Knowledge

E1cB-elimination reaction

Source 📝

293:) will form. The E1cB mechanism is just one of three types of elimination reaction. The other two elimination reactions are E1 and E2 reactions. Although the mechanisms are similar, they vary in the timing of the deprotonation of the α-carbon and the loss of the leaving group. E1 stands for unimolecular elimination, and E2 stands for bimolecular elimination. In an E1 mechanism, the molecule contains a good leaving group that departs before deprotonation of the α-carbon. This results in the formation of a carbocation intermediate. The carbocation is then deprotonated resulting in the formation of a new pi bond. The molecule involved must also have a very good leaving group such as bromine or chlorine, and it should have a relatively less acidic α-carbon. 122: 481: 297: 109:
particularly acidic and a strong base is absent. Thus, in the E1 mechanism, the leaving group leaves first to generate a carbocation. Due to the presence of an empty p orbital after departure of the leaving group, the hydrogen on the neighboring carbon becomes much more acidic, allowing it to then be removed by the weak base in the second step. In an E2 reaction, the presence of a strong base and a good leaving group allows proton abstraction by the base and the departure of the leaving group to occur simultaneously, leading to a concerted
945: 259: 917: 696: 20: 108:
E1cB should be thought of as being on one end of a continuous spectrum, which includes the E1 mechanism at the opposite end and the E2 mechanism in the middle. The E1 mechanism usually has the opposite characteristics: the leaving group is a good one (like -OTs or -Br), while the hydrogen is not
933:
In this report, a photochemically induced decarboxylation reaction generates a carbanion intermediate, which subsequently eliminates the leaving group. The reaction is unique from other forms of E1cB since it does not require a base to generate the carbanion. The carbanion formation step is
873:
and E2 mechanisms. C can also be used to probe the nature of the transition state structure. The use of C can be used to study the formation of the carbanion as well as study its lifetime which can not only show that the reaction is a two-step E1cB mechanism (as opposed to the concerted E2
824:
type mechanism. Recall, in this mechanism protonation of the carbanion (either by the conjugate acid or by solvent) is faster than loss of the leaving group. This means after the carbanion is formed, it will quickly remove a proton from the solvent to form the starting
168:. In general it can be claimed that an electron withdrawing group on the substrate, a strong base, a poor leaving group and a polar solvent triggers the E1cB mechanism. An example of an E1cB mechanism that has a stable transition state can be seen in the degradation of 908:
of the starting material, and is one of the intermediates in the reaction. This enolate then acts as a nucleophile and can attack an electrophilic aldehyde. The Aldol product is then deprotonated forming another enolate followed by the elimination of water in an E1cB
1145:
Baciocchi, Enrico; Ruzziconi, Renzo; Sebastiani, Giovanni Vittorio (1 August 1982). "Concerted and stepwise mechanisms in the eliminations from 1,2-dihaloacenaphthenes promoted by potassium tert-butoxide and potassium ethoxide in the corresponding alcohols".
308:
step. Molecules that undergo E2-elimination mechanisms have more acidic α-carbons than those that undergo E1 mechanisms, but their α-carbons are not as acidic as those of molecules that undergo E1cB mechanisms. The key difference between the
494: 355:
mechanism. The following table summarizes the key differences between the three elimination reactions; however, the best way to identify which mechanism is playing a key role in a particular reaction involves the application of
865:
and other compounds in medical research. This experiment is very useful in determining whether or not the loss of the leaving group is the rate-determining step in the mechanism and can help distinguish between
827:
If the reactant contains deuterium at the ÎČ position, a primary kinetic isotope effect indicates that deprotonation is rate determining. Of the three E1cB mechanisms, this result is only consistent with the
499: 4958: 149:
transition state, such as a carbanion. The greater the stability of this transition state, the more the mechanism will favor an E1cB mechanism. This transition state can be stabilized through
43:(such as -OH or -OR) is a relatively poor one. Usually a moderate to strong base is present. E1cB is a two-step process, the first step of which may or may not be reversible. First, a 874:
mechanism), but it can also address the lifetime and stability of the transition state structure which can further distinguish between the three different types of E1cB mechanisms.
817:
OD), then the exchange of protons into the starting material can be monitored. If the recovered starting material contains deuterium, then the reaction is most likely undergoing an
715:
is when the carbanion is stable and/or a strong base is used in excess of the substrate, making deprotonation irreversible, followed by rate-determining loss of the leaving group (k
351:
even though chlorine is a much better leaving group. This provides evidence that the carbanion is formed because the products are not possible through the most stable concerted
913:. Aldol reactions are a key reaction in organic chemistry because they provide a means of forming carbon-carbon bonds, allowing for the synthesis of more complex molecules. 4074: 4019: 4787: 705:
will be exhibited. E1cB mechanisms kinetics can vary slightly based on the rate of each step. As a result, the E1cB mechanism can be broken down into three categories:
4129: 691:{\displaystyle {\begin{aligned}{\frac {\ce {d}}{{\ce {d}}t}}&={\frac {k_{1}k_{2}{\ce {}}}{k_{-1}+k_{2}}}\\{\ce {rate}}&=k_{\ce {obs}}{\ce {}}\end{aligned}}} 4279: 2913: 5008: 1346: 4782: 732:
is when the first step is reversible but the formation of product is slower than reforming the starting material, this again results from a slow second step (k
3884: 2608: 3654: 1805: 4454: 2398: 4549: 2653: 4529: 4024: 3191: 3072: 2628: 1075:
Ouertani, Randa; El Atrache, Latifa Latrous; Hamida, Nejib Ben (2013). "Alkaline hydrolysis of ethiofencarb: Kinetic study and mechanism degradation".
4619: 861:
is a relatively poor leaving group, and it is often employed in E1cB mechanisms. Fluorine kinetic isotope effects are also applied in the labeling of
4374: 1841: 3206: 4852: 4309: 4802: 4414: 4394: 4354: 3161: 4948: 4873: 4757: 3369: 2773: 2104: 1217: 1059: 1034: 4943: 4772: 4429: 4284: 3914: 3759: 2996: 4119: 3609: 3284: 1558: 5023: 4807: 3829: 1285:
Lukeman, Matthew; Scaiano, Juan C. (2005). "Carbanion-Mediated Photocages: Rapid and Efficient Photorelease with Aqueous Compatibility".
1233:
Matsson, Olle; MacMillar, Susanna (September 2007). "Isotope effects for fluorine-18 and carbon-11 in the study of reaction mechanisms".
1435: 1110:
Hine, Jack; Burske, Norbert W.; Hine, Mildred; Langford, Paul B. (1957). "The Relative Rates of Formation of Carbanions by Haloforms1".
4384: 5018: 4732: 4594: 4349: 1392: 4908: 4379: 4294: 4264: 4244: 4109: 4104: 3479: 3404: 3047: 3001: 2868: 2129: 1699: 4847: 1339: 1269: 304:
In an E2-elimination reaction, both the deprotonation of the α-carbon and the loss of the leaving group occur simultaneously in one
5013: 4973: 4923: 4399: 4149: 4079: 2568: 4609: 4214: 3107: 2828: 4599: 2139: 4767: 4524: 4474: 3264: 3196: 3087: 2663: 2418: 2343: 2124: 4479: 4289: 3764: 3674: 1798: 5053: 4837: 4777: 4179: 4154: 4064: 3644: 3524: 2558: 2054: 5102: 4938: 4424: 4219: 2488: 1607: 1602: 1412: 51:. The lone pair of electrons on the anion then moves to the neighboring atom, thus expelling the leaving group and forming a 5043: 4629: 4139: 3649: 3594: 3439: 3399: 3231: 2986: 2703: 2553: 1767: 121: 5003: 4564: 4519: 4009: 3864: 1772: 474:
are essential. The best ways to identify the E1cB mechanism involves the use of rate laws and the kinetic isotope effect.
199:. In addition to containing an acidic hydrogen on the ÎČ-carbon, a relatively poor leaving group is also necessary. A bad 5038: 4953: 4812: 4727: 4624: 3699: 3354: 3022: 2433: 1994: 5107: 4928: 4903: 4888: 4584: 4449: 4404: 4169: 3714: 3564: 2778: 2458: 2403: 1332: 4933: 4878: 4409: 3824: 3539: 3534: 3027: 2843: 2833: 2548: 2408: 2358: 2353: 2328: 2234: 266:
illustrating the presence of a stable anion due to resonance between the amide functional group and the carbonyl group.
129:
There are two main requirements to have a reaction proceed down an E1cB mechanistic pathway. The compound must have an
4988: 4589: 4509: 4124: 4089: 3934: 3359: 3319: 3216: 2991: 2743: 2688: 2288: 1999: 1989: 1964: 480: 4963: 4664: 4469: 3904: 3469: 3444: 3384: 2976: 2683: 2333: 477:
The rate law that governs E1cB mechanisms is relatively simple to determine. Consider the following reaction scheme.
2518: 488:
Assuming that there is a steady-state carbanion concentration in the mechanism, the rate law for an E1cB mechanism.
4254: 3789: 3241: 2463: 2428: 2024: 1959: 1791: 1737: 1427: 4822: 4444: 3504: 3429: 2953: 2788: 2473: 2249: 2209: 1954: 5063: 4968: 4702: 4674: 4644: 4559: 4489: 4419: 4339: 4239: 4199: 3894: 3514: 2813: 2808: 2270: 2134: 1364: 5028: 4898: 4762: 4604: 4464: 3984: 2958: 2508: 2468: 2219: 296: 4918: 4514: 4484: 4359: 4314: 4144: 4054: 3869: 3859: 3689: 3246: 3186: 3151: 2938: 2898: 2673: 2543: 2059: 2049: 1979: 1694: 216: 4494: 3474: 2498: 2044: 1924: 145:. The first step of an E1cB mechanism is the deprotonation of the ÎČ-carbon, resulting in the formation of an 4707: 4998: 4857: 4649: 4574: 4554: 4274: 4224: 4084: 4049: 3989: 3919: 3221: 3201: 2933: 2853: 2748: 2708: 2678: 2613: 2483: 2393: 2383: 2259: 1969: 1742: 1543: 211:
pathway. Some examples of compounds that contain poor leaving groups and can undergo the E1cB mechanism are
944: 320:
as opposed to one concerted mechanism. Studies have been shown that the pathways differ by using different
4737: 4459: 4209: 4189: 4164: 4114: 4029: 4004: 3959: 3929: 3909: 3879: 3844: 3799: 3774: 3749: 3634: 3559: 3339: 3032: 2968: 2768: 2493: 2413: 2099: 2074: 1851: 1846: 1497: 785: 774: 453: 5073: 3819: 2443: 4659: 4614: 4329: 4299: 4269: 4204: 4184: 4099: 4094: 4059: 4014: 3999: 3994: 3974: 3964: 3899: 3889: 3769: 3289: 3092: 2668: 2623: 2453: 2189: 1909: 1871: 1727: 1659: 1517: 1507: 957:
The E1cB-elimination reaction is an important reaction in biology. For example, the penultimate step of
857:
Another way that the kinetic isotope effect can help distinguish E1cB mechanisms involves the use of F.
484:
An example of an E1cB-elimination mechanism with a generic leaving group (LG), and ethoxide as the base.
317: 232: 165: 142: 134: 102: 2119: 2114: 456:. These techniques can also help further differentiate between E1cB, E1, and E2-elimination reactions. 4712: 39:
which occurs under basic conditions, where the hydrogen to be removed is relatively acidic, while the
4842: 4792: 4742: 4722: 4569: 4544: 4259: 4249: 4134: 3949: 3944: 3874: 3659: 3459: 3419: 3349: 3314: 3269: 3236: 3102: 3077: 3057: 2878: 2838: 2798: 2763: 2693: 2448: 2318: 2293: 1831: 1722: 1450: 982: 910: 352: 310: 276: 208: 154: 84: 36: 5058: 5048: 5033: 4679: 4654: 4639: 4634: 4364: 4319: 4304: 4194: 4174: 4069: 3954: 3939: 3784: 3729: 3719: 3709: 3684: 3449: 3324: 3299: 3211: 3067: 3052: 3037: 2893: 2858: 2803: 2573: 2423: 2368: 2239: 2154: 2014: 1939: 1732: 1664: 1649: 1592: 966: 212: 2084: 4797: 4747: 4717: 4579: 4369: 4159: 4044: 3979: 3969: 3734: 3664: 3629: 3624: 3604: 3599: 3544: 3454: 3304: 3166: 3156: 3062: 2848: 2793: 2723: 2643: 2538: 2438: 2373: 2298: 2144: 2009: 1944: 1757: 1527: 1356: 987: 962: 889: 305: 1929: 285:
from a pair of atoms in a compound. Alkene, alkynes, or similar heteroatom variations (such as
258: 4534: 3854: 3739: 3704: 3669: 3614: 3569: 3529: 3484: 3464: 3414: 3409: 3379: 3364: 3274: 3181: 3117: 3082: 2908: 2783: 2658: 2583: 2563: 2478: 2313: 2308: 2254: 2164: 2069: 2029: 1984: 1866: 1861: 1826: 1752: 1747: 1709: 1654: 1573: 1553: 1489: 1310: 1302: 1265: 1213: 1190: 1127: 1092: 1055: 1030: 862: 702: 471: 470:
When trying to experimentally determine whether or not a reaction follows the E1cB mechanism,
445: 439: 357: 235:
hybridization creates slightly more acidic protons. Although this mechanism is not limited to
192: 1026: 1019: 5068: 4913: 4883: 4827: 4752: 4684: 4439: 4389: 4234: 4039: 3814: 3809: 3754: 3744: 3519: 3329: 3309: 3279: 3176: 3112: 3097: 2928: 2883: 2873: 2863: 2758: 2738: 2733: 2718: 2713: 2593: 2588: 2528: 2513: 2503: 2348: 2338: 2204: 2194: 2184: 2094: 2089: 2064: 2004: 1856: 1815: 1684: 1633: 1587: 1294: 1242: 1182: 1155: 1119: 1084: 150: 110: 44: 749:
is when the first step is slow, but once the anion is formed the product quickly follows (k
4978: 4669: 4504: 4499: 3794: 3779: 3724: 3679: 3639: 3589: 3554: 3549: 3494: 3489: 3424: 3374: 3294: 3122: 3006: 2981: 2943: 2918: 2903: 2888: 2823: 2698: 2648: 2638: 2618: 2578: 2388: 2378: 2363: 2159: 2079: 1904: 1899: 1762: 1674: 1623: 1949: 1919: 916: 4983: 4893: 4832: 3924: 3834: 3804: 3579: 3434: 3171: 2948: 2818: 2633: 2603: 2303: 2199: 1974: 1836: 1469: 1458: 920:
An aldol condensation reaction is one of the most common examples of an E1cB mechanism.
905: 883: 97: 5096: 4993: 4694: 4539: 4434: 4229: 3619: 3584: 3574: 3509: 3499: 3389: 3226: 3042: 2753: 2728: 2598: 2244: 2229: 2214: 2109: 2039: 2019: 1934: 1717: 1689: 1597: 1548: 1522: 893: 465: 449: 348: 324: 200: 138: 91:
refers to the fact that the rate-determining step of this reaction only involves one
40: 300:
Example of the preferential elimination of fluorine in an E1cB-elimination reaction.
4034: 3394: 3146: 2923: 2523: 2323: 2174: 2169: 2034: 1889: 1669: 1475: 1382: 1372: 391:
Simultaneous removal of proton, formation of double bond, and loss of leaving group
263: 252: 169: 92: 1173:
McLennan, D. J. (1967). "The carbanion mechanism of olefin-forming elimination".
2533: 2179: 2149: 1914: 1628: 1563: 992: 282: 176: 56: 52: 448:
are essential. The best way to identify the E1cB mechanism involves the use of
444:
When trying to determine whether or not a reaction follows the E1cB mechanism,
271:
Distinguishing E1cB-elimination reactions from E1- and E2-elimination reactions
4817: 4344: 3694: 1783: 958: 240: 204: 19: 1306: 1194: 1131: 1096: 1679: 1324: 997: 810: 314: 180: 173: 161: 24: 1314: 219:. It has also been suggested that the E1cB mechanism is more common among 207:
of the molecule. As a result, the compound will likely proceed through an
2224: 1894: 1186: 897: 858: 344: 340: 328: 286: 244: 196: 158: 1159: 1123: 1884: 1212:(6th ed.). Hoboken, N.J.: Wiley-Interscience. pp. 1488–1493. 1210:
March's advanced organic chemistry reactions, mechanisms, and structure
1054:(6th ed.). Hoboken, N.J.: Wiley-Interscience. pp. 1488–1493. 1052:
March's advanced organic chemistry reactions, mechanisms, and structure
970: 901: 332: 321: 1298: 1246: 1088: 248: 236: 228: 224: 220: 888:
The most well known reaction that undergoes E1cB elimination is the
1582: 943: 915: 479: 336: 295: 290: 257: 188: 184: 146: 120: 48: 23:
An example of the E1cB reaction mechanism in the degradation of a
18: 961:
involves an E1cB mechanism. This step involves the conversion of
203:
is necessary because a good leaving group will leave before the
130: 47:
abstracts the relatively acidic proton to generate a stabilized
2268: 1787: 1328: 1402: 948:
E1cB reaction mechanism through photo-induced decarboxylation.
929:
A photochemical version of E1cB has been reported by Lukeman
231:
to alkene. One possible explanation for this is that the
125:α and ÎČ assignments in a molecule with leaving group, LG 105:, which is the conjugate base of the starting material. 757:). This leads to an irreversible first step but unlike 1235:
Journal of Labelled Compounds and Radiopharmaceuticals
497: 281:
All elimination reactions involve the removal of two
4959:
Erlenmeyer–Plöchl azlactone and amino-acid synthesis
4866: 4693: 4328: 3843: 3338: 3255: 3135: 3015: 2967: 2277: 1708: 1642: 1616: 1572: 1536: 1488: 1449: 1426: 1363: 892:reaction under basic conditions. This involves the 842:and leaving group departure is rate determining in 835:mechanism, since the isotope is already removed in 1018: 690: 4020:Divinylcyclopropane-cycloheptadiene rearrangement 1264:. New Jersey: Prentice Hall. pp. 1056–1066. 183:in Earth's atmosphere. Upon deprotonation of the 1021:The Art of Writing Reasonable Organic Mechanisms 434:Chemical kinetics of E1cB-elimination mechanisms 934:irreversible, and should thus be classified as 4280:Thermal rearrangement of aromatic hydrocarbons 2914:Thermal rearrangement of aromatic hydrocarbons 239:eliminations. It has been observed with other 5009:Lectka enantioselective beta-lactam synthesis 1799: 1340: 8: 4788:Inverse electron-demand Diels–Alder reaction 2609:Heterogeneous metal catalyzed cross-coupling 83:refers to the fact that the mechanism is an 4130:Lobry de Bruyn–Van Ekenstein transformation 701:From this equation, it is clear the second 4690: 2964: 2265: 1806: 1792: 1784: 1347: 1333: 1325: 1077:International Journal of Chemical Kinetics 900:group that results in the formation of an 4620:Petrenko-Kritschenko piperidone synthesis 4075:Fritsch–Buttenberg–Wiechell rearrangement 672: 661: 660: 654: 638: 625: 604: 592: 574: 563: 562: 556: 546: 539: 521: 508: 502: 498: 496: 101:refers to the formation of the carbanion 4783:Intramolecular Diels–Alder cycloaddition 1287:Journal of the American Chemical Society 1112:Journal of the American Chemical Society 809:. If the solvent is protic and contains 362: 1009: 4803:Metal-centered cycloaddition reactions 4455:Debus–Radziszewski imidazole synthesis 2399:Bodroux–Chichibabin aldehyde synthesis 1373:Unimolecular nucleophilic substitution 4949:Diazoalkane 1,3-dipolar cycloaddition 4853:Vinylcyclopropane (5+2) cycloaddition 4758:Diazoalkane 1,3-dipolar cycloaddition 4530:Hurd–Mori 1,2,3-thiadiazole synthesis 4025:Dowd–Beckwith ring-expansion reaction 3192:Hurd–Mori 1,2,3-thiadiazole synthesis 2105:LFER solvent coefficients (data page) 1383:Bimolecular nucleophilic substitution 7: 3760:Sharpless asymmetric dihydroxylation 2997:Methoxymethylenetriphenylphosphorane 764:, deprotonation is rate determining. 3885:Allen–Millar–Trippett rearrangement 1436:Electrophilic aromatic substitution 1175:Quarterly Reviews, Chemical Society 784:Deuterium exchange and a deuterium 191:is relatively stable because it is 5024:Nitrone-olefin (3+2) cycloaddition 5019:Niementowski quinazoline synthesis 4808:Nitrone-olefin (3+2) cycloaddition 4733:Azide-alkyne Huisgen cycloaddition 4595:Niementowski quinazoline synthesis 4350:Azide-alkyne Huisgen cycloaddition 3655:Meerwein–Ponndorf–Verley reduction 3207:Leimgruber–Batcho indole synthesis 1403:Nucleophilic internal substitution 1393:Nucleophilic aromatic substitution 14: 4848:Trimethylenemethane cycloaddition 4550:Johnson–Corey–Chaykovsky reaction 4415:Cadogan–Sundberg indole synthesis 4395:Bohlmann–Rahtz pyridine synthesis 4355:Baeyer–Emmerling indole synthesis 3162:Cadogan–Sundberg indole synthesis 2654:Johnson–Corey–Chaykovsky reaction 904:. The enolate is the very stable 4944:Cook–Heilbron thiazole synthesis 4773:Hexadehydro Diels–Alder reaction 4600:Niementowski quinoline synthesis 4430:Cook–Heilbron thiazole synthesis 4375:Bischler–Möhlau indole synthesis 4285:Tiffeneau–Demjanov rearrangement 3915:Baker–Venkataraman rearrangement 3073:Horner–Wadsworth–Emmons reaction 2744:Mizoroki-Heck vs. Reductive Heck 2629:Horner–Wadsworth–Emmons reaction 2140:Neighbouring group participation 1148:The Journal of Organic Chemistry 87:and will lose two substituents. 4480:Fiesselmann thiophene synthesis 4310:Westphalen–LettrĂ© rearrangement 4290:Vinylcyclopropane rearrangement 4120:Kornblum–DeLaMare rearrangement 3765:Epoxidation of allylic alcohols 3675:Noyori asymmetric hydrogenation 3610:Kornblum–DeLaMare rearrangement 3285:Gallagher–Hollander degradation 1559:Lindemann–Hinshelwood mechanism 1025:. New York: Springer. pp.  313:vs E1cb pathways is a distinct 4939:Chichibabin pyridine synthesis 4425:Chichibabin pyridine synthesis 4385:Blum–Ittah aziridine synthesis 4220:Ring expansion and contraction 2489:Cross dehydrogenative coupling 1608:Outer sphere electron transfer 1603:Inner sphere electron transfer 1413:Nucleophilic acyl substitution 813:in place of hydrogen (e.g., CH 679: 673: 668: 662: 615: 601: 581: 575: 570: 564: 515: 509: 59:. The name of the mechanism - 1: 4909:Bischler–Napieralski reaction 4867:Heterocycle forming reactions 4520:Hemetsberger indole synthesis 4380:Bischler–Napieralski reaction 4295:Wagner–Meerwein rearrangement 4265:Sommelet–Hauser rearrangement 4245:Seyferth–Gilbert homologation 4110:Ireland–Claisen rearrangement 4105:Hofmann–Martius rearrangement 3865:2,3-sigmatropic rearrangement 3480:Corey–Winter olefin synthesis 3405:Barton–McCombie deoxygenation 3048:Corey–Winter olefin synthesis 3002:Seyferth–Gilbert homologation 2869:Seyferth–Gilbert homologation 1773:Diffusion-controlled reaction 5014:Lehmstedt–Tanasescu reaction 4974:Gabriel–Colman rearrangement 4929:Bucherer carbazole synthesis 4924:Borsche–Drechsel cyclization 4904:Bernthsen acridine synthesis 4889:Bamberger triazine synthesis 4874:Algar–Flynn–Oyamada reaction 4585:Nazarov cyclization reaction 4450:De Kimpe aziridine synthesis 4405:Bucherer carbazole synthesis 4400:Borsche–Drechsel cyclization 4170:Nazarov cyclization reaction 4150:Meyer–Schuster rearrangement 4080:Gabriel–Colman rearrangement 3830:Wolffenstein–Böters reaction 3715:Reduction of nitro compounds 3565:Grundmann aldehyde synthesis 3370:Algar–Flynn–Oyamada reaction 2779:Olefin conversion technology 2774:Nozaki–Hiyama–Kishi reaction 2569:Gabriel–Colman rearrangement 2459:Claisen-Schmidt condensation 2404:Bouveault aldehyde synthesis 969:, facilitated by the enzyme 179:that has a relatively short 4989:Hantzsch pyridine synthesis 4768:Enone–alkene cycloadditions 4590:Nenitzescu indole synthesis 4510:Hantzsch pyridine synthesis 4475:Ferrario–Ackermann reaction 4125:Kowalski ester homologation 4090:Halogen dance rearrangement 3935:Benzilic acid rearrangement 3360:Akabori amino-acid reaction 3320:Von Braun amide degradation 3265:Barbier–Wieland degradation 3217:Nenitzescu indole synthesis 3197:Kharasch–Sosnovsky reaction 3088:Julia–Kocienski olefination 2992:Kowalski ester homologation 2689:Kowalski ester homologation 2664:Julia–Kocienski olefination 2419:Cadiot–Chodkiewicz coupling 2344:Aza-Baylis–Hillman reaction 2289:Acetoacetic ester synthesis 2000:Dynamic binding (chemistry) 1990:Conrotatory and disrotatory 1965:Charge remote fragmentation 1428:Electrophilic substitutions 896:of a compound containing a 788:can help distinguish among 5124: 5054:Robinson–Gabriel synthesis 5004:Kröhnke pyridine synthesis 4838:Retro-Diels–Alder reaction 4778:Imine Diels–Alder reaction 4565:Kröhnke pyridine synthesis 4180:Newman–Kwart rearrangement 4155:Mislow–Evans rearrangement 4065:Fischer–Hepp rearrangement 4010:Di-π-methane rearrangement 3790:Stephen aldehyde synthesis 3525:Eschweiler–Clarke reaction 3242:Williamson ether synthesis 2559:Fujiwara–Moritani reaction 2464:Combes quinoline synthesis 2429:Carbonyl olefin metathesis 2130:More O'Ferrall–Jencks plot 2055:Grunwald–Winstein equation 2025:Electron-withdrawing group 1960:Catalytic resonance theory 1738:Energy profile (chemistry) 1700:More O'Ferrall–Jencks plot 1365:Nucleophilic substitutions 881: 772: 463: 437: 274: 5064:Urech hydantoin synthesis 5044:Pomeranz–Fritsch reaction 4969:Fischer oxazole synthesis 4703:1,3-Dipolar cycloaddition 4675:Urech hydantoin synthesis 4645:Reissert indole synthesis 4630:Pomeranz–Fritsch reaction 4560:Knorr quinoline synthesis 4490:Fischer oxazole synthesis 4420:Camps quinoline synthesis 4340:1,3-Dipolar cycloaddition 4240:Semipinacol rearrangement 4215:Ramberg–BĂ€cklund reaction 4200:Piancatelli rearrangement 4140:McFadyen–Stevens reaction 3895:Alpha-ketol rearrangement 3650:McFadyen–Stevens reaction 3595:Kiliani–Fischer synthesis 3515:Elbs persulfate oxidation 3440:Bouveault–Blanc reduction 3400:Baeyer–Villiger oxidation 3232:Schotten–Baumann reaction 3108:Ramberg–BĂ€cklund reaction 2987:Kiliani–Fischer synthesis 2829:Ramberg–BĂ€cklund reaction 2814:Pinacol coupling reaction 2809:Piancatelli rearrangement 2704:Liebeskind–Srogl coupling 2554:Fujimoto–Belleau reaction 2271:List of organic reactions 2135:Negative hyperconjugation 1880: 1822: 1768:Michaelis–Menten kinetics 853:Fluorine-19 and carbon-11 33:E1cB elimination reaction 5039:Pictet–Spengler reaction 4954:Einhorn–Brunner reaction 4919:Boger pyridine synthesis 4813:Oxo-Diels–Alder reaction 4728:Aza-Diels–Alder reaction 4625:Pictet–Spengler reaction 4525:Hofmann–Löffler reaction 4515:Hegedus indole synthesis 4485:Fischer indole synthesis 4360:Bartoli indole synthesis 4315:Willgerodt rearrangement 4145:McLafferty rearrangement 4055:Ferrier carbocyclization 3870:2,3-Wittig rearrangement 3860:1,2-Wittig rearrangement 3700:Parikh–Doering oxidation 3690:Oxygen rebound mechanism 3355:Adkins–Peterson reaction 3247:Yamaguchi esterification 3187:Hegedus indole synthesis 3152:Bartoli indole synthesis 3023:Bamford–Stevens reaction 2939:Weinreb ketone synthesis 2899:Stork enamine alkylation 2674:Knoevenagel condensation 2544:Ferrier carbocyclization 2434:Castro–Stephens coupling 2060:Hammett acidity function 2050:Free-energy relationship 1995:Curtin–Hammett principle 1980:Conformational isomerism 1695:Potential energy surface 1574:Electron/Proton transfer 1459:Unimolecular elimination 388:Carbocation intermediate 331:as a better stabilizing 247:in the elimination of a 4999:Knorr pyrrole synthesis 4934:Bucherer–Bergs reaction 4879:Allan–Robinson reaction 4858:Wagner-Jauregg reaction 4650:Ring-closing metathesis 4575:Larock indole synthesis 4555:Knorr pyrrole synthesis 4410:Bucherer–Bergs reaction 4275:Stieglitz rearrangement 4255:SkattebĂžl rearrangement 4225:Ring-closing metathesis 4085:Group transfer reaction 4050:Favorskii rearrangement 3990:Cornforth rearrangement 3920:Bamberger rearrangement 3825:Wolff–Kishner reduction 3645:Markó–Lam deoxygenation 3540:Fleming–Tamao oxidation 3535:Fischer–Tropsch process 3222:Oxymercuration reaction 3202:Knorr pyrrole synthesis 3028:Barton–Kellogg reaction 2934:Wagner-Jauregg reaction 2854:Ring-closing metathesis 2844:Reimer–Tiemann reaction 2834:Rauhut–Currier reaction 2749:Nef isocyanide reaction 2709:Malonic ester synthesis 2679:Knorr pyrrole synthesis 2614:High dilution principle 2549:Friedel–Crafts reaction 2484:Cross-coupling reaction 2409:Bucherer–Bergs reaction 2394:Blanc chloromethylation 2384:Blaise ketone synthesis 2359:Baylis–Hillman reaction 2354:Barton–Kellogg reaction 2329:Allan–Robinson reaction 2235:Woodward–Hoffmann rules 1970:Charge-transfer complex 1743:Transition state theory 1544:Intramolecular reaction 1470:Bimolecular elimination 1208:Smith, Michael (2007). 1050:Smith, Michael (2007). 1017:Grossman, R.B. (2008). 394:Carbanion intermediate 113:in a one-step process. 4964:Feist–Benary synthesis 4738:Bradsher cycloaddition 4708:4+4 Photocycloaddition 4665:Simmons–Smith reaction 4610:PaternĂČ–BĂŒchi reaction 4470:Feist–Benary synthesis 4460:Dieckmann condensation 4210:Pummerer rearrangement 4190:Oxy-Cope rearrangement 4165:Myers allene synthesis 4115:Jacobsen rearrangement 4030:Electrocyclic reaction 4005:Demjanov rearrangement 3960:Buchner ring expansion 3930:Beckmann rearrangement 3910:Aza-Cope rearrangement 3905:Arndt–Eistert reaction 3880:Alkyne zipper reaction 3800:Transfer hydrogenation 3775:Sharpless oxyamination 3750:Selenoxide elimination 3635:Lombardo methylenation 3560:Griesbaum coozonolysis 3470:Corey–Itsuno reduction 3445:Boyland–Sims oxidation 3385:Angeli–Rimini reaction 3033:Boord olefin synthesis 2977:Arndt–Eistert reaction 2969:Homologation reactions 2769:Nitro-Mannich reaction 2684:Kolbe–Schmitt reaction 2494:Cross-coupling partner 2414:Buchner ring expansion 2334:Arndt–Eistert reaction 2100:Kinetic isotope effect 1847:Rearrangement reaction 1537:Unimolecular reactions 1498:Electrophilic addition 949: 921: 786:kinetic isotope effect 775:Kinetic isotope effect 769:Kinetic isotope effect 692: 485: 454:kinetic isotope effect 301: 267: 137:and a relatively poor 126: 28: 27:under basic conditions 5103:Elimination reactions 4823:Pauson–Khand reaction 4660:Sharpless epoxidation 4615:Pechmann condensation 4495:FriedlĂ€nder synthesis 4445:Davis–Beirut reaction 4300:Wallach rearrangement 4270:Stevens rearrangement 4205:Pinacol rearrangement 4185:Overman rearrangement 4100:Hofmann rearrangement 4095:Hayashi rearrangement 4060:Ferrier rearrangement 4015:Dimroth rearrangement 4000:Curtius rearrangement 3995:Criegee rearrangement 3975:Claisen rearrangement 3965:Carroll rearrangement 3900:Amadori rearrangement 3890:Allylic rearrangement 3770:Sharpless epoxidation 3505:Dess–Martin oxidation 3430:Bohn–Schmidt reaction 3290:Hofmann rearrangement 3093:Kauffmann olefination 3016:Olefination reactions 2954:Wurtz–Fittig reaction 2789:Palladium–NHC complex 2669:Kauffmann olefination 2624:Homologation reaction 2474:Corey–House synthesis 2454:Claisen rearrangement 2250:Yukawa–Tsuno equation 2210:Swain–Lupton equation 2190:Spherical aromaticity 2125:Möbius–HĂŒckel concept 1910:Aromatic ring current 1872:Substitution reaction 1728:Rate-determining step 1660:Reactive intermediate 1518:Free-radical addition 1508:Nucleophilic addition 1451:Elimination reactions 947: 919: 693: 483: 405:Strongly basic media 399:Strongly acidic media 299: 261: 195:with the neighboring 124: 22: 5029:Paal–Knorr synthesis 4899:Barton–Zard reaction 4843:Staudinger synthesis 4793:Ketene cycloaddition 4763:Diels–Alder reaction 4743:Cheletropic reaction 4723:Alkyne trimerisation 4605:Paal–Knorr synthesis 4570:Kulinkovich reaction 4545:Jacobsen epoxidation 4465:Diels–Alder reaction 4260:Smiles rearrangement 4250:Sigmatropic reaction 4135:Lossen rearrangement 3985:Corey–Fuchs reaction 3950:Boekelheide reaction 3945:Bergmann degradation 3875:Achmatowicz reaction 3660:Methionine sulfoxide 3460:Clemmensen reduction 3420:Bergmann degradation 3350:Acyloin condensation 3315:Strecker degradation 3270:Bergmann degradation 3237:Ullmann condensation 3103:Peterson olefination 3078:Hydrazone iodination 3058:Elimination reaction 2959:Zincke–Suhl reaction 2879:Sonogashira coupling 2839:Reformatsky reaction 2799:Peterson olefination 2764:Nierenstein reaction 2694:Kulinkovich reaction 2509:Diels–Alder reaction 2469:Corey–Fuchs reaction 2449:Claisen condensation 2319:Alkyne trimerisation 2294:Acyloin condensation 2260:ÎŁ-bishomoaromaticity 2220:Thorpe–Ingold effect 1832:Elimination reaction 1723:Equilibrium constant 1187:10.1039/qr9672100490 983:Elimination reaction 911:dehydration reaction 863:Radiopharmaceuticals 495: 416:Poor leaving groups 277:Elimination reaction 85:elimination reaction 37:elimination reaction 5108:Reaction mechanisms 5049:Prilezhaev reaction 5034:Pellizzari reaction 4713:(4+3) cycloaddition 4680:Van Leusen reaction 4655:Robinson annulation 4640:Pschorr cyclization 4635:Prilezhaev reaction 4365:Bergman cyclization 4320:Wolff rearrangement 4305:Weerman degradation 4195:Pericyclic reaction 4175:Neber rearrangement 4070:Fries rearrangement 3955:Brook rearrangement 3940:Bergman cyclization 3785:Staudinger reaction 3730:Rosenmund reduction 3720:Reductive amination 3685:Oppenauer oxidation 3475:Corey–Kim oxidation 3450:Cannizzaro reaction 3325:Weerman degradation 3300:Isosaccharinic acid 3212:Mukaiyama hydration 3068:Hofmann elimination 3053:Dehydrohalogenation 3038:Chugaev elimination 2859:Robinson annulation 2804:Pfitzinger reaction 2574:Gattermann reaction 2519:Wulff–Dötz reaction 2499:Dakin–West reaction 2424:Carbonyl allylation 2369:Bergman cyclization 2155:Kennedy J. P. Orton 2075:Hammond's postulate 2045:Flippin–Lodge angle 2015:Electromeric effect 1940:Beta-silicon effect 1925:Baker–Nathan effect 1733:Reaction coordinate 1665:Radical (chemistry) 1650:Elementary reaction 1593:Grotthuss mechanism 1357:reaction mechanisms 1260:Wade, L.G. (2005). 1160:10.1021/jo00138a007 1124:10.1021/ja01563a037 967:phosphoenolpyruvate 410:Good leaving groups 327:. One example uses 4798:McCormack reaction 4748:Conia-ene reaction 4580:Madelung synthesis 4370:Biginelli reaction 4160:Mumm rearrangement 4045:Favorskii reaction 3980:Cope rearrangement 3970:Chan rearrangement 3735:Rubottom oxidation 3665:Miyaura borylation 3630:Lipid peroxidation 3625:Lindgren oxidation 3605:Kornblum oxidation 3600:Kolbe electrolysis 3545:Fukuyama reduction 3455:Carbonyl reduction 3305:Marker degradation 3167:Diazonium compound 3157:Boudouard reaction 3136:Carbon-heteroatom 3063:Grieco elimination 2849:Rieche formylation 2794:Passerini reaction 2724:Meerwein arylation 2644:Hydroxymethylation 2539:Favorskii reaction 2439:Chan rearrangement 2374:Biginelli reaction 2299:Aldol condensation 2145:2-Norbornyl cation 2120:Möbius aromaticity 2115:Markovnikov's rule 2010:Effective molarity 1955:BĂŒrgi–Dunitz angle 1945:Bicycloaromaticity 1758:Arrhenius equation 1528:Oxidative addition 1490:Addition reactions 1241:(11–12): 982–988. 988:Reaction mechanism 963:2-phosphoglycerate 950: 925:Photo-induced E1cB 922: 890:aldol condensation 688: 686: 486: 383:Stepwise reaction 380:Concerted reaction 302: 268: 127: 29: 5090: 5089: 5086: 5085: 5082: 5081: 5074:Wohl–Aue reaction 4718:6+4 Cycloaddition 4535:Iodolactonization 3855:1,2-rearrangement 3820:Wohl–Aue reaction 3740:Sabatier reaction 3705:Pinnick oxidation 3670:Mozingo reduction 3615:Leuckart reaction 3570:Haloform reaction 3485:Criegee oxidation 3465:Collins oxidation 3415:Benkeser reaction 3410:Bechamp reduction 3380:Andrussow process 3365:Alcohol oxidation 3275:Edman degradation 3182:Haloform reaction 3131: 3130: 3118:Takai olefination 3083:Julia olefination 2909:Takai olefination 2784:Olefin metathesis 2659:Julia olefination 2584:Grignard reaction 2564:Fukuyama coupling 2479:Coupling reaction 2444:Chan–Lam coupling 2314:Alkyne metathesis 2309:Alkane metathesis 2165:Phosphaethynolate 2070:George S. Hammond 2030:Electronic effect 1985:Conjugated system 1867:Stereospecificity 1862:Stereoselectivity 1827:Addition reaction 1816:organic reactions 1781: 1780: 1753:Activated complex 1748:Activation energy 1710:Chemical kinetics 1655:Reaction dynamics 1554:Photodissociation 1299:10.1021/ja0517062 1293:(21): 7698–7699. 1262:Organic Chemistry 1247:10.1002/jlcr.1443 1219:978-1-61583-842-4 1154:(17): 3237–3241. 1089:10.1002/kin.20748 1061:978-1-61583-842-4 1036:978-0-387-95468-4 678: 667: 657: 641: 632: 613: 610: 607: 580: 569: 530: 524: 514: 507: 472:chemical kinetics 446:chemical kinetics 440:Chemical kinetics 431: 430: 377:Stepwise reaction 358:chemical kinetics 16:Chemical reaction 5115: 5069:Wenker synthesis 5059:StollĂ© synthesis 4914:Bobbitt reaction 4884:Auwers synthesis 4828:Povarov reaction 4753:Cyclopropanation 4691: 4685:Wenker synthesis 4440:Darzens reaction 4390:Bobbitt reaction 4235:Schmidt reaction 4040:Enyne metathesis 3815:Whiting reaction 3810:Wharton reaction 3755:Shapiro reaction 3745:Sarett oxidation 3710:PrĂ©vost reaction 3520:Emde degradation 3330:Wohl degradation 3310:Ruff degradation 3280:Emde degradation 3177:Grignard reagent 3113:Shapiro reaction 3098:McMurry reaction 2965: 2929:Ullmann reaction 2894:StollĂ© synthesis 2884:Stetter reaction 2874:Shapiro reaction 2864:Sakurai reaction 2759:Negishi coupling 2739:Minisci reaction 2734:Michael reaction 2719:McMurry reaction 2714:Mannich reaction 2594:Hammick reaction 2589:Grignard reagent 2529:Enyne metathesis 2514:Doebner reaction 2504:Darzens reaction 2349:Barbier reaction 2339:Auwers synthesis 2266: 2240:Woodward's rules 2205:Superaromaticity 2195:Spiroaromaticity 2095:Inductive effect 2090:Hyperconjugation 2065:Hammett equation 2005:Edwards equation 1857:Regioselectivity 1808: 1801: 1794: 1785: 1685:Collision theory 1634:Matrix isolation 1588:Harpoon reaction 1465:E1cB-elimination 1349: 1342: 1335: 1326: 1319: 1318: 1282: 1276: 1275: 1257: 1251: 1250: 1230: 1224: 1223: 1205: 1199: 1198: 1170: 1164: 1163: 1142: 1136: 1135: 1118:(6): 1406–1412. 1107: 1101: 1100: 1072: 1066: 1065: 1047: 1041: 1040: 1024: 1014: 697: 695: 694: 689: 687: 683: 682: 676: 671: 665: 659: 658: 655: 642: 639: 633: 631: 630: 629: 614: 611: 608: 605: 600: 599: 586: 585: 584: 578: 573: 567: 561: 560: 551: 550: 540: 531: 529: 525: 522: 519: 518: 512: 505: 503: 427:More acidic B-H 363: 251:derivative from 187:, the resulting 133:hydrogen on its 111:transition state 93:molecular entity 5123: 5122: 5118: 5117: 5116: 5114: 5113: 5112: 5093: 5092: 5091: 5078: 4979:Gewald reaction 4862: 4689: 4670:Skraup reaction 4505:Graham reaction 4500:Gewald reaction 4331: 4324: 3846: 3839: 3795:Swern oxidation 3780:Stahl oxidation 3725:Riley oxidation 3680:Omega oxidation 3640:Luche reduction 3590:Jones oxidation 3555:Glycol cleavage 3550:Ganem oxidation 3495:Davis oxidation 3490:Dakin oxidation 3425:Birch reduction 3375:Amide reduction 3341: 3334: 3295:Hooker reaction 3257: 3251: 3139: 3137: 3127: 3123:Wittig reaction 3011: 3007:Wittig reaction 2982:Hooker reaction 2963: 2944:Wittig reaction 2919:Thorpe reaction 2904:Suzuki reaction 2889:Stille reaction 2824:Quelet reaction 2699:Kumada coupling 2649:Ivanov reaction 2639:Hydrovinylation 2619:Hiyama coupling 2579:Glaser coupling 2389:Blaise reaction 2379:Bingel reaction 2364:Benary reaction 2281: 2279: 2273: 2264: 2160:Passive binding 2080:Homoaromaticity 1930:Baldwin's rules 1905:Antiaromaticity 1900:Anomeric effect 1876: 1818: 1812: 1782: 1777: 1763:Eyring equation 1704: 1675:Stereochemistry 1638: 1624:Solvent effects 1612: 1568: 1532: 1513: 1503: 1484: 1479: 1445: 1441: 1422: 1418: 1408: 1398: 1388: 1378: 1359: 1353: 1323: 1322: 1284: 1283: 1279: 1272: 1259: 1258: 1254: 1232: 1231: 1227: 1220: 1207: 1206: 1202: 1172: 1171: 1167: 1144: 1143: 1139: 1109: 1108: 1104: 1074: 1073: 1069: 1062: 1049: 1048: 1044: 1037: 1016: 1015: 1011: 1006: 979: 955: 939: 927: 886: 880: 878:Aldol reactions 871: 855: 847: 840: 833: 826: 822: 816: 807: 800: 793: 782: 777: 771: 762: 756: 752: 747: 739: 735: 730: 722: 718: 713: 685: 684: 650: 643: 635: 634: 621: 588: 587: 552: 542: 541: 532: 520: 504: 493: 492: 468: 462: 442: 436: 421:Less acidic B-H 279: 273: 262:Degradation of 223:eliminating to 119: 17: 12: 11: 5: 5121: 5119: 5111: 5110: 5105: 5095: 5094: 5088: 5087: 5084: 5083: 5080: 5079: 5077: 5076: 5071: 5066: 5061: 5056: 5051: 5046: 5041: 5036: 5031: 5026: 5021: 5016: 5011: 5006: 5001: 4996: 4991: 4986: 4984:Hantzsch ester 4981: 4976: 4971: 4966: 4961: 4956: 4951: 4946: 4941: 4936: 4931: 4926: 4921: 4916: 4911: 4906: 4901: 4896: 4894:Banert cascade 4891: 4886: 4881: 4876: 4870: 4868: 4864: 4863: 4861: 4860: 4855: 4850: 4845: 4840: 4835: 4833:Prato reaction 4830: 4825: 4820: 4815: 4810: 4805: 4800: 4795: 4790: 4785: 4780: 4775: 4770: 4765: 4760: 4755: 4750: 4745: 4740: 4735: 4730: 4725: 4720: 4715: 4710: 4705: 4699: 4697: 4688: 4687: 4682: 4677: 4672: 4667: 4662: 4657: 4652: 4647: 4642: 4637: 4632: 4627: 4622: 4617: 4612: 4607: 4602: 4597: 4592: 4587: 4582: 4577: 4572: 4567: 4562: 4557: 4552: 4547: 4542: 4537: 4532: 4527: 4522: 4517: 4512: 4507: 4502: 4497: 4492: 4487: 4482: 4477: 4472: 4467: 4462: 4457: 4452: 4447: 4442: 4437: 4432: 4427: 4422: 4417: 4412: 4407: 4402: 4397: 4392: 4387: 4382: 4377: 4372: 4367: 4362: 4357: 4352: 4347: 4342: 4336: 4334: 4326: 4325: 4323: 4322: 4317: 4312: 4307: 4302: 4297: 4292: 4287: 4282: 4277: 4272: 4267: 4262: 4257: 4252: 4247: 4242: 4237: 4232: 4227: 4222: 4217: 4212: 4207: 4202: 4197: 4192: 4187: 4182: 4177: 4172: 4167: 4162: 4157: 4152: 4147: 4142: 4137: 4132: 4127: 4122: 4117: 4112: 4107: 4102: 4097: 4092: 4087: 4082: 4077: 4072: 4067: 4062: 4057: 4052: 4047: 4042: 4037: 4032: 4027: 4022: 4017: 4012: 4007: 4002: 3997: 3992: 3987: 3982: 3977: 3972: 3967: 3962: 3957: 3952: 3947: 3942: 3937: 3932: 3927: 3925:Banert cascade 3922: 3917: 3912: 3907: 3902: 3897: 3892: 3887: 3882: 3877: 3872: 3867: 3862: 3857: 3851: 3849: 3845:Rearrangement 3841: 3840: 3838: 3837: 3835:Zinin reaction 3832: 3827: 3822: 3817: 3812: 3807: 3805:Wacker process 3802: 3797: 3792: 3787: 3782: 3777: 3772: 3767: 3762: 3757: 3752: 3747: 3742: 3737: 3732: 3727: 3722: 3717: 3712: 3707: 3702: 3697: 3692: 3687: 3682: 3677: 3672: 3667: 3662: 3657: 3652: 3647: 3642: 3637: 3632: 3627: 3622: 3617: 3612: 3607: 3602: 3597: 3592: 3587: 3582: 3580:Hydrogenolysis 3577: 3572: 3567: 3562: 3557: 3552: 3547: 3542: 3537: 3532: 3530:Étard reaction 3527: 3522: 3517: 3512: 3507: 3502: 3497: 3492: 3487: 3482: 3477: 3472: 3467: 3462: 3457: 3452: 3447: 3442: 3437: 3435:Bosch reaction 3432: 3427: 3422: 3417: 3412: 3407: 3402: 3397: 3392: 3387: 3382: 3377: 3372: 3367: 3362: 3357: 3352: 3346: 3344: 3340:Organic redox 3336: 3335: 3333: 3332: 3327: 3322: 3317: 3312: 3307: 3302: 3297: 3292: 3287: 3282: 3277: 3272: 3267: 3261: 3259: 3253: 3252: 3250: 3249: 3244: 3239: 3234: 3229: 3224: 3219: 3214: 3209: 3204: 3199: 3194: 3189: 3184: 3179: 3174: 3172:Esterification 3169: 3164: 3159: 3154: 3149: 3143: 3141: 3133: 3132: 3129: 3128: 3126: 3125: 3120: 3115: 3110: 3105: 3100: 3095: 3090: 3085: 3080: 3075: 3070: 3065: 3060: 3055: 3050: 3045: 3040: 3035: 3030: 3025: 3019: 3017: 3013: 3012: 3010: 3009: 3004: 2999: 2994: 2989: 2984: 2979: 2973: 2971: 2962: 2961: 2956: 2951: 2949:Wurtz reaction 2946: 2941: 2936: 2931: 2926: 2921: 2916: 2911: 2906: 2901: 2896: 2891: 2886: 2881: 2876: 2871: 2866: 2861: 2856: 2851: 2846: 2841: 2836: 2831: 2826: 2821: 2819:Prins reaction 2816: 2811: 2806: 2801: 2796: 2791: 2786: 2781: 2776: 2771: 2766: 2761: 2756: 2751: 2746: 2741: 2736: 2731: 2726: 2721: 2716: 2711: 2706: 2701: 2696: 2691: 2686: 2681: 2676: 2671: 2666: 2661: 2656: 2651: 2646: 2641: 2636: 2634:Hydrocyanation 2631: 2626: 2621: 2616: 2611: 2606: 2604:Henry reaction 2601: 2596: 2591: 2586: 2581: 2576: 2571: 2566: 2561: 2556: 2551: 2546: 2541: 2536: 2531: 2526: 2521: 2516: 2511: 2506: 2501: 2496: 2491: 2486: 2481: 2476: 2471: 2466: 2461: 2456: 2451: 2446: 2441: 2436: 2431: 2426: 2421: 2416: 2411: 2406: 2401: 2396: 2391: 2386: 2381: 2376: 2371: 2366: 2361: 2356: 2351: 2346: 2341: 2336: 2331: 2326: 2321: 2316: 2311: 2306: 2304:Aldol reaction 2301: 2296: 2291: 2285: 2283: 2278:Carbon-carbon 2275: 2274: 2269: 2263: 2262: 2257: 2255:Zaitsev's rule 2252: 2247: 2242: 2237: 2232: 2227: 2222: 2217: 2212: 2207: 2202: 2200:Steric effects 2197: 2192: 2187: 2182: 2177: 2172: 2167: 2162: 2157: 2152: 2147: 2142: 2137: 2132: 2127: 2122: 2117: 2112: 2107: 2102: 2097: 2092: 2087: 2082: 2077: 2072: 2067: 2062: 2057: 2052: 2047: 2042: 2037: 2032: 2027: 2022: 2017: 2012: 2007: 2002: 1997: 1992: 1987: 1982: 1977: 1972: 1967: 1962: 1957: 1952: 1947: 1942: 1937: 1932: 1927: 1922: 1917: 1912: 1907: 1902: 1897: 1892: 1887: 1881: 1878: 1877: 1875: 1874: 1869: 1864: 1859: 1854: 1852:Redox reaction 1849: 1844: 1839: 1837:Polymerization 1834: 1829: 1823: 1820: 1819: 1813: 1811: 1810: 1803: 1796: 1788: 1779: 1778: 1776: 1775: 1770: 1765: 1760: 1755: 1750: 1745: 1740: 1735: 1730: 1725: 1720: 1714: 1712: 1706: 1705: 1703: 1702: 1697: 1692: 1687: 1682: 1677: 1672: 1667: 1662: 1657: 1652: 1646: 1644: 1643:Related topics 1640: 1639: 1637: 1636: 1631: 1626: 1620: 1618: 1617:Medium effects 1614: 1613: 1611: 1610: 1605: 1600: 1595: 1590: 1585: 1579: 1577: 1570: 1569: 1567: 1566: 1561: 1556: 1551: 1546: 1540: 1538: 1534: 1533: 1531: 1530: 1525: 1520: 1515: 1511: 1505: 1501: 1494: 1492: 1486: 1485: 1483: 1482: 1477: 1473: 1467: 1462: 1455: 1453: 1447: 1446: 1444: 1443: 1439: 1432: 1430: 1424: 1423: 1421: 1420: 1416: 1410: 1406: 1400: 1396: 1390: 1386: 1380: 1376: 1369: 1367: 1361: 1360: 1354: 1352: 1351: 1344: 1337: 1329: 1321: 1320: 1277: 1270: 1252: 1225: 1218: 1200: 1165: 1137: 1102: 1083:(2): 118–124. 1067: 1060: 1042: 1035: 1008: 1007: 1005: 1002: 1001: 1000: 995: 990: 985: 978: 975: 954: 951: 937: 926: 923: 906:conjugate base 884:Aldol reaction 882:Main article: 879: 876: 869: 854: 851: 845: 838: 831: 820: 814: 805: 798: 791: 781: 778: 773:Main article: 770: 767: 766: 765: 760: 754: 750: 745: 741: 737: 733: 728: 724: 720: 716: 711: 703:order kinetics 699: 698: 681: 675: 670: 664: 653: 649: 646: 644: 637: 636: 628: 624: 620: 617: 603: 598: 595: 591: 583: 577: 572: 566: 559: 555: 549: 545: 538: 535: 533: 528: 517: 511: 501: 500: 461: 458: 435: 432: 429: 428: 425: 422: 418: 417: 414: 411: 407: 406: 403: 400: 396: 395: 392: 389: 385: 384: 381: 378: 374: 373: 370: 367: 343:, which makes 325:leaving groups 272: 269: 155:delocalization 118: 115: 98:conjugate base 15: 13: 10: 9: 6: 4: 3: 2: 5120: 5109: 5106: 5104: 5101: 5100: 5098: 5075: 5072: 5070: 5067: 5065: 5062: 5060: 5057: 5055: 5052: 5050: 5047: 5045: 5042: 5040: 5037: 5035: 5032: 5030: 5027: 5025: 5022: 5020: 5017: 5015: 5012: 5010: 5007: 5005: 5002: 5000: 4997: 4995: 4994:Herz reaction 4992: 4990: 4987: 4985: 4982: 4980: 4977: 4975: 4972: 4970: 4967: 4965: 4962: 4960: 4957: 4955: 4952: 4950: 4947: 4945: 4942: 4940: 4937: 4935: 4932: 4930: 4927: 4925: 4922: 4920: 4917: 4915: 4912: 4910: 4907: 4905: 4902: 4900: 4897: 4895: 4892: 4890: 4887: 4885: 4882: 4880: 4877: 4875: 4872: 4871: 4869: 4865: 4859: 4856: 4854: 4851: 4849: 4846: 4844: 4841: 4839: 4836: 4834: 4831: 4829: 4826: 4824: 4821: 4819: 4816: 4814: 4811: 4809: 4806: 4804: 4801: 4799: 4796: 4794: 4791: 4789: 4786: 4784: 4781: 4779: 4776: 4774: 4771: 4769: 4766: 4764: 4761: 4759: 4756: 4754: 4751: 4749: 4746: 4744: 4741: 4739: 4736: 4734: 4731: 4729: 4726: 4724: 4721: 4719: 4716: 4714: 4711: 4709: 4706: 4704: 4701: 4700: 4698: 4696: 4695:Cycloaddition 4692: 4686: 4683: 4681: 4678: 4676: 4673: 4671: 4668: 4666: 4663: 4661: 4658: 4656: 4653: 4651: 4648: 4646: 4643: 4641: 4638: 4636: 4633: 4631: 4628: 4626: 4623: 4621: 4618: 4616: 4613: 4611: 4608: 4606: 4603: 4601: 4598: 4596: 4593: 4591: 4588: 4586: 4583: 4581: 4578: 4576: 4573: 4571: 4568: 4566: 4563: 4561: 4558: 4556: 4553: 4551: 4548: 4546: 4543: 4541: 4540:Isay reaction 4538: 4536: 4533: 4531: 4528: 4526: 4523: 4521: 4518: 4516: 4513: 4511: 4508: 4506: 4503: 4501: 4498: 4496: 4493: 4491: 4488: 4486: 4483: 4481: 4478: 4476: 4473: 4471: 4468: 4466: 4463: 4461: 4458: 4456: 4453: 4451: 4448: 4446: 4443: 4441: 4438: 4436: 4435:Cycloaddition 4433: 4431: 4428: 4426: 4423: 4421: 4418: 4416: 4413: 4411: 4408: 4406: 4403: 4401: 4398: 4396: 4393: 4391: 4388: 4386: 4383: 4381: 4378: 4376: 4373: 4371: 4368: 4366: 4363: 4361: 4358: 4356: 4353: 4351: 4348: 4346: 4343: 4341: 4338: 4337: 4335: 4333: 4330:Ring forming 4327: 4321: 4318: 4316: 4313: 4311: 4308: 4306: 4303: 4301: 4298: 4296: 4293: 4291: 4288: 4286: 4283: 4281: 4278: 4276: 4273: 4271: 4268: 4266: 4263: 4261: 4258: 4256: 4253: 4251: 4248: 4246: 4243: 4241: 4238: 4236: 4233: 4231: 4230:Rupe reaction 4228: 4226: 4223: 4221: 4218: 4216: 4213: 4211: 4208: 4206: 4203: 4201: 4198: 4196: 4193: 4191: 4188: 4186: 4183: 4181: 4178: 4176: 4173: 4171: 4168: 4166: 4163: 4161: 4158: 4156: 4153: 4151: 4148: 4146: 4143: 4141: 4138: 4136: 4133: 4131: 4128: 4126: 4123: 4121: 4118: 4116: 4113: 4111: 4108: 4106: 4103: 4101: 4098: 4096: 4093: 4091: 4088: 4086: 4083: 4081: 4078: 4076: 4073: 4071: 4068: 4066: 4063: 4061: 4058: 4056: 4053: 4051: 4048: 4046: 4043: 4041: 4038: 4036: 4033: 4031: 4028: 4026: 4023: 4021: 4018: 4016: 4013: 4011: 4008: 4006: 4003: 4001: 3998: 3996: 3993: 3991: 3988: 3986: 3983: 3981: 3978: 3976: 3973: 3971: 3968: 3966: 3963: 3961: 3958: 3956: 3953: 3951: 3948: 3946: 3943: 3941: 3938: 3936: 3933: 3931: 3928: 3926: 3923: 3921: 3918: 3916: 3913: 3911: 3908: 3906: 3903: 3901: 3898: 3896: 3893: 3891: 3888: 3886: 3883: 3881: 3878: 3876: 3873: 3871: 3868: 3866: 3863: 3861: 3858: 3856: 3853: 3852: 3850: 3848: 3842: 3836: 3833: 3831: 3828: 3826: 3823: 3821: 3818: 3816: 3813: 3811: 3808: 3806: 3803: 3801: 3798: 3796: 3793: 3791: 3788: 3786: 3783: 3781: 3778: 3776: 3773: 3771: 3768: 3766: 3763: 3761: 3758: 3756: 3753: 3751: 3748: 3746: 3743: 3741: 3738: 3736: 3733: 3731: 3728: 3726: 3723: 3721: 3718: 3716: 3713: 3711: 3708: 3706: 3703: 3701: 3698: 3696: 3693: 3691: 3688: 3686: 3683: 3681: 3678: 3676: 3673: 3671: 3668: 3666: 3663: 3661: 3658: 3656: 3653: 3651: 3648: 3646: 3643: 3641: 3638: 3636: 3633: 3631: 3628: 3626: 3623: 3621: 3620:Ley oxidation 3618: 3616: 3613: 3611: 3608: 3606: 3603: 3601: 3598: 3596: 3593: 3591: 3588: 3586: 3585:Hydroxylation 3583: 3581: 3578: 3576: 3575:Hydrogenation 3573: 3571: 3568: 3566: 3563: 3561: 3558: 3556: 3553: 3551: 3548: 3546: 3543: 3541: 3538: 3536: 3533: 3531: 3528: 3526: 3523: 3521: 3518: 3516: 3513: 3511: 3510:DNA oxidation 3508: 3506: 3503: 3501: 3500:Deoxygenation 3498: 3496: 3493: 3491: 3488: 3486: 3483: 3481: 3478: 3476: 3473: 3471: 3468: 3466: 3463: 3461: 3458: 3456: 3453: 3451: 3448: 3446: 3443: 3441: 3438: 3436: 3433: 3431: 3428: 3426: 3423: 3421: 3418: 3416: 3413: 3411: 3408: 3406: 3403: 3401: 3398: 3396: 3393: 3391: 3390:Aromatization 3388: 3386: 3383: 3381: 3378: 3376: 3373: 3371: 3368: 3366: 3363: 3361: 3358: 3356: 3353: 3351: 3348: 3347: 3345: 3343: 3337: 3331: 3328: 3326: 3323: 3321: 3318: 3316: 3313: 3311: 3308: 3306: 3303: 3301: 3298: 3296: 3293: 3291: 3288: 3286: 3283: 3281: 3278: 3276: 3273: 3271: 3268: 3266: 3263: 3262: 3260: 3254: 3248: 3245: 3243: 3240: 3238: 3235: 3233: 3230: 3228: 3227:Reed reaction 3225: 3223: 3220: 3218: 3215: 3213: 3210: 3208: 3205: 3203: 3200: 3198: 3195: 3193: 3190: 3188: 3185: 3183: 3180: 3178: 3175: 3173: 3170: 3168: 3165: 3163: 3160: 3158: 3155: 3153: 3150: 3148: 3145: 3144: 3142: 3138:bond forming 3134: 3124: 3121: 3119: 3116: 3114: 3111: 3109: 3106: 3104: 3101: 3099: 3096: 3094: 3091: 3089: 3086: 3084: 3081: 3079: 3076: 3074: 3071: 3069: 3066: 3064: 3061: 3059: 3056: 3054: 3051: 3049: 3046: 3044: 3043:Cope reaction 3041: 3039: 3036: 3034: 3031: 3029: 3026: 3024: 3021: 3020: 3018: 3014: 3008: 3005: 3003: 3000: 2998: 2995: 2993: 2990: 2988: 2985: 2983: 2980: 2978: 2975: 2974: 2972: 2970: 2966: 2960: 2957: 2955: 2952: 2950: 2947: 2945: 2942: 2940: 2937: 2935: 2932: 2930: 2927: 2925: 2922: 2920: 2917: 2915: 2912: 2910: 2907: 2905: 2902: 2900: 2897: 2895: 2892: 2890: 2887: 2885: 2882: 2880: 2877: 2875: 2872: 2870: 2867: 2865: 2862: 2860: 2857: 2855: 2852: 2850: 2847: 2845: 2842: 2840: 2837: 2835: 2832: 2830: 2827: 2825: 2822: 2820: 2817: 2815: 2812: 2810: 2807: 2805: 2802: 2800: 2797: 2795: 2792: 2790: 2787: 2785: 2782: 2780: 2777: 2775: 2772: 2770: 2767: 2765: 2762: 2760: 2757: 2755: 2754:Nef synthesis 2752: 2750: 2747: 2745: 2742: 2740: 2737: 2735: 2732: 2730: 2729:Methylenation 2727: 2725: 2722: 2720: 2717: 2715: 2712: 2710: 2707: 2705: 2702: 2700: 2697: 2695: 2692: 2690: 2687: 2685: 2682: 2680: 2677: 2675: 2672: 2670: 2667: 2665: 2662: 2660: 2657: 2655: 2652: 2650: 2647: 2645: 2642: 2640: 2637: 2635: 2632: 2630: 2627: 2625: 2622: 2620: 2617: 2615: 2612: 2610: 2607: 2605: 2602: 2600: 2599:Heck reaction 2597: 2595: 2592: 2590: 2587: 2585: 2582: 2580: 2577: 2575: 2572: 2570: 2567: 2565: 2562: 2560: 2557: 2555: 2552: 2550: 2547: 2545: 2542: 2540: 2537: 2535: 2532: 2530: 2527: 2525: 2522: 2520: 2517: 2515: 2512: 2510: 2507: 2505: 2502: 2500: 2497: 2495: 2492: 2490: 2487: 2485: 2482: 2480: 2477: 2475: 2472: 2470: 2467: 2465: 2462: 2460: 2457: 2455: 2452: 2450: 2447: 2445: 2442: 2440: 2437: 2435: 2432: 2430: 2427: 2425: 2422: 2420: 2417: 2415: 2412: 2410: 2407: 2405: 2402: 2400: 2397: 2395: 2392: 2390: 2387: 2385: 2382: 2380: 2377: 2375: 2372: 2370: 2367: 2365: 2362: 2360: 2357: 2355: 2352: 2350: 2347: 2345: 2342: 2340: 2337: 2335: 2332: 2330: 2327: 2325: 2322: 2320: 2317: 2315: 2312: 2310: 2307: 2305: 2302: 2300: 2297: 2295: 2292: 2290: 2287: 2286: 2284: 2280:bond forming 2276: 2272: 2267: 2261: 2258: 2256: 2253: 2251: 2248: 2246: 2245:Y-aromaticity 2243: 2241: 2238: 2236: 2233: 2231: 2230:Walsh diagram 2228: 2226: 2223: 2221: 2218: 2216: 2215:Taft equation 2213: 2211: 2208: 2206: 2203: 2201: 2198: 2196: 2193: 2191: 2188: 2186: 2185:ÎŁ-aromaticity 2183: 2181: 2178: 2176: 2173: 2171: 2168: 2166: 2163: 2161: 2158: 2156: 2153: 2151: 2148: 2146: 2143: 2141: 2138: 2136: 2133: 2131: 2128: 2126: 2123: 2121: 2118: 2116: 2113: 2111: 2110:Marcus theory 2108: 2106: 2103: 2101: 2098: 2096: 2093: 2091: 2088: 2086: 2085:HĂŒckel's rule 2083: 2081: 2078: 2076: 2073: 2071: 2068: 2066: 2063: 2061: 2058: 2056: 2053: 2051: 2048: 2046: 2043: 2041: 2040:Evelyn effect 2038: 2036: 2033: 2031: 2028: 2026: 2023: 2021: 2020:Electron-rich 2018: 2016: 2013: 2011: 2008: 2006: 2003: 2001: 1998: 1996: 1993: 1991: 1988: 1986: 1983: 1981: 1978: 1976: 1973: 1971: 1968: 1966: 1963: 1961: 1958: 1956: 1953: 1951: 1948: 1946: 1943: 1941: 1938: 1936: 1935:Bema Hapothle 1933: 1931: 1928: 1926: 1923: 1921: 1918: 1916: 1913: 1911: 1908: 1906: 1903: 1901: 1898: 1896: 1893: 1891: 1888: 1886: 1883: 1882: 1879: 1873: 1870: 1868: 1865: 1863: 1860: 1858: 1855: 1853: 1850: 1848: 1845: 1843: 1840: 1838: 1835: 1833: 1830: 1828: 1825: 1824: 1821: 1817: 1809: 1804: 1802: 1797: 1795: 1790: 1789: 1786: 1774: 1771: 1769: 1766: 1764: 1761: 1759: 1756: 1754: 1751: 1749: 1746: 1744: 1741: 1739: 1736: 1734: 1731: 1729: 1726: 1724: 1721: 1719: 1718:Rate equation 1716: 1715: 1713: 1711: 1707: 1701: 1698: 1696: 1693: 1691: 1690:Arrow pushing 1688: 1686: 1683: 1681: 1678: 1676: 1673: 1671: 1668: 1666: 1663: 1661: 1658: 1656: 1653: 1651: 1648: 1647: 1645: 1641: 1635: 1632: 1630: 1627: 1625: 1622: 1621: 1619: 1615: 1609: 1606: 1604: 1601: 1599: 1598:Marcus theory 1596: 1594: 1591: 1589: 1586: 1584: 1581: 1580: 1578: 1575: 1571: 1565: 1562: 1560: 1557: 1555: 1552: 1550: 1549:Isomerization 1547: 1545: 1542: 1541: 1539: 1535: 1529: 1526: 1524: 1523:Cycloaddition 1521: 1519: 1516: 1509: 1506: 1499: 1496: 1495: 1493: 1491: 1487: 1481: 1474: 1471: 1468: 1466: 1463: 1460: 1457: 1456: 1454: 1452: 1448: 1437: 1434: 1433: 1431: 1429: 1425: 1414: 1411: 1404: 1401: 1394: 1391: 1384: 1381: 1374: 1371: 1370: 1368: 1366: 1362: 1358: 1350: 1345: 1343: 1338: 1336: 1331: 1330: 1327: 1316: 1312: 1308: 1304: 1300: 1296: 1292: 1288: 1281: 1278: 1273: 1271:0-13-236731-9 1267: 1263: 1256: 1253: 1248: 1244: 1240: 1236: 1229: 1226: 1221: 1215: 1211: 1204: 1201: 1196: 1192: 1188: 1184: 1180: 1176: 1169: 1166: 1161: 1157: 1153: 1149: 1141: 1138: 1133: 1129: 1125: 1121: 1117: 1113: 1106: 1103: 1098: 1094: 1090: 1086: 1082: 1078: 1071: 1068: 1063: 1057: 1053: 1046: 1043: 1038: 1032: 1028: 1023: 1022: 1013: 1010: 1003: 999: 996: 994: 991: 989: 986: 984: 981: 980: 976: 974: 972: 968: 964: 960: 952: 946: 942: 940: 932: 924: 918: 914: 912: 907: 903: 899: 895: 894:deprotonation 891: 885: 877: 875: 872: 864: 860: 852: 850: 848: 841: 834: 823: 812: 808: 801: 794: 787: 779: 776: 768: 763: 748: 742: 731: 725: 714: 708: 707: 706: 704: 651: 647: 645: 626: 622: 618: 596: 593: 589: 557: 553: 547: 543: 536: 534: 526: 491: 490: 489: 482: 478: 475: 473: 467: 466:Rate equation 459: 457: 455: 451: 447: 441: 433: 426: 423: 420: 419: 415: 413:Leaving group 412: 409: 408: 404: 402:No preference 401: 398: 397: 393: 390: 387: 386: 382: 379: 376: 375: 371: 368: 365: 364: 361: 359: 354: 350: 349:leaving group 346: 342: 338: 334: 330: 326: 323: 319: 316: 312: 307: 298: 294: 292: 288: 284: 278: 270: 265: 260: 256: 254: 250: 246: 242: 238: 234: 230: 227:than from an 226: 222: 218: 217:fluoroalkanes 214: 210: 206: 202: 201:leaving group 198: 194: 190: 186: 182: 178: 175: 171: 167: 163: 160: 156: 152: 148: 144: 140: 139:leaving group 136: 132: 123: 116: 114: 112: 106: 104: 100: 99: 94: 90: 86: 82: 78: 74: 70: 66: 63:- stands for 62: 58: 54: 50: 46: 42: 41:leaving group 38: 35:is a type of 34: 26: 21: 4035:Ene reaction 3395:Autoxidation 3256:Degradation 3147:Azo coupling 2924:Ugi reaction 2524:Ene reaction 2324:Alkynylation 2175:Polyfluorene 2170:Polar effect 2035:Electrophile 1950:Bredt's rule 1920:Baird's rule 1890:Alpha effect 1670:Molecularity 1464: 1290: 1286: 1280: 1261: 1255: 1238: 1234: 1228: 1209: 1203: 1178: 1174: 1168: 1151: 1147: 1140: 1115: 1111: 1105: 1080: 1076: 1070: 1051: 1045: 1020: 1012: 956: 935: 930: 928: 887: 867: 856: 843: 836: 829: 818: 803: 796: 789: 783: 758: 743: 726: 709: 700: 487: 476: 469: 443: 318:intermediate 303: 283:substituents 280: 264:ethiofencarb 253:ethiofencarb 237:carbon-based 170:ethiofencarb 128: 107: 103:intermediate 96: 89:Unimolecular 88: 80: 76: 72: 71:nimolecular 68: 64: 60: 32: 30: 2534:Ethenolysis 2180:Ring strain 2150:Nucleophile 1975:Clar's rule 1915:Aromaticity 1629:Cage effect 1564:RRKM theory 1480:elimination 993:Carbocation 241:heteroatoms 177:insecticide 95:. Finally, 81:Elimination 67:limination 57:triple bond 5097:Categories 4818:Ozonolysis 4345:Annulation 3695:Ozonolysis 1814:Topics in 1181:(4): 490. 1004:References 959:glycolysis 953:In biology 464:See also: 438:See also: 424:Acidic B-H 275:See also: 243:, such as 205:ionization 193:conjugated 4332:reactions 3847:reactions 3342:reactions 3258:reactions 3140:reactions 2282:reactions 1680:Catalysis 1576:reactions 1307:0002-7863 1195:0009-2681 1132:0002-7863 1097:0538-8066 998:Carbanion 825:material. 811:deuterium 780:Deuterium 666:substrate 606:conjugate 594:− 568:substrate 450:rate laws 315:carbanion 306:concerted 181:half-life 174:carbamate 166:resonance 162:lone pair 151:induction 143:α- carbon 117:Mechanism 75:onjugate 25:hemiketal 2225:Vinylogy 1895:Annulene 1842:Reagents 1315:15913358 977:See also 898:carbonyl 859:Fluorine 460:Rate law 452:and the 345:fluorine 341:fluorine 335:for the 329:chlorine 287:carbonyl 245:nitrogen 213:alcohols 197:carbonyl 164:through 159:electron 135:ÎČ-carbon 1885:A value 971:enolase 902:enolate 333:halogen 322:halogen 225:alkynes 221:alkenes 157:of the 147:anionic 141:on the 1355:Basic 1313:  1305:  1268:  1216:  1193:  1130:  1095:  1058:  1033:  931:et al. 802:, and 609:  249:phenol 229:alkane 131:acidic 53:double 1583:Redox 1419:Acyl) 1027:53–56 839:anion 799:anion 761:anion 712:anion 372:E1cB 339:than 337:anion 291:cyano 189:amide 185:amine 79:ase. 49:anion 1472:(E2) 1461:(E1) 1311:PMID 1303:ISSN 1266:ISBN 1214:ISBN 1191:ISSN 1128:ISSN 1093:ISSN 1056:ISBN 1031:ISBN 936:E1cB 868:E1cB 844:E1cB 837:E1cB 830:E1cB 819:E1cB 804:E1cB 797:E1cB 790:E1cB 759:E1cB 744:E1cB 727:E1cB 710:E1cB 677:base 640:rate 612:acid 579:base 347:the 289:and 215:and 172:- a 61:E1cB 45:base 31:The 1442:Ar) 1399:Ar) 1295:doi 1291:127 1243:doi 1183:doi 1156:doi 1120:doi 1085:doi 965:to 938:irr 870:irr 846:rev 832:irr 821:rev 806:irr 792:rev 753:≫ k 746:irr 736:≫ k 729:rev 719:≫ k 656:obs 153:or 55:or 5099:: 1510:(A 1500:(A 1438:(S 1415:(S 1409:i) 1405:(S 1395:(S 1389:2) 1385:(S 1379:1) 1375:(S 1309:. 1301:. 1289:. 1239:50 1237:. 1189:. 1179:21 1177:. 1152:47 1150:. 1126:. 1116:79 1114:. 1091:. 1081:45 1079:. 1029:. 973:. 941:. 849:. 795:, 755:−1 740:). 734:−1 723:). 369:E2 366:E1 360:. 353:E2 311:E2 255:. 233:sp 209:E2 1807:e 1800:t 1793:v 1514:) 1512:N 1504:) 1502:E 1478:i 1476:E 1440:E 1417:N 1407:N 1397:N 1387:N 1377:N 1348:e 1341:t 1334:v 1317:. 1297:: 1274:. 1249:. 1245:: 1222:. 1197:. 1185:: 1162:. 1158:: 1134:. 1122:: 1099:. 1087:: 1064:. 1039:. 815:3 751:2 738:2 721:2 717:1 680:] 674:[ 669:] 663:[ 652:k 648:= 627:2 623:k 619:+ 616:] 602:[ 597:1 590:k 582:] 576:[ 571:] 565:[ 558:2 554:k 548:1 544:k 537:= 527:t 523:d 516:] 513:P 510:[ 506:d 77:B 73:c 69:U 65:E

Index


hemiketal
elimination reaction
leaving group
base
anion
double
triple bond
elimination reaction
molecular entity
conjugate base
intermediate
transition state

acidic
ÎČ-carbon
leaving group
α- carbon
anionic
induction
delocalization
electron
lone pair
resonance
ethiofencarb
carbamate
insecticide
half-life
amine
amide

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑