism in which 4503:Intramolecular Diels–Alder cycloaddition 941:Journal of the American Chemical Society 691: 239:An example of this type of reaction in 4523:Metal-centered cycloaddition reactions 4175:Debus–Radziszewski imidazole synthesis 2119:Bodroux–Chichibabin aldehyde synthesis 1093:Unimolecular nucleophilic substitution 910:(5th ed.). Hoboken, N.J.: Wiley. 505:. Bases with steric bulk, (such as in 112:The E2 mechanism, where E2 stands for 4669:Diazoalkane 1,3-dipolar cycloaddition 4573:Vinylcyclopropane (5+2) cycloaddition 4478:Diazoalkane 1,3-dipolar cycloaddition 4250:Hurd–Mori 1,2,3-thiadiazole synthesis 3745:Dowd–Beckwith ring-expansion reaction 2912:Hurd–Mori 1,2,3-thiadiazole synthesis 1825:LFER solvent coefficients (data page) 1103:Bimolecular nucleophilic substitution 329:E1 reactions are in competition with 275:and has the following specifications 7: 3480:Sharpless asymmetric dihydroxylation 2717:Methoxymethylenetriphenylphosphorane 197:of carbons needs to be lowered from 3605:Allen–Millar–Trippett rearrangement 1156:Electrophilic aromatic substitution 445:is influenced by the reactivity of 385:It is accompanied by carbocationic 124:bonds break to form a double bond ( 4744:Nitrone-olefin (3+2) cycloaddition 4739:Niementowski quinazoline synthesis 4528:Nitrone-olefin (3+2) cycloaddition 4453:Azide-alkyne Huisgen cycloaddition 4315:Niementowski quinazoline synthesis 4070:Azide-alkyne Huisgen cycloaddition 3375:Meerwein–Ponndorf–Verley reduction 2927:Leimgruber–Batcho indole synthesis 1123:Nucleophilic internal substitution 1113:Nucleophilic aromatic substitution 25: 4568:Trimethylenemethane cycloaddition 4270:Johnson–Corey–Chaykovsky reaction 4135:Cadogan–Sundberg indole synthesis 4115:Bohlmann–Rahtz pyridine synthesis 4075:Baeyer–Emmerling indole synthesis 2882:Cadogan–Sundberg indole synthesis 2374:Johnson–Corey–Chaykovsky reaction 875:Modern physical organic chemistry 4664:Cook–Heilbron thiazole synthesis 4493:Hexadehydro Diels–Alder reaction 4320:Niementowski quinoline synthesis 4150:Cook–Heilbron thiazole synthesis 4095:Bischler–Möhlau indole synthesis 4005:Tiffeneau–Demjanov rearrangement 3635:Baker–Venkataraman rearrangement 2793:Horner–Wadsworth–Emmons reaction 2464:Mizoroki-Heck vs. Reductive Heck 2349:Horner–Wadsworth–Emmons reaction 1860:Neighbouring group participation 1032: 1020: 208:The C-H bond is weakened in the 4200:Fiesselmann thiophene synthesis 4030:Westphalen–LettrĂ© rearrangement 4010:Vinylcyclopropane rearrangement 3840:Kornblum–DeLaMare rearrangement 3485:Epoxidation of allylic alcohols 3395:Noyori asymmetric hydrogenation 3330:Kornblum–DeLaMare rearrangement 3005:Gallagher–Hollander degradation 1279:Lindemann–Hinshelwood mechanism 509:), are often poor nucleophiles. 396:Scheme 2. E1 reaction mechanism 235:Scheme 1: E2 reaction mechanism 4659:Chichibabin pyridine synthesis 4145:Chichibabin pyridine synthesis 4105:Blum–Ittah aziridine synthesis 3940:Ring expansion and contraction 2209:Cross dehydrogenative coupling 1328:Outer sphere electron transfer 1323:Inner sphere electron transfer 1133:Nucleophilic acyl substitution 485:around the α-carbon increases. 304:E1 typically takes place with 1: 4629:Bischler–Napieralski reaction 4587:Heterocycle forming reactions 4240:Hemetsberger indole synthesis 4100:Bischler–Napieralski reaction 4015:Wagner–Meerwein rearrangement 3985:Sommelet–Hauser rearrangement 3965:Seyferth–Gilbert homologation 3830:Ireland–Claisen rearrangement 3825:Hofmann–Martius rearrangement 3585:2,3-sigmatropic rearrangement 3200:Corey–Winter olefin synthesis 3125:Barton–McCombie deoxygenation 2768:Corey–Winter olefin synthesis 2722:Seyferth–Gilbert homologation 2589:Seyferth–Gilbert homologation 1493:Diffusion-controlled reaction 768:Journal of Chemical Education 592:results in a KIE of 2.3. The 179:transition state which is in 4734:Lehmstedt–Tanasescu reaction 4694:Gabriel–Colman rearrangement 4649:Bucherer carbazole synthesis 4644:Borsche–Drechsel cyclization 4624:Bernthsen acridine synthesis 4609:Bamberger triazine synthesis 4594:Algar–Flynn–Oyamada reaction 4305:Nazarov cyclization reaction 4170:De Kimpe aziridine synthesis 4125:Bucherer carbazole synthesis 4120:Borsche–Drechsel cyclization 3890:Nazarov cyclization reaction 3870:Meyer–Schuster rearrangement 3800:Gabriel–Colman rearrangement 3550:Wolffenstein–Böters reaction 3435:Reduction of nitro compounds 3285:Grundmann aldehyde synthesis 3090:Algar–Flynn–Oyamada reaction 2499:Olefin conversion technology 2494:Nozaki–Hiyama–Kishi reaction 2289:Gabriel–Colman rearrangement 2179:Claisen-Schmidt condensation 2124:Bouveault aldehyde synthesis 906:Crabtree, Robert H. (2009). 437:Competition among mechanisms 281:ionization and deprotonation 255:. The reaction products are 74:, a third type of reaction, 4709:Hantzsch pyridine synthesis 4488:Enone–alkene cycloadditions 4310:Nenitzescu indole synthesis 4230:Hantzsch pyridine synthesis 4195:Ferrario–Ackermann reaction 3845:Kowalski ester homologation 3810:Halogen dance rearrangement 3655:Benzilic acid rearrangement 3080:Akabori amino-acid reaction 3040:Von Braun amide degradation 2985:Barbier–Wieland degradation 2937:Nenitzescu indole synthesis 2917:Kharasch–Sosnovsky reaction 2808:Julia–Kocienski olefination 2712:Kowalski ester homologation 2409:Kowalski ester homologation 2384:Julia–Kocienski olefination 2139:Cadiot–Chodkiewicz coupling 2064:Aza-Baylis–Hillman reaction 2009:Acetoacetic ester synthesis 1720:Dynamic binding (chemistry) 1710:Conrotatory and disrotatory 1685:Charge remote fragmentation 1148:Electrophilic substitutions 186:E2 typically uses a strong 4849: 4774:Robinson–Gabriel synthesis 4724:Kröhnke pyridine synthesis 4558:Retro-Diels–Alder reaction 4498:Imine Diels–Alder reaction 4285:Kröhnke pyridine synthesis 3900:Newman–Kwart rearrangement 3875:Mislow–Evans rearrangement 3785:Fischer–Hepp rearrangement 3730:Di-Ď€-methane rearrangement 3510:Stephen aldehyde synthesis 3245:Eschweiler–Clarke reaction 2962:Williamson ether synthesis 2279:Fujiwara–Moritani reaction 2184:Combes quinoline synthesis 2149:Carbonyl olefin metathesis 1850:More O'Ferrall–Jencks plot 1775:Grunwald–Winstein equation 1745:Electron-withdrawing group 1680:Catalytic resonance theory 1458:Energy profile (chemistry) 1420:More O'Ferrall–Jencks plot 1085:Nucleophilic substitutions 812:Carey, Francis A. (2003). 519:Williamson ether synthesis 425:Specific features : 4784:Urech hydantoin synthesis 4764:Pomeranz–Fritsch reaction 4689:Fischer oxazole synthesis 4423:1,3-Dipolar cycloaddition 4395:Urech hydantoin synthesis 4365:Reissert indole synthesis 4350:Pomeranz–Fritsch reaction 4280:Knorr quinoline synthesis 4210:Fischer oxazole synthesis 4140:Camps quinoline synthesis 4060:1,3-Dipolar cycloaddition 3960:Semipinacol rearrangement 3935:Ramberg–Bäcklund reaction 3920:Piancatelli rearrangement 3860:McFadyen–Stevens reaction 3615:Alpha-ketol rearrangement 3370:McFadyen–Stevens reaction 3315:Kiliani–Fischer synthesis 3235:Elbs persulfate oxidation 3160:Bouveault–Blanc reduction 3120:Baeyer–Villiger oxidation 2952:Schotten–Baumann reaction 2828:Ramberg–Bäcklund reaction 2707:Kiliani–Fischer synthesis 2549:Ramberg–Bäcklund reaction 2534:Pinacol coupling reaction 2529:Piancatelli rearrangement 2424:Liebeskind–Srogl coupling 2274:Fujimoto–Belleau reaction 1991:List of organic reactions 1855:Negative hyperconjugation 1600: 1542: 1488:Michaelis–Menten kinetics 681:E1cB-elimination reaction 460:nucleophilic substitution 175:with lower energy than a 81:, exists. Finally, the 4759:Pictet–Spengler reaction 4674:Einhorn–Brunner reaction 4639:Boger pyridine synthesis 4533:Oxo-Diels–Alder reaction 4448:Aza-Diels–Alder reaction 4345:Pictet–Spengler reaction 4245:Hofmann–Löffler reaction 4235:Hegedus indole synthesis 4205:Fischer indole synthesis 4080:Bartoli indole synthesis 4035:Willgerodt rearrangement 3865:McLafferty rearrangement 3775:Ferrier carbocyclization 3590:2,3-Wittig rearrangement 3580:1,2-Wittig rearrangement 3420:Parikh–Doering oxidation 3410:Oxygen rebound mechanism 3075:Adkins–Peterson reaction 2967:Yamaguchi esterification 2907:Hegedus indole synthesis 2872:Bartoli indole synthesis 2743:Bamford–Stevens reaction 2659:Weinreb ketone synthesis 2619:Stork enamine alkylation 2394:Knoevenagel condensation 2264:Ferrier carbocyclization 2154:Castro–Stephens coupling 1780:Hammett acidity function 1770:Free-energy relationship 1715:Curtin–Hammett principle 1700:Conformational isomerism 1415:Potential energy surface 1294:Electron/Proton transfer 1179:Unimolecular elimination 873:Anslyn, Eric V. (2006). 715:10.15227/orgsyn.005.0033 488:a stronger base is used. 470:and also between E1 and 342:deuterium isotope effect 273:unimolecular elimination 214:deuterium isotope effect 212:and therefore a primary 34:Elimination reaction of 4719:Knorr pyrrole synthesis 4654:Bucherer–Bergs reaction 4599:Allan–Robinson reaction 4578:Wagner-Jauregg reaction 4370:Ring-closing metathesis 4295:Larock indole synthesis 4275:Knorr pyrrole synthesis 4130:Bucherer–Bergs reaction 3995:Stieglitz rearrangement 3975:Skattebøl rearrangement 3945:Ring-closing metathesis 3805:Group transfer reaction 3770:Favorskii rearrangement 3710:Cornforth rearrangement 3640:Bamberger rearrangement 3545:Wolff–Kishner reduction 3365:Markó–Lam deoxygenation 3260:Fleming–Tamao oxidation 3255:Fischer–Tropsch process 2942:Oxymercuration reaction 2922:Knorr pyrrole synthesis 2748:Barton–Kellogg reaction 2654:Wagner-Jauregg reaction 2574:Ring-closing metathesis 2564:Reimer–Tiemann reaction 2554:Rauhut–Currier reaction 2469:Nef isocyanide reaction 2429:Malonic ester synthesis 2399:Knorr pyrrole synthesis 2334:High dilution principle 2269:Friedel–Crafts reaction 2204:Cross-coupling reaction 2129:Bucherer–Bergs reaction 2114:Blanc chloromethylation 2104:Blaise ketone synthesis 2079:Baylis–Hillman reaction 2074:Barton–Kellogg reaction 2049:Allan–Robinson reaction 1955:Woodward–Hoffmann rules 1690:Charge-transfer complex 1463:Transition state theory 1264:Intramolecular reaction 1190:Bimolecular elimination 669:Christopher Kelk Ingold 532:1 and E1 pathways. 507:potassium tert-butoxide 387:rearrangement reactions 114:bimolecular elimination 4684:Feist–Benary synthesis 4458:Bradsher cycloaddition 4428:4+4 Photocycloaddition 4385:Simmons–Smith reaction 4330:Paternò–BĂĽchi reaction 4190:Feist–Benary synthesis 4180:Dieckmann condensation 3930:Pummerer rearrangement 3910:Oxy-Cope rearrangement 3885:Myers allene synthesis 3835:Jacobsen rearrangement 3750:Electrocyclic reaction 3725:Demjanov rearrangement 3680:Buchner ring expansion 3650:Beckmann rearrangement 3630:Aza-Cope rearrangement 3625:Arndt–Eistert reaction 3600:Alkyne zipper reaction 3520:Transfer hydrogenation 3495:Sharpless oxyamination 3470:Selenoxide elimination 3355:Lombardo methylenation 3280:Griesbaum coozonolysis 3190:Corey–Itsuno reduction 3165:Boyland–Sims oxidation 3105:Angeli–Rimini reaction 2753:Boord olefin synthesis 2697:Arndt–Eistert reaction 2689:Homologation reactions 2489:Nitro-Mannich reaction 2404:Kolbe–Schmitt reaction 2214:Cross-coupling partner 2134:Buchner ring expansion 2054:Arndt–Eistert reaction 1820:Kinetic isotope effect 1567:Rearrangement reaction 1257:Unimolecular reactions 1218:Electrophilic addition 1037:Quotations related to 620: 582:kinetic isotope effect 429:Rearrangement possible 397: 372:Only reaction product 368: 236: 173:staggered conformation 47: 4828:Olefination reactions 4823:Elimination reactions 4543:Pauson–Khand reaction 4380:Sharpless epoxidation 4335:Pechmann condensation 4215:Friedländer synthesis 4165:Davis–Beirut reaction 4020:Wallach rearrangement 3990:Stevens rearrangement 3925:Pinacol rearrangement 3905:Overman rearrangement 3820:Hofmann rearrangement 3815:Hayashi rearrangement 3780:Ferrier rearrangement 3735:Dimroth rearrangement 3720:Curtius rearrangement 3715:Criegee rearrangement 3695:Claisen rearrangement 3685:Carroll rearrangement 3620:Amadori rearrangement 3610:Allylic rearrangement 3490:Sharpless epoxidation 3225:Dess–Martin oxidation 3150:Bohn–Schmidt reaction 3010:Hofmann rearrangement 2813:Kauffmann olefination 2736:Olefination reactions 2674:Wurtz–Fittig reaction 2509:Palladium–NHC complex 2389:Kauffmann olefination 2344:Homologation reaction 2194:Corey–House synthesis 2174:Claisen rearrangement 1970:Yukawa–Tsuno equation 1930:Swain–Lupton equation 1910:Spherical aromaticity 1845:Möbius–HĂĽckel concept 1630:Aromatic ring current 1592:Substitution reaction 1448:Rate-determining step 1380:Reactive intermediate 1238:Free-radical addition 1228:Nucleophilic addition 1171:Elimination reactions 1027:Elimination reactions 645:reductive elimination 619: 395: 366: 323:apply (unimolecular). 317:rate-determining step 234: 219:E2 competes with the 210:rate determining step 33: 4749:Paal–Knorr synthesis 4619:Barton–Zard reaction 4563:Staudinger synthesis 4513:Ketene cycloaddition 4483:Diels–Alder reaction 4463:Cheletropic reaction 4443:Alkyne trimerisation 4325:Paal–Knorr synthesis 4290:Kulinkovich reaction 4265:Jacobsen epoxidation 4185:Diels–Alder reaction 3980:Smiles rearrangement 3970:Sigmatropic reaction 3855:Lossen rearrangement 3705:Corey–Fuchs reaction 3670:Boekelheide reaction 3665:Bergmann degradation 3595:Achmatowicz reaction 3380:Methionine sulfoxide 3180:Clemmensen reduction 3140:Bergmann degradation 3070:Acyloin condensation 3035:Strecker degradation 2990:Bergmann degradation 2957:Ullmann condensation 2823:Peterson olefination 2798:Hydrazone iodination 2778:Elimination reaction 2679:Zincke–Suhl reaction 2599:Sonogashira coupling 2559:Reformatsky reaction 2519:Peterson olefination 2484:Nierenstein reaction 2414:Kulinkovich reaction 2229:Diels–Alder reaction 2189:Corey–Fuchs reaction 2169:Claisen condensation 2039:Alkyne trimerisation 2014:Acyloin condensation 1980:ÎŁ-bishomoaromaticity 1940:Thorpe–Ingold effect 1552:Elimination reaction 1443:Equilibrium constant 1039:Elimination reaction 1029:at Wikimedia Commons 494:increases (increase 321:first-order kinetics 167:. An antiperiplanar 52:elimination reaction 4833:Reaction mechanisms 4769:Prilezhaev reaction 4754:Pellizzari reaction 4433:(4+3) cycloaddition 4400:Van Leusen reaction 4375:Robinson annulation 4360:Pschorr cyclization 4355:Prilezhaev reaction 4085:Bergman cyclization 4040:Wolff rearrangement 4025:Weerman degradation 3915:Pericyclic reaction 3895:Neber rearrangement 3790:Fries rearrangement 3675:Brook rearrangement 3660:Bergman cyclization 3505:Staudinger reaction 3450:Rosenmund reduction 3440:Reductive amination 3405:Oppenauer oxidation 3195:Corey–Kim oxidation 3170:Cannizzaro reaction 3045:Weerman degradation 3020:Isosaccharinic acid 2932:Mukaiyama hydration 2788:Hofmann elimination 2773:Dehydrohalogenation 2758:Chugaev elimination 2579:Robinson annulation 2524:Pfitzinger reaction 2294:Gattermann reaction 2239:Wulff–Dötz reaction 2219:Dakin–West reaction 2144:Carbonyl allylation 2089:Bergman cyclization 1875:Kennedy J. P. Orton 1795:Hammond's postulate 1765:Flippin–Lodge angle 1735:Electromeric effect 1660:Beta-silicon effect 1645:Baker–Nathan effect 1453:Reaction coordinate 1385:Radical (chemistry) 1370:Elementary reaction 1313:Grotthuss mechanism 1077:reaction mechanisms 953:10.1021/ja00394a043 781:2008JChEd..85..552N 737:, New York: Wiley, 501:the base is a poor 299:of the carbocation. 243:is the reaction of 4518:McCormack reaction 4468:Conia-ene reaction 4300:Madelung synthesis 4090:Biginelli reaction 3880:Mumm rearrangement 3765:Favorskii reaction 3700:Cope rearrangement 3690:Chan rearrangement 3455:Rubottom oxidation 3385:Miyaura borylation 3350:Lipid peroxidation 3345:Lindgren oxidation 3325:Kornblum oxidation 3320:Kolbe electrolysis 3265:Fukuyama reduction 3175:Carbonyl reduction 3025:Marker degradation 2887:Diazonium compound 2877:Boudouard reaction 2856:Carbon-heteroatom 2783:Grieco elimination 2569:Rieche formylation 2514:Passerini reaction 2444:Meerwein arylation 2364:Hydroxymethylation 2259:Favorskii reaction 2159:Chan rearrangement 2094:Biginelli reaction 2019:Aldol condensation 1865:2-Norbornyl cation 1840:Möbius aromaticity 1835:Markovnikov's rule 1730:Effective molarity 1675:BĂĽrgi–Dunitz angle 1665:Bicycloaromaticity 1478:Arrhenius equation 1248:Oxidative addition 1210:Addition reactions 621: 398: 369: 249:potassium ethoxide 237: 48: 4810: 4809: 4806: 4805: 4802: 4801: 4794:Wohl–Aue reaction 4438:6+4 Cycloaddition 4255:Iodolactonization 3575:1,2-rearrangement 3540:Wohl–Aue reaction 3460:Sabatier reaction 3425:Pinnick oxidation 3390:Mozingo reduction 3335:Leuckart reaction 3290:Haloform reaction 3205:Criegee oxidation 3185:Collins oxidation 3135:Benkeser reaction 3130:Bechamp reduction 3100:Andrussow process 3085:Alcohol oxidation 2995:Edman degradation 2902:Haloform reaction 2851: 2850: 2838:Takai olefination 2803:Julia olefination 2629:Takai olefination 2504:Olefin metathesis 2379:Julia olefination 2304:Grignard reaction 2284:Fukuyama coupling 2199:Coupling reaction 2164:Chan–Lam coupling 2034:Alkyne metathesis 2029:Alkane metathesis 1885:Phosphaethynolate 1790:George S. Hammond 1750:Electronic effect 1705:Conjugated system 1587:Stereospecificity 1582:Stereoselectivity 1547:Addition reaction 1536:organic reactions 1501: 1500: 1473:Activated complex 1468:Activation energy 1430:Chemical kinetics 1375:Reaction dynamics 1274:Photodissociation 1025:Media related to 989:10.1021/ol200121f 852:10.1021/ja057491d 840:J. Am. Chem. Soc. 814:Organic Chemistry 789:10.1021/ed085p552 702:Organic Syntheses 580:In one study the 261:potassium bromide 16:(Redirected from 4840: 4789:Wenker synthesis 4779:StollĂ© synthesis 4634:Bobbitt reaction 4604:Auwers synthesis 4548:Povarov reaction 4473:Cyclopropanation 4411: 4405:Wenker synthesis 4160:Darzens reaction 4110:Bobbitt reaction 3955:Schmidt reaction 3760:Enyne metathesis 3535:Whiting reaction 3530:Wharton reaction 3475:Shapiro reaction 3465:Sarett oxidation 3430:PrĂ©vost reaction 3240:Emde degradation 3050:Wohl degradation 3030:Ruff degradation 3000:Emde degradation 2897:Grignard reagent 2833:Shapiro reaction 2818:McMurry reaction 2685: 2649:Ullmann reaction 2614:StollĂ© synthesis 2604:Stetter reaction 2594:Shapiro reaction 2584:Sakurai reaction 2479:Negishi coupling 2459:Minisci reaction 2454:Michael reaction 2439:McMurry reaction 2434:Mannich reaction 2314:Hammick reaction 2309:Grignard reagent 2249:Enyne metathesis 2234:Doebner reaction 2224:Darzens reaction 2069:Barbier reaction 2059:Auwers synthesis 1986: 1960:Woodward's rules 1925:Superaromaticity 1915:Spiroaromaticity 1815:Inductive effect 1810:Hyperconjugation 1785:Hammett equation 1725:Edwards equation 1577:Regioselectivity 1528: 1521: 1514: 1505: 1405:Collision theory 1354:Matrix isolation 1308:Harpoon reaction 1185:E1cB-elimination 1069: 1062: 1055: 1046: 1036: 1024: 1009: 1008: 983:(7): 1646–1649. 971: 965: 964: 936: 930: 929: 903: 897: 896: 870: 864: 863: 834: 828: 827: 809: 803: 799: 793: 792: 762: 756: 755: 725: 719: 718: 696: 596:reaction (only S 590:t-butyl chloride 483:steric hindrance 169:transition state 140:transition state 56:organic reaction 21: 4848: 4847: 4843: 4842: 4841: 4839: 4838: 4837: 4813: 4812: 4811: 4798: 4699:Gewald reaction 4582: 4409: 4390:Skraup reaction 4225:Graham reaction 4220:Gewald reaction 4051: 4044: 3566: 3559: 3515:Swern oxidation 3500:Stahl oxidation 3445:Riley oxidation 3400:Omega oxidation 3360:Luche reduction 3310:Jones oxidation 3275:Glycol cleavage 3270:Ganem oxidation 3215:Davis oxidation 3210:Dakin oxidation 3145:Birch reduction 3095:Amide reduction 3061: 3054: 3015:Hooker reaction 2977: 2971: 2859: 2857: 2847: 2843:Wittig reaction 2731: 2727:Wittig reaction 2702:Hooker reaction 2683: 2664:Wittig reaction 2639:Thorpe reaction 2624:Suzuki reaction 2609:Stille reaction 2544:Quelet reaction 2419:Kumada coupling 2369:Ivanov reaction 2359:Hydrovinylation 2339:Hiyama coupling 2299:Glaser coupling 2109:Blaise reaction 2099:Bingel reaction 2084:Benary reaction 2001: 1999: 1993: 1984: 1880:Passive binding 1800:Homoaromaticity 1650:Baldwin's rules 1625:Antiaromaticity 1620:Anomeric effect 1596: 1538: 1532: 1502: 1497: 1483:Eyring equation 1424: 1395:Stereochemistry 1358: 1344:Solvent effects 1332: 1288: 1252: 1233: 1223: 1204: 1199: 1165: 1161: 1142: 1138: 1128: 1118: 1108: 1098: 1079: 1073: 1017: 1012: 977:Organic Letters 973: 972: 968: 938: 937: 933: 918: 905: 904: 900: 885: 872: 871: 867: 836: 835: 831: 824: 811: 810: 806: 800: 796: 764: 763: 759: 745: 727: 726: 722: 698: 697: 693: 689: 677: 665: 642: 637:dichlorocarbene 634: 625:carbon monoxide 611: 603: 599: 594:methyl chloride 576: 567: 560: 556: 549: 545: 541: 531: 524: 516: 475: 467: 439: 421: 353:sulfonate ester 334: 269: 245:isobutylbromide 224: 118:carbon-hydrogen 110: 101: 79: 28: 23: 22: 15: 12: 11: 5: 4846: 4844: 4836: 4835: 4830: 4825: 4815: 4814: 4808: 4807: 4804: 4803: 4800: 4799: 4797: 4796: 4791: 4786: 4781: 4776: 4771: 4766: 4761: 4756: 4751: 4746: 4741: 4736: 4731: 4726: 4721: 4716: 4711: 4706: 4704:Hantzsch ester 4701: 4696: 4691: 4686: 4681: 4676: 4671: 4666: 4661: 4656: 4651: 4646: 4641: 4636: 4631: 4626: 4621: 4616: 4614:Banert cascade 4611: 4606: 4601: 4596: 4590: 4588: 4584: 4583: 4581: 4580: 4575: 4570: 4565: 4560: 4555: 4553:Prato reaction 4550: 4545: 4540: 4535: 4530: 4525: 4520: 4515: 4510: 4505: 4500: 4495: 4490: 4485: 4480: 4475: 4470: 4465: 4460: 4455: 4450: 4445: 4440: 4435: 4430: 4425: 4419: 4417: 4408: 4407: 4402: 4397: 4392: 4387: 4382: 4377: 4372: 4367: 4362: 4357: 4352: 4347: 4342: 4337: 4332: 4327: 4322: 4317: 4312: 4307: 4302: 4297: 4292: 4287: 4282: 4277: 4272: 4267: 4262: 4257: 4252: 4247: 4242: 4237: 4232: 4227: 4222: 4217: 4212: 4207: 4202: 4197: 4192: 4187: 4182: 4177: 4172: 4167: 4162: 4157: 4152: 4147: 4142: 4137: 4132: 4127: 4122: 4117: 4112: 4107: 4102: 4097: 4092: 4087: 4082: 4077: 4072: 4067: 4062: 4056: 4054: 4046: 4045: 4043: 4042: 4037: 4032: 4027: 4022: 4017: 4012: 4007: 4002: 3997: 3992: 3987: 3982: 3977: 3972: 3967: 3962: 3957: 3952: 3947: 3942: 3937: 3932: 3927: 3922: 3917: 3912: 3907: 3902: 3897: 3892: 3887: 3882: 3877: 3872: 3867: 3862: 3857: 3852: 3847: 3842: 3837: 3832: 3827: 3822: 3817: 3812: 3807: 3802: 3797: 3792: 3787: 3782: 3777: 3772: 3767: 3762: 3757: 3752: 3747: 3742: 3737: 3732: 3727: 3722: 3717: 3712: 3707: 3702: 3697: 3692: 3687: 3682: 3677: 3672: 3667: 3662: 3657: 3652: 3647: 3645:Banert cascade 3642: 3637: 3632: 3627: 3622: 3617: 3612: 3607: 3602: 3597: 3592: 3587: 3582: 3577: 3571: 3569: 3565:Rearrangement 3561: 3560: 3558: 3557: 3555:Zinin reaction 3552: 3547: 3542: 3537: 3532: 3527: 3525:Wacker process 3522: 3517: 3512: 3507: 3502: 3497: 3492: 3487: 3482: 3477: 3472: 3467: 3462: 3457: 3452: 3447: 3442: 3437: 3432: 3427: 3422: 3417: 3412: 3407: 3402: 3397: 3392: 3387: 3382: 3377: 3372: 3367: 3362: 3357: 3352: 3347: 3342: 3337: 3332: 3327: 3322: 3317: 3312: 3307: 3302: 3300:Hydrogenolysis 3297: 3292: 3287: 3282: 3277: 3272: 3267: 3262: 3257: 3252: 3250:Étard reaction 3247: 3242: 3237: 3232: 3227: 3222: 3217: 3212: 3207: 3202: 3197: 3192: 3187: 3182: 3177: 3172: 3167: 3162: 3157: 3155:Bosch reaction 3152: 3147: 3142: 3137: 3132: 3127: 3122: 3117: 3112: 3107: 3102: 3097: 3092: 3087: 3082: 3077: 3072: 3066: 3064: 3060:Organic redox 3056: 3055: 3053: 3052: 3047: 3042: 3037: 3032: 3027: 3022: 3017: 3012: 3007: 3002: 2997: 2992: 2987: 2981: 2979: 2973: 2972: 2970: 2969: 2964: 2959: 2954: 2949: 2944: 2939: 2934: 2929: 2924: 2919: 2914: 2909: 2904: 2899: 2894: 2892:Esterification 2889: 2884: 2879: 2874: 2869: 2863: 2861: 2853: 2852: 2849: 2848: 2846: 2845: 2840: 2835: 2830: 2825: 2820: 2815: 2810: 2805: 2800: 2795: 2790: 2785: 2780: 2775: 2770: 2765: 2760: 2755: 2750: 2745: 2739: 2737: 2733: 2732: 2730: 2729: 2724: 2719: 2714: 2709: 2704: 2699: 2693: 2691: 2682: 2681: 2676: 2671: 2669:Wurtz reaction 2666: 2661: 2656: 2651: 2646: 2641: 2636: 2631: 2626: 2621: 2616: 2611: 2606: 2601: 2596: 2591: 2586: 2581: 2576: 2571: 2566: 2561: 2556: 2551: 2546: 2541: 2539:Prins reaction 2536: 2531: 2526: 2521: 2516: 2511: 2506: 2501: 2496: 2491: 2486: 2481: 2476: 2471: 2466: 2461: 2456: 2451: 2446: 2441: 2436: 2431: 2426: 2421: 2416: 2411: 2406: 2401: 2396: 2391: 2386: 2381: 2376: 2371: 2366: 2361: 2356: 2354:Hydrocyanation 2351: 2346: 2341: 2336: 2331: 2326: 2324:Henry reaction 2321: 2316: 2311: 2306: 2301: 2296: 2291: 2286: 2281: 2276: 2271: 2266: 2261: 2256: 2251: 2246: 2241: 2236: 2231: 2226: 2221: 2216: 2211: 2206: 2201: 2196: 2191: 2186: 2181: 2176: 2171: 2166: 2161: 2156: 2151: 2146: 2141: 2136: 2131: 2126: 2121: 2116: 2111: 2106: 2101: 2096: 2091: 2086: 2081: 2076: 2071: 2066: 2061: 2056: 2051: 2046: 2041: 2036: 2031: 2026: 2024:Aldol reaction 2021: 2016: 2011: 2005: 2003: 1998:Carbon-carbon 1995: 1994: 1989: 1983: 1982: 1977: 1975:Zaitsev's rule 1972: 1967: 1962: 1957: 1952: 1947: 1942: 1937: 1932: 1927: 1922: 1920:Steric effects 1917: 1912: 1907: 1902: 1897: 1892: 1887: 1882: 1877: 1872: 1867: 1862: 1857: 1852: 1847: 1842: 1837: 1832: 1827: 1822: 1817: 1812: 1807: 1802: 1797: 1792: 1787: 1782: 1777: 1772: 1767: 1762: 1757: 1752: 1747: 1742: 1737: 1732: 1727: 1722: 1717: 1712: 1707: 1702: 1697: 1692: 1687: 1682: 1677: 1672: 1667: 1662: 1657: 1652: 1647: 1642: 1637: 1632: 1627: 1622: 1617: 1612: 1607: 1601: 1598: 1597: 1595: 1594: 1589: 1584: 1579: 1574: 1572:Redox reaction 1569: 1564: 1559: 1557:Polymerization 1554: 1549: 1543: 1540: 1539: 1533: 1531: 1530: 1523: 1516: 1508: 1499: 1498: 1496: 1495: 1490: 1485: 1480: 1475: 1470: 1465: 1460: 1455: 1450: 1445: 1440: 1434: 1432: 1426: 1425: 1423: 1422: 1417: 1412: 1407: 1402: 1397: 1392: 1387: 1382: 1377: 1372: 1366: 1364: 1363:Related topics 1360: 1359: 1357: 1356: 1351: 1346: 1340: 1338: 1337:Medium effects 1334: 1333: 1331: 1330: 1325: 1320: 1315: 1310: 1305: 1299: 1297: 1290: 1289: 1287: 1286: 1281: 1276: 1271: 1266: 1260: 1258: 1254: 1253: 1251: 1250: 1245: 1240: 1235: 1231: 1225: 1221: 1214: 1212: 1206: 1205: 1203: 1202: 1197: 1193: 1187: 1182: 1175: 1173: 1167: 1166: 1164: 1163: 1159: 1152: 1150: 1144: 1143: 1141: 1140: 1136: 1130: 1126: 1120: 1116: 1110: 1106: 1100: 1096: 1089: 1087: 1081: 1080: 1074: 1072: 1071: 1064: 1057: 1049: 1043: 1042: 1030: 1016: 1015:External links 1013: 1011: 1010: 966: 947:(4): 948–949. 931: 916: 898: 883: 865: 846:(3): 736–737. 829: 822: 804: 794: 757: 743: 720: 690: 688: 685: 684: 683: 676: 673: 671:in the 1920s. 664: 661: 640: 632: 610: 607: 601: 597: 574: 565: 558: 554: 547: 543: 539: 529: 522: 514: 511: 510: 499: 489: 486: 473: 465: 438: 435: 434: 433: 430: 419: 416: 415: 412: 400:An example in 390: 389: 382: 381: 361: 360: 345: 338: 332: 327: 324: 309: 302: 301: 300: 294: 268: 265: 259:, ethanol and 229: 228: 222: 217: 206: 191: 184: 165:antiperiplanar 157: 146: 143: 122:carbon-halogen 109: 106: 99: 77: 26: 24: 14: 13: 10: 9: 6: 4: 3: 2: 4845: 4834: 4831: 4829: 4826: 4824: 4821: 4820: 4818: 4795: 4792: 4790: 4787: 4785: 4782: 4780: 4777: 4775: 4772: 4770: 4767: 4765: 4762: 4760: 4757: 4755: 4752: 4750: 4747: 4745: 4742: 4740: 4737: 4735: 4732: 4730: 4727: 4725: 4722: 4720: 4717: 4715: 4714:Herz reaction 4712: 4710: 4707: 4705: 4702: 4700: 4697: 4695: 4692: 4690: 4687: 4685: 4682: 4680: 4677: 4675: 4672: 4670: 4667: 4665: 4662: 4660: 4657: 4655: 4652: 4650: 4647: 4645: 4642: 4640: 4637: 4635: 4632: 4630: 4627: 4625: 4622: 4620: 4617: 4615: 4612: 4610: 4607: 4605: 4602: 4600: 4597: 4595: 4592: 4591: 4589: 4585: 4579: 4576: 4574: 4571: 4569: 4566: 4564: 4561: 4559: 4556: 4554: 4551: 4549: 4546: 4544: 4541: 4539: 4536: 4534: 4531: 4529: 4526: 4524: 4521: 4519: 4516: 4514: 4511: 4509: 4506: 4504: 4501: 4499: 4496: 4494: 4491: 4489: 4486: 4484: 4481: 4479: 4476: 4474: 4471: 4469: 4466: 4464: 4461: 4459: 4456: 4454: 4451: 4449: 4446: 4444: 4441: 4439: 4436: 4434: 4431: 4429: 4426: 4424: 4421: 4420: 4418: 4416: 4415:Cycloaddition 4412: 4406: 4403: 4401: 4398: 4396: 4393: 4391: 4388: 4386: 4383: 4381: 4378: 4376: 4373: 4371: 4368: 4366: 4363: 4361: 4358: 4356: 4353: 4351: 4348: 4346: 4343: 4341: 4338: 4336: 4333: 4331: 4328: 4326: 4323: 4321: 4318: 4316: 4313: 4311: 4308: 4306: 4303: 4301: 4298: 4296: 4293: 4291: 4288: 4286: 4283: 4281: 4278: 4276: 4273: 4271: 4268: 4266: 4263: 4261: 4260:Isay reaction 4258: 4256: 4253: 4251: 4248: 4246: 4243: 4241: 4238: 4236: 4233: 4231: 4228: 4226: 4223: 4221: 4218: 4216: 4213: 4211: 4208: 4206: 4203: 4201: 4198: 4196: 4193: 4191: 4188: 4186: 4183: 4181: 4178: 4176: 4173: 4171: 4168: 4166: 4163: 4161: 4158: 4156: 4155:Cycloaddition 4153: 4151: 4148: 4146: 4143: 4141: 4138: 4136: 4133: 4131: 4128: 4126: 4123: 4121: 4118: 4116: 4113: 4111: 4108: 4106: 4103: 4101: 4098: 4096: 4093: 4091: 4088: 4086: 4083: 4081: 4078: 4076: 4073: 4071: 4068: 4066: 4063: 4061: 4058: 4057: 4055: 4053: 4050:Ring forming 4047: 4041: 4038: 4036: 4033: 4031: 4028: 4026: 4023: 4021: 4018: 4016: 4013: 4011: 4008: 4006: 4003: 4001: 3998: 3996: 3993: 3991: 3988: 3986: 3983: 3981: 3978: 3976: 3973: 3971: 3968: 3966: 3963: 3961: 3958: 3956: 3953: 3951: 3950:Rupe reaction 3948: 3946: 3943: 3941: 3938: 3936: 3933: 3931: 3928: 3926: 3923: 3921: 3918: 3916: 3913: 3911: 3908: 3906: 3903: 3901: 3898: 3896: 3893: 3891: 3888: 3886: 3883: 3881: 3878: 3876: 3873: 3871: 3868: 3866: 3863: 3861: 3858: 3856: 3853: 3851: 3848: 3846: 3843: 3841: 3838: 3836: 3833: 3831: 3828: 3826: 3823: 3821: 3818: 3816: 3813: 3811: 3808: 3806: 3803: 3801: 3798: 3796: 3793: 3791: 3788: 3786: 3783: 3781: 3778: 3776: 3773: 3771: 3768: 3766: 3763: 3761: 3758: 3756: 3753: 3751: 3748: 3746: 3743: 3741: 3738: 3736: 3733: 3731: 3728: 3726: 3723: 3721: 3718: 3716: 3713: 3711: 3708: 3706: 3703: 3701: 3698: 3696: 3693: 3691: 3688: 3686: 3683: 3681: 3678: 3676: 3673: 3671: 3668: 3666: 3663: 3661: 3658: 3656: 3653: 3651: 3648: 3646: 3643: 3641: 3638: 3636: 3633: 3631: 3628: 3626: 3623: 3621: 3618: 3616: 3613: 3611: 3608: 3606: 3603: 3601: 3598: 3596: 3593: 3591: 3588: 3586: 3583: 3581: 3578: 3576: 3573: 3572: 3570: 3568: 3562: 3556: 3553: 3551: 3548: 3546: 3543: 3541: 3538: 3536: 3533: 3531: 3528: 3526: 3523: 3521: 3518: 3516: 3513: 3511: 3508: 3506: 3503: 3501: 3498: 3496: 3493: 3491: 3488: 3486: 3483: 3481: 3478: 3476: 3473: 3471: 3468: 3466: 3463: 3461: 3458: 3456: 3453: 3451: 3448: 3446: 3443: 3441: 3438: 3436: 3433: 3431: 3428: 3426: 3423: 3421: 3418: 3416: 3413: 3411: 3408: 3406: 3403: 3401: 3398: 3396: 3393: 3391: 3388: 3386: 3383: 3381: 3378: 3376: 3373: 3371: 3368: 3366: 3363: 3361: 3358: 3356: 3353: 3351: 3348: 3346: 3343: 3341: 3340:Ley oxidation 3338: 3336: 3333: 3331: 3328: 3326: 3323: 3321: 3318: 3316: 3313: 3311: 3308: 3306: 3305:Hydroxylation 3303: 3301: 3298: 3296: 3295:Hydrogenation 3293: 3291: 3288: 3286: 3283: 3281: 3278: 3276: 3273: 3271: 3268: 3266: 3263: 3261: 3258: 3256: 3253: 3251: 3248: 3246: 3243: 3241: 3238: 3236: 3233: 3231: 3230:DNA oxidation 3228: 3226: 3223: 3221: 3220:Deoxygenation 3218: 3216: 3213: 3211: 3208: 3206: 3203: 3201: 3198: 3196: 3193: 3191: 3188: 3186: 3183: 3181: 3178: 3176: 3173: 3171: 3168: 3166: 3163: 3161: 3158: 3156: 3153: 3151: 3148: 3146: 3143: 3141: 3138: 3136: 3133: 3131: 3128: 3126: 3123: 3121: 3118: 3116: 3113: 3111: 3110:Aromatization 3108: 3106: 3103: 3101: 3098: 3096: 3093: 3091: 3088: 3086: 3083: 3081: 3078: 3076: 3073: 3071: 3068: 3067: 3065: 3063: 3057: 3051: 3048: 3046: 3043: 3041: 3038: 3036: 3033: 3031: 3028: 3026: 3023: 3021: 3018: 3016: 3013: 3011: 3008: 3006: 3003: 3001: 2998: 2996: 2993: 2991: 2988: 2986: 2983: 2982: 2980: 2974: 2968: 2965: 2963: 2960: 2958: 2955: 2953: 2950: 2948: 2947:Reed reaction 2945: 2943: 2940: 2938: 2935: 2933: 2930: 2928: 2925: 2923: 2920: 2918: 2915: 2913: 2910: 2908: 2905: 2903: 2900: 2898: 2895: 2893: 2890: 2888: 2885: 2883: 2880: 2878: 2875: 2873: 2870: 2868: 2865: 2864: 2862: 2858:bond forming 2854: 2844: 2841: 2839: 2836: 2834: 2831: 2829: 2826: 2824: 2821: 2819: 2816: 2814: 2811: 2809: 2806: 2804: 2801: 2799: 2796: 2794: 2791: 2789: 2786: 2784: 2781: 2779: 2776: 2774: 2771: 2769: 2766: 2764: 2763:Cope reaction 2761: 2759: 2756: 2754: 2751: 2749: 2746: 2744: 2741: 2740: 2738: 2734: 2728: 2725: 2723: 2720: 2718: 2715: 2713: 2710: 2708: 2705: 2703: 2700: 2698: 2695: 2694: 2692: 2690: 2686: 2680: 2677: 2675: 2672: 2670: 2667: 2665: 2662: 2660: 2657: 2655: 2652: 2650: 2647: 2645: 2642: 2640: 2637: 2635: 2632: 2630: 2627: 2625: 2622: 2620: 2617: 2615: 2612: 2610: 2607: 2605: 2602: 2600: 2597: 2595: 2592: 2590: 2587: 2585: 2582: 2580: 2577: 2575: 2572: 2570: 2567: 2565: 2562: 2560: 2557: 2555: 2552: 2550: 2547: 2545: 2542: 2540: 2537: 2535: 2532: 2530: 2527: 2525: 2522: 2520: 2517: 2515: 2512: 2510: 2507: 2505: 2502: 2500: 2497: 2495: 2492: 2490: 2487: 2485: 2482: 2480: 2477: 2475: 2474:Nef synthesis 2472: 2470: 2467: 2465: 2462: 2460: 2457: 2455: 2452: 2450: 2449:Methylenation 2447: 2445: 2442: 2440: 2437: 2435: 2432: 2430: 2427: 2425: 2422: 2420: 2417: 2415: 2412: 2410: 2407: 2405: 2402: 2400: 2397: 2395: 2392: 2390: 2387: 2385: 2382: 2380: 2377: 2375: 2372: 2370: 2367: 2365: 2362: 2360: 2357: 2355: 2352: 2350: 2347: 2345: 2342: 2340: 2337: 2335: 2332: 2330: 2327: 2325: 2322: 2320: 2319:Heck reaction 2317: 2315: 2312: 2310: 2307: 2305: 2302: 2300: 2297: 2295: 2292: 2290: 2287: 2285: 2282: 2280: 2277: 2275: 2272: 2270: 2267: 2265: 2262: 2260: 2257: 2255: 2252: 2250: 2247: 2245: 2242: 2240: 2237: 2235: 2232: 2230: 2227: 2225: 2222: 2220: 2217: 2215: 2212: 2210: 2207: 2205: 2202: 2200: 2197: 2195: 2192: 2190: 2187: 2185: 2182: 2180: 2177: 2175: 2172: 2170: 2167: 2165: 2162: 2160: 2157: 2155: 2152: 2150: 2147: 2145: 2142: 2140: 2137: 2135: 2132: 2130: 2127: 2125: 2122: 2120: 2117: 2115: 2112: 2110: 2107: 2105: 2102: 2100: 2097: 2095: 2092: 2090: 2087: 2085: 2082: 2080: 2077: 2075: 2072: 2070: 2067: 2065: 2062: 2060: 2057: 2055: 2052: 2050: 2047: 2045: 2042: 2040: 2037: 2035: 2032: 2030: 2027: 2025: 2022: 2020: 2017: 2015: 2012: 2010: 2007: 2006: 2004: 2000:bond forming 1996: 1992: 1987: 1981: 1978: 1976: 1973: 1971: 1968: 1966: 1965:Y-aromaticity 1963: 1961: 1958: 1956: 1953: 1951: 1950:Walsh diagram 1948: 1946: 1943: 1941: 1938: 1936: 1935:Taft equation 1933: 1931: 1928: 1926: 1923: 1921: 1918: 1916: 1913: 1911: 1908: 1906: 1905:ÎŁ-aromaticity 1903: 1901: 1898: 1896: 1893: 1891: 1888: 1886: 1883: 1881: 1878: 1876: 1873: 1871: 1868: 1866: 1863: 1861: 1858: 1856: 1853: 1851: 1848: 1846: 1843: 1841: 1838: 1836: 1833: 1831: 1830:Marcus theory 1828: 1826: 1823: 1821: 1818: 1816: 1813: 1811: 1808: 1806: 1805:HĂĽckel's rule 1803: 1801: 1798: 1796: 1793: 1791: 1788: 1786: 1783: 1781: 1778: 1776: 1773: 1771: 1768: 1766: 1763: 1761: 1760:Evelyn effect 1758: 1756: 1753: 1751: 1748: 1746: 1743: 1741: 1740:Electron-rich 1738: 1736: 1733: 1731: 1728: 1726: 1723: 1721: 1718: 1716: 1713: 1711: 1708: 1706: 1703: 1701: 1698: 1696: 1693: 1691: 1688: 1686: 1683: 1681: 1678: 1676: 1673: 1671: 1668: 1666: 1663: 1661: 1658: 1656: 1655:Bema Hapothle 1653: 1651: 1648: 1646: 1643: 1641: 1638: 1636: 1633: 1631: 1628: 1626: 1623: 1621: 1618: 1616: 1613: 1611: 1608: 1606: 1603: 1602: 1599: 1593: 1590: 1588: 1585: 1583: 1580: 1578: 1575: 1573: 1570: 1568: 1565: 1563: 1560: 1558: 1555: 1553: 1550: 1548: 1545: 1544: 1541: 1537: 1529: 1524: 1522: 1517: 1515: 1510: 1509: 1506: 1494: 1491: 1489: 1486: 1484: 1481: 1479: 1476: 1474: 1471: 1469: 1466: 1464: 1461: 1459: 1456: 1454: 1451: 1449: 1446: 1444: 1441: 1439: 1438:Rate equation 1436: 1435: 1433: 1431: 1427: 1421: 1418: 1416: 1413: 1411: 1410:Arrow pushing 1408: 1406: 1403: 1401: 1398: 1396: 1393: 1391: 1388: 1386: 1383: 1381: 1378: 1376: 1373: 1371: 1368: 1367: 1365: 1361: 1355: 1352: 1350: 1347: 1345: 1342: 1341: 1339: 1335: 1329: 1326: 1324: 1321: 1319: 1318:Marcus theory 1316: 1314: 1311: 1309: 1306: 1304: 1301: 1300: 1298: 1295: 1291: 1285: 1282: 1280: 1277: 1275: 1272: 1270: 1269:Isomerization 1267: 1265: 1262: 1261: 1259: 1255: 1249: 1246: 1244: 1243:Cycloaddition 1241: 1239: 1236: 1229: 1226: 1219: 1216: 1215: 1213: 1211: 1207: 1201: 1194: 1191: 1188: 1186: 1183: 1180: 1177: 1176: 1174: 1172: 1168: 1157: 1154: 1153: 1151: 1149: 1145: 1134: 1131: 1124: 1121: 1114: 1111: 1104: 1101: 1094: 1091: 1090: 1088: 1086: 1082: 1078: 1070: 1065: 1063: 1058: 1056: 1051: 1050: 1047: 1040: 1035: 1031: 1028: 1023: 1019: 1018: 1014: 1006: 1002: 998: 994: 990: 986: 982: 978: 970: 967: 962: 958: 954: 950: 946: 942: 935: 932: 927: 923: 919: 917:9780470257623 913: 909: 902: 899: 894: 890: 886: 880: 876: 869: 866: 861: 857: 853: 849: 845: 842: 841: 833: 830: 825: 823:0-07-242458-3 819: 815: 808: 805: 798: 795: 790: 786: 782: 778: 774: 770: 769: 761: 758: 754: 750: 746: 744:9780471854722 740: 736: 735: 730: 724: 721: 716: 712: 708: 704: 703: 695: 692: 686: 682: 679: 678: 674: 672: 670: 662: 660: 656: 654: 653:α-abstraction 650: 649:α-elimination 646: 638: 630: 626: 618: 614: 608: 606: 595: 591: 587: 583: 578: 572: 562: 551: 538: 533: 526: 520: 508: 504: 500: 497: 493: 490: 487: 484: 481: 480: 479: 477: 469: 461: 456: 452: 448: 444: 443:reaction rate 436: 431: 428: 427: 426: 423: 413: 410: 409: 408: 405: 403: 394: 388: 384: 383: 379: 375: 371: 370: 365: 358: 354: 351:of a certain 350: 346: 343: 339: 336: 328: 325: 322: 319:. Therefore, 318: 314: 313:reaction rate 310: 307: 303: 298: 297:deprotonation 295: 293:intermediate. 292: 288: 285: 284: 282: 278: 277: 276: 274: 266: 264: 262: 258: 254: 250: 246: 242: 233: 226: 218: 215: 211: 207: 204: 200: 196: 195:hybridization 192: 189: 185: 182: 178: 177:synperiplanar 174: 170: 166: 163:) need to be 162: 158: 155: 151: 150:reaction rate 147: 144: 141: 137: 136: 135: 132: 130: 129: 123: 119: 115: 107: 105: 103: 95: 92: 88: 84: 80: 73: 72:leaving group 69: 65: 61: 58:in which two 57: 54:is a type of 53: 45: 44:sulfuric acid 41: 37: 32: 19: 3755:Ene reaction 3115:Autoxidation 2976:Degradation 2867:Azo coupling 2777: 2644:Ugi reaction 2244:Ene reaction 2044:Alkynylation 1895:Polyfluorene 1890:Polar effect 1755:Electrophile 1670:Bredt's rule 1640:Baird's rule 1610:Alpha effect 1551: 1390:Molecularity 1170: 1041:at Wikiquote 980: 976: 969: 944: 940: 934: 907: 901: 874: 868: 843: 838: 832: 813: 807: 797: 772: 766: 760: 733: 729:March, Jerry 723: 706: 700: 694: 666: 657: 652: 648: 622: 612: 579: 570: 563: 552: 536: 534: 527: 512: 440: 424: 417: 406: 401: 399: 377: 373: 340:A secondary 280: 272: 270: 267:E1 mechanism 240: 238: 202: 198: 154:second order 133: 125: 121: 117: 113: 111: 108:E2 mechanism 67: 63: 60:substituents 51: 49: 36:cyclohexanol 2254:Ethenolysis 1900:Ring strain 1870:Nucleophile 1695:Clar's rule 1635:Aromaticity 1349:Cage effect 1284:RRKM theory 1200:elimination 629:isocyanides 503:nucleophile 492:temperature 335:1 reactions 291:carbocation 68:E1 reaction 64:E2 reaction 40:cyclohexene 18:E1 reaction 4817:Categories 4538:Ozonolysis 4065:Annulation 3415:Ozonolysis 1534:Topics in 884:1891389319 775:(4): 552. 687:References 550:1 and E1. 287:Ionization 225:2 reaction 4052:reactions 3567:reactions 3062:reactions 2978:reactions 2860:reactions 2002:reactions 1400:Catalysis 1296:reactions 997:1523-7060 961:0002-7863 926:268790870 753:642506595 349:pyrolysis 257:isobutene 102:mechanism 83:pyrolysis 1945:Vinylogy 1615:Annulene 1562:Reagents 1005:21366262 893:55600610 860:16417360 731:(1985), 675:See also 586:chlorate 447:halogens 402:scheme 2 306:tertiary 241:scheme 1 181:eclipsed 87:xanthate 46:and heat 1605:A value 777:Bibcode 663:History 496:entropy 455:bromide 357:menthol 253:ethanol 161:halogen 128:Pi bond 91:acetate 1075:Basic 1003:  995:  959:  924:  914:  891:  881:  858:  820:  751:  741:  709:: 33. 639:, :CCl 451:iodide 94:esters 1303:Redox 1139:Acyl) 521:(an S 247:with 42:with 1192:(E2) 1181:(E1) 1001:PMID 993:ISSN 957:ISSN 922:OCLC 912:ISBN 889:OCLC 879:ISBN 856:PMID 818:ISBN 749:OCLC 739:ISBN 651:and 571:tert 453:and 441:The 418:If S 311:The 188:base 171:has 148:The 126:C=C 120:and 89:and 1162:Ar) 1119:Ar) 985:doi 949:doi 945:103 848:doi 844:128 785:doi 711:doi 627:or 355:of 251:in 201:to 152:is 131:). 85:of 50:An 38:to 4819:: 1230:(A 1220:(A 1158:(S 1135:(S 1129:i) 1125:(S 1115:(S 1109:2) 1105:(S 1099:1) 1095:(S 999:. 991:. 981:13 979:. 955:. 943:. 920:. 887:. 854:. 783:. 773:85 771:. 747:, 705:. 540:aH 449:, 283:. 263:. 203:sp 199:sp 104:. 78:CB 76:E1 1527:e 1520:t 1513:v 1234:) 1232:N 1224:) 1222:E 1198:i 1196:E 1160:E 1137:N 1127:N 1117:N 1107:N 1097:N 1068:e 1061:t 1054:v 1007:. 987:: 963:. 951:: 928:. 895:. 862:. 850:: 826:. 791:. 787:: 779:: 717:. 713:: 707:5 641:2 633:3 602:N 598:N 575:N 566:N 559:N 555:N 548:N 544:N 537:K 530:N 523:N 515:N 498:) 476:1 474:N 472:S 468:2 466:N 464:S 420:N 378:B 374:A 359:: 333:N 331:S 223:N 221:S 205:. 142:. 100:i 98:E 20:)

Index

E1 reaction

cyclohexanol
cyclohexene
sulfuric acid
organic reaction
substituents
leaving group
E1CB
pyrolysis
xanthate
acetate
esters
Ei mechanism
Pi bond
transition state
reaction rate
second order
halogen
antiperiplanar
transition state
staggered conformation
synperiplanar
eclipsed
base
hybridization
rate determining step
deuterium isotope effect
SN2 reaction
Scheme 1: E2 reaction mechanism

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑