Knowledge

Euclidean plane isometry

Source 📝

2468:
either of these could cancel down to a single reflection; otherwise it gives the only available three-mirror isometry, a glide reflection. A pair of translations always reduces to a single translation; so the challenging cases involve rotations. We know a rotation composed with either a rotation or a translation must produce an even isometry. Composition with translation produces another rotation (by the same amount, with shifted fixed point), but composition with rotation can yield either translation or rotation. It is often said that composition of two rotations produces a rotation, and
2432:). And since every isometry can be expressed as a sequence of reflections, its inverse can be expressed as that sequence reversed. Notice that the cancellation of a pair of identical reflections reduces the number of reflections by an even number, preserving the parity of the sequence; also notice that the identity has even parity. Therefore all isometries form a group, and even isometries a subgroup. (Odd isometries do not include the identity, so are not a subgroup). This subgroup is a normal subgroup, because sandwiching an even isometry between two odd ones yields an even isometry. 2489: 2655: 2047: 797: 3043: 1226: 2500:
If two rotations share a fixed point, then we can swivel the mirror pair of the second rotation to cancel the inner mirrors of the sequence of four (two and two), leaving just the outer pair. Thus the composition of two rotations with a common fixed point produces a rotation by the sum of the angles
2126:
Three mirrors. If they are all parallel, the effect is the same as a single mirror (slide a pair to cancel the third). Otherwise we can find an equivalent arrangement where two are parallel and the third is perpendicular to them. The effect is a reflection combined with a translation parallel to the
2111:
Two distinct mirrors that do not intersect must be parallel. Every point moves the same amount, twice the distance between the mirrors, and in the same direction. No points are left fixed. Any two mirrors with the same parallel direction and the same distance apart give the same translation, so long
2504:
If two translations are parallel, we can slide the mirror pair of the second translation to cancel the inner mirror of the sequence of four, much as in the rotation case. Thus the composition of two parallel translations produces a translation by the sum of the distances in the same direction. Now
2480:
We thus have two new kinds of isometry subgroups: all translations, and rotations sharing a fixed point. Both are subgroups of the even subgroup, within which translations are normal. Because translations are a normal subgroup, we can factor them out leaving the subgroup of isometries with a fixed
2467:
Composition of isometries mixes kinds in assorted ways. We can think of the identity as either two mirrors or none; either way, it has no effect in composition. And two reflections give either a translation or a rotation, or the identity (which is both, in a trivial way). Reflection composed with
2415:
The identity is an isometry; nothing changes, so distance cannot change. And if one isometry cannot change distance, neither can two (or three, or more) in succession; thus the composition of two isometries is again an isometry, and the set of isometries is closed under composition. The identity
1971:
Alternatively we multiply by an orthogonal matrix with determinant −1 (corresponding to a reflection in a line through the origin), followed by a translation. This is a glide reflection, except in the special case that the translation is perpendicular to the line of reflection, in which case the
2906: 2096:
Two distinct intersecting mirrors have a single point in common, which remains fixed. All other points rotate around it by twice the angle between the mirrors. Any two mirrors with the same fixed point and same angle give the same rotation, so long as they are used in the correct
2820: 649: 2949: 2585:. The inner mirrors now coincide and cancel, and the outer mirrors are left parallel. Thus the composition of two non-parallel translations also produces a translation. Also, the three pivot points form a triangle whose edges give the head-to-tail rule of 1080: 75:
Informally, a Euclidean plane isometry is any way of transforming the plane without "deforming" it. For example, suppose that the Euclidean plane is represented by a sheet of transparent plastic sitting on a desk. Examples of isometries include:
2645:
This works because translations are a normal subgroup of the full group of isometries, with quotient the orthogonal group; and rotations about a fixed point are a normal subgroup of the orthogonal group, with quotient a single reflection.
2829: 1074:
is a point in the plane (the centre of rotation), and θ is the angle of rotation. In terms of coordinates, rotations are most easily expressed by breaking them up into two operations. First, a rotation around the origin is given by
2022:
and the length of the added vector has a continuous distribution. A pure translation and a pure reflection are special cases with only two degrees of freedom, while the identity is even more special, with no degrees of freedom.
1998:
In all cases we multiply the position vector by an orthogonal matrix and add a vector; if the determinant is 1 we have a rotation, a translation, or the identity, and if it is −1 we have a glide reflection or a reflection.
1038: 2330:
We can recognize which of these isometries we have according to whether it preserves hands or swaps them, and whether it has at least one fixed point or not, as shown in the following table (omitting the identity).
2757: 565: 1608: 1414: 3216: 2391:
Isometries requiring an odd number of mirrors — reflection and glide reflection — always reverse left and right. The even isometries — identity, rotation, and translation — never do; they correspond to
2705:
Translations do not fold back on themselves, but we can take integer multiples of any finite translation, or sums of multiples of two such independent translations, as a subgroup. These generate the
186: 1503: 640:
The combination of rotations about the origin and reflections about a line through the origin is obtained with all orthogonal matrices (i.e. with determinant 1 and −1) forming orthogonal group
1786: 1964: 1875: 2082:, a single mirror causes left and right hands to switch. (In formal terms, topological orientation is reversed.) Points on the mirror are left fixed. Each mirror has a unique effect. 3256: 1309: 275: 792:{\displaystyle R_{0,\theta }(p)={\begin{bmatrix}\cos \theta &\sin \theta \\\sin \theta &\mathbf {-} \cos \theta \end{bmatrix}}{\begin{bmatrix}p_{x}\\p_{y}\end{bmatrix}}.} 636: 3343: 3297: 3369: 3038:{\displaystyle {\begin{array}{rccc}g\colon &\mathbb {C} &\longrightarrow &\mathbb {C} \\&z&\mapsto &{\frac {f(z)-a}{\omega }}{\mbox{,}}\end{array}}} 916: 1221:{\displaystyle R_{0,\theta }(p)={\begin{bmatrix}\cos \theta &-\sin \theta \\\sin \theta &\cos \theta \end{bmatrix}}{\begin{bmatrix}p_{x}\\p_{y}\end{bmatrix}}.} 935: 2716:
We can also combine these two kinds of discrete groups — the discrete rotations and reflections around a fixed point and the discrete translations — to generate the
2654: 2674:
consist of rotations by integer multiples of 72° (360° / 5), along with reflections in the five mirrors which perpendicularly bisect the edges. This is a group, D
1651: 1995:
is a special case of a translation, and also a special case of a rotation. It is the only isometry which belongs to more than one of the types described above.
67:
in two dimensions. It is generated by reflections in lines, and every element of the Euclidean group is the composite of at most three distinct reflections.
2064:
Two reflections in the same mirror restore each point to its original position. All points are left fixed. Any pair of identical mirrors has the same effect.
824: 2488: 86:
Turning the sheet over to look at it from behind. Notice that if a picture is drawn on one side of the sheet, then after turning the sheet over, we see the
439: 324: 117:
However, folding, cutting, or melting the sheet are not considered isometries. Neither are less drastic alterations like bending, stretching, or twisting.
1051: 2007: 1512: 1335: 2901:{\displaystyle {\begin{array}{ccc}\mathbb {C} &\longrightarrow &\mathbb {C} \\z&\mapsto &a+\omega {\overline {z}}{\mbox{,}}\end{array}}} 3371:, that is, provided the direct isometry is not a pure translation. As stated by Cederberg, "A direct isometry is either a rotation or a translation." 2666:). Any subgroup containing at least one non-zero translation must be infinite, but subgroups of the orthogonal group can be finite. For example, the 3144: 137: 3434: 1423: 3391: 2725: 1311:), with determinant 1 (the other possibility for orthogonal matrices is −1, which gives a mirror image, see below). They form the special 2046: 3474: 2019: 1717: 2408:; for example, reversing the order of composition of two parallel mirrors reverses the direction of the translation they produce. 32:, or more informally, a way of transforming the plane that preserves geometrical properties such as length. There are four types: 2136:
Adding more mirrors does not add more possibilities (in the plane), because they can always be rearranged to cause cancellation.
2815:{\displaystyle {\begin{array}{ccc}\mathbb {C} &\longrightarrow &\mathbb {C} \\z&\mapsto &a+\omega z\end{array}}} 1884: 1795: 3220:
where the last expression shows the mapping equivalent to rotation at 0 and a translation. Therefore, given direct isometry
2428:, we must also have an inverse for every element. To cancel a reflection, we merely compose it with itself (Reflections are 2451:, where the quotient is isomorphic to a group consisting of a reflection and the identity. However the full group is not a 3479: 203: 2736:, are incompatible with a discrete lattice of translations. (Each higher dimension also has only a finite number of such 3380: 578: 3071:
is either the identity or the conjugation, and the statement being proved follows from this and from the fact that
870: 2732:, we have only 7 distinct frieze groups and 17 distinct wallpaper groups. For example, the pentagon symmetries, D 2079: 2031:
Reflections, or mirror isometries, can be combined to produce any isometry. Thus isometries are an example of a
1650: 3469: 2452: 2429: 2015: 2011: 332: 103: 41: 2143:
An isometry is completely determined by its effect on three independent (not collinear) points. So suppose
3396: 3223: 2737: 1976: 1326:
to the origin, then performing the rotation around the origin, and finally translating the origin back to
1252: 1059: 832: 823: 95: 33: 3399:, the statement that the midpoints of corresponding pairs of points in an isometry of lines are collinear 2728:
with discrete translations. In fact, lattice compatibility imposes such a severe restriction that, up to
3484: 3386: 323: 2472:
proved a theorem to that effect in 3D; however, this is only true for rotations sharing a fixed point.
1968:
that is, we obtain the same result if we do the translation and the reflection in the opposite order.)
1050: 3302: 1621: 60: 3261: 3348: 2425: 1635: 99: 56: 37: 2456: 850: 292: 3454: 3426: 2954: 3430: 1231: 130: 129:
of the Euclidean plane is a distance-preserving transformation of the plane. That is, it is a
2682:, of half the size, omitting the reflections. These two groups are members of two families, D 2002:
A "random" isometry, like taking a sheet of paper from a table and randomly laying it back, "
3418: 2482: 2440: 2032: 1659: 1312: 107: 45: 315:: the notations for the types of isometries listed below are not completely standardised.) 2749: 2721: 2706: 2586: 2401: 2397: 64: 29: 2834: 2762: 815:-axis. Reflection in a parallel line corresponds to adding a vector perpendicular to it. 2448: 1246: 3383:, a characterization of isometries as the transformations that preserve unit distances 83:
Rotating the sheet by ten degrees around some marked point (which remains motionless).
3463: 3419: 3097:
This is obviously related to the previous classification of plane isometries, since:
2405: 2003: 1507:
Alternatively, a rotation around the origin is performed, followed by a translation:
1235: 2717: 2710: 2444: 87: 2740:, but the number grows rapidly; for example, 3D has 230 groups and 4D has 4783.) 2729: 2699: 2662:
The subgroups discussed so far are not only infinite, they are also continuous (
2417: 1033:{\displaystyle T_{v}(p)={\begin{bmatrix}p_{x}+v_{x}\\p_{y}+v_{y}\end{bmatrix}}.} 415: 362: 2626:
The subgroup structure suggests another way to compose an arbitrary isometry:
2663: 2505:
suppose the translations are not parallel, and that the mirror sequence is A
2421: 1242: 2318:. Thus at most three reflections suffice to reproduce any plane isometry. 311:
It can be shown that there are four types of Euclidean plane isometries. (
2671: 2667: 25: 17: 2185:; we can generate a sequence of mirrors to achieve this as follows. If 1612:
A rotation can be seen as a composite of two non-parallel reflections.
1042:
A translation can be seen as a composite of two parallel reflections.
2615: 2433: 2319: 560:{\displaystyle t=(p-c)\cdot v=(p_{x}-c_{x})v_{x}+(p_{y}-c_{y})v_{y},} 1603:{\displaystyle R_{c,\theta }(p)=c-R_{0,\theta }c+R_{0,\theta }(p).} 1409:{\displaystyle R_{c,\theta }=T_{c}\circ R_{0,\theta }\circ T_{-c},} 2724:. Curiously, only a few of the fixed-point groups are found to be 2533:; and, reassociating, we are free to pivot this inner pair around 2469: 1649: 1049: 822: 322: 2416:
isometry is also an identity for composition, and composition is
2199:
are distinct, choose their perpendicular bisector as mirror. Now
111: 2404:
of isometries. Neither the full group nor the even subgroup are
106:
respectively. There is one further type of isometry, called a
3211:{\displaystyle z\mapsto \omega (z-p)+p=\omega z+p(1-\omega )} 2043:
In the Euclidean plane, we have the following possibilities.
807:, or equivalently, a reflection in a line making an angle of 2653: 2487: 2045: 1972:
combination is itself just a reflection in a parallel line.
2297:″; and if it is not in place, a final mirror through 1700:
are a combination of a reflection in the line described by
857:
have the effect of shifting the plane in the direction of
2635:
If the isometry is odd, use the mirror; otherwise do not.
2014:, as long as θ and the direction of the added vector are 3345:
as the center for an equivalent rotation, provided that
1642:, a subgroup of the full group of Euclidean isometries. 1626:
The set of translations and rotations together form the
373:
is for "flip".) have the effect of reflecting the point
181:{\displaystyle M:{\textbf {R}}^{2}\to {\textbf {R}}^{2}} 2006:" is a rotation or a glide reflection (they have three 3025: 2888: 2561:. Again reassociating, we pivot the first pair around 2537:. If we pivot 90°, an interesting thing happens: now A 1498:{\displaystyle R_{c,\theta }(p)=c+R_{0,\theta }(p-c).} 1180: 1117: 966: 751: 686: 3351: 3305: 3264: 3226: 3147: 2952: 2832: 2760: 2752:, the isometries of the plane are either of the form 1887: 1798: 1720: 1515: 1426: 1338: 1255: 1083: 938: 873: 652: 581: 442: 206: 140: 3363: 3337: 3291: 3250: 3210: 3037: 2918:with |ω| = 1. This is easy to prove: if 2900: 2814: 1958: 1869: 1780: 1602: 1497: 1408: 1303: 1220: 1032: 910: 791: 630: 559: 269: 180: 2010:). This applies regardless of the details of the 644:(2). In the case of a determinant of −1 we have: 2698:> 1. Together, these families constitute the 2420:; therefore isometries satisfy the axioms for a 2476:Translation, rotation, and orthogonal subgroups 2459:, of the even subgroup and the quotient group. 2213:; and we will pass all further mirrors through 55:The set of Euclidean plane isometries forms a 2658:Dihedral group of regular pentagon symmetries 2439:Since the even subgroup is normal, it is the 1781:{\displaystyle G_{c,v,w}=T_{w}\circ F_{c,v},} 8: 2638:If necessary, rotate around the fixed point. 2630:Pick a fixed point, and a mirror through it. 112:classification of Euclidean plane isometries 1959:{\displaystyle G_{c,v,w}(p)=F_{c,v}(p+w);} 1870:{\displaystyle G_{c,v,w}(p)=w+F_{c,v}(p).} 3350: 3315: 3304: 3263: 3225: 3146: 3135:Note that a rotation about complex point 3024: 2997: 2978: 2977: 2966: 2965: 2953: 2951: 2887: 2877: 2850: 2849: 2838: 2837: 2833: 2831: 2778: 2777: 2766: 2765: 2761: 2759: 2545:′ intersect at a 90° angle, say at 1926: 1892: 1886: 1843: 1803: 1797: 1763: 1750: 1725: 1719: 1576: 1554: 1520: 1514: 1465: 1431: 1425: 1394: 1375: 1362: 1343: 1337: 1322:can be accomplished by first translating 1292: 1276: 1263: 1254: 1201: 1187: 1175: 1112: 1088: 1082: 1013: 1000: 986: 973: 961: 943: 937: 878: 872: 803:-axis followed by a rotation by an angle 772: 758: 746: 724: 681: 657: 651: 586: 580: 548: 535: 522: 506: 493: 480: 441: 205: 172: 166: 165: 155: 149: 148: 139: 80:Shifting the sheet one inch to the right. 2678:, with 10 elements. It has a subgroup, C 2333: 3409: 3139:is obtained by complex arithmetic with 3128:are rotations (when |ω| = 1); 2220:, leaving it fixed. Call the images of 2112:as they are used in the correct order. 1696:is non-null a vector perpendicular to 2513:(the first translation) followed by B 2336: 569:and then we obtain the reflection of 7: 3392:Coordinate rotations and reflections 3251:{\displaystyle z\mapsto \omega z+a,} 1304:{\displaystyle GG^{T}=G^{T}G=I_{2}.} 270:{\displaystyle d(p,q)=d(M(p),M(q)),} 2573:, and pivot the second pair around 167: 150: 49: 1708:, followed by a translation along 14: 2492:Translation addition with mirrors 2127:mirror. No points are left fixed. 631:{\displaystyle F_{c,v}(p)=p-2tv.} 3131:the conjugation is a reflection. 725: 3338:{\displaystyle p=a/(1-\omega )} 2744:Isometries in the complex plane 3332: 3320: 3292:{\displaystyle p(1-\omega )=a} 3280: 3268: 3230: 3205: 3193: 3169: 3157: 3151: 3067:. It is then easy to see that 3009: 3003: 2992: 2972: 2863: 2844: 2791: 2772: 2027:Isometries as reflection group 1950: 1938: 1916: 1910: 1861: 1855: 1827: 1821: 1594: 1588: 1538: 1532: 1489: 1477: 1449: 1443: 1106: 1100: 955: 949: 890: 884: 675: 669: 604: 598: 541: 515: 499: 473: 461: 449: 261: 258: 252: 243: 237: 231: 222: 210: 161: 1: 3421:A Course in Modern Geometries 3417:Cederberg, Judith N. (2001). 3364:{\displaystyle \omega \neq 1} 2262:′, bisect the angle at 911:{\displaystyle T_{v}(p)=p+v,} 799:which is a reflection in the 2882: 2501:about the same fixed point. 2370: 2354: 2342: 357:is a point in the plane and 2371: 2358: 3501: 1619: 2910:for some complex numbers 2622:Nested group construction 2377:  Translation   2355: 2338: 2080:through the looking-glass 1684:is a point in the plane, 861:. That is, for any point 381:that is perpendicular to 190:such that for any points 3475:Euclidean plane geometry 2641:If necessary, translate. 2269:with a new mirror. With 2012:probability distribution 401:. To find a formula for 385:and that passes through 22:Euclidean plane isometry 3381:Beckman–Quarles theorem 2738:crystallographic groups 1638:under composition, the 1230:These matrices are the 3365: 3339: 3293: 3252: 3212: 3118:functions of the type 3101:functions of the type 3039: 2902: 2816: 2659: 2493: 2234:under this reflection 2051: 1960: 1879:(It is also true that 1871: 1782: 1655: 1640:group of rigid motions 1604: 1499: 1410: 1305: 1222: 1055: 1034: 912: 828: 793: 632: 561: 418:to find the component 328: 271: 182: 94:These are examples of 3441:, quote from page 151 3425:. Springer. pp.  3387:Congruence (geometry) 3366: 3340: 3294: 3253: 3213: 3040: 2903: 2817: 2657: 2581:″ pass through 2569:″ pass through 2491: 2132:Three mirrors suffice 2050:Isometries as mirrors 2049: 2020:uniformly distributed 1979:isometry, defined by 1961: 1872: 1783: 1653: 1616:Rigid transformations 1605: 1500: 1411: 1306: 1223: 1053: 1035: 913: 826: 794: 633: 562: 326: 272: 183: 50:§ Classification 3480:Euclidean symmetries 3349: 3303: 3262: 3224: 3145: 2950: 2830: 2758: 2521:(the second). Then A 1885: 1796: 1718: 1688:is a unit vector in 1622:Rigid transformation 1513: 1424: 1336: 1253: 1081: 936: 871: 650: 579: 440: 204: 138: 3397:Hjelmslev's theorem 2944:and if one defines 2529:must cross, say at 2039:Mirror combinations 1790:or in other words, 1634:. This set forms a 1632:rigid displacements 1418:or in other words, 1232:orthogonal matrices 414:, we first use the 71:Informal discussion 3361: 3335: 3289: 3248: 3208: 3035: 3033: 3029: 2898: 2896: 2892: 2812: 2810: 2660: 2650:Discrete subgroups 2498: 2494: 2457:semidirect product 2413: 2141: 2052: 2008:degrees of freedom 1956: 1867: 1778: 1656: 1600: 1495: 1406: 1318:A rotation around 1301: 1218: 1209: 1169: 1056: 1030: 1021: 908: 829: 789: 780: 740: 628: 557: 397:or the associated 329: 293:Euclidean distance 267: 178: 3436:978-0-387-98972-3 3115:are translations; 3028: 3022: 2891: 2885: 2496: 2411: 2384: 2383: 2380:Glide reflection 2339:Preserves hands? 2255:is distinct from 2139: 1660:Glide reflections 1646:Glide reflections 338:mirror isometries 169: 152: 121:Formal definition 110:(see below under 46:glide reflections 3492: 3455:Plane Isometries 3442: 3440: 3424: 3414: 3370: 3368: 3367: 3362: 3344: 3342: 3341: 3336: 3319: 3298: 3296: 3295: 3290: 3257: 3255: 3254: 3249: 3217: 3215: 3214: 3209: 3127: 3114: 3093: 3066: 3059: 3053:is an isometry, 3052: 3044: 3042: 3041: 3036: 3034: 3030: 3026: 3023: 3018: 2998: 2985: 2981: 2969: 2943: 2928: 2917: 2913: 2907: 2905: 2904: 2899: 2897: 2893: 2889: 2886: 2878: 2853: 2841: 2821: 2819: 2818: 2813: 2811: 2781: 2769: 2722:wallpaper groups 2613: 2483:orthogonal group 2334: 2311:will flip it to 2119:Glide reflection 2033:reflection group 1965: 1963: 1962: 1957: 1937: 1936: 1909: 1908: 1876: 1874: 1873: 1868: 1854: 1853: 1820: 1819: 1787: 1785: 1784: 1779: 1774: 1773: 1755: 1754: 1742: 1741: 1654:Glide reflection 1609: 1607: 1606: 1601: 1587: 1586: 1565: 1564: 1531: 1530: 1504: 1502: 1501: 1496: 1476: 1475: 1442: 1441: 1415: 1413: 1412: 1407: 1402: 1401: 1386: 1385: 1367: 1366: 1354: 1353: 1313:orthogonal group 1310: 1308: 1307: 1302: 1297: 1296: 1281: 1280: 1268: 1267: 1234:(i.e. each is a 1227: 1225: 1224: 1219: 1214: 1213: 1206: 1205: 1192: 1191: 1174: 1173: 1099: 1098: 1039: 1037: 1036: 1031: 1026: 1025: 1018: 1017: 1005: 1004: 991: 990: 978: 977: 948: 947: 921:or in terms of ( 917: 915: 914: 909: 883: 882: 798: 796: 795: 790: 785: 784: 777: 776: 763: 762: 745: 744: 728: 668: 667: 637: 635: 634: 629: 597: 596: 573:by subtraction, 566: 564: 563: 558: 553: 552: 540: 539: 527: 526: 511: 510: 498: 497: 485: 484: 276: 274: 273: 268: 187: 185: 184: 179: 177: 176: 171: 170: 160: 159: 154: 153: 108:glide reflection 3500: 3499: 3495: 3494: 3493: 3491: 3490: 3489: 3470:Crystallography 3460: 3459: 3451: 3446: 3445: 3437: 3416: 3415: 3411: 3406: 3377: 3347: 3346: 3301: 3300: 3260: 3259: 3222: 3221: 3143: 3142: 3119: 3102: 3072: 3061: 3054: 3048: 3032: 3031: 2999: 2995: 2990: 2983: 2982: 2975: 2970: 2963: 2948: 2947: 2930: 2919: 2915: 2911: 2895: 2894: 2866: 2861: 2855: 2854: 2847: 2842: 2828: 2827: 2824:or of the form 2809: 2808: 2794: 2789: 2783: 2782: 2775: 2770: 2756: 2755: 2750:complex numbers 2746: 2735: 2693: 2687: 2681: 2677: 2652: 2624: 2619: 2590: 2587:vector addition 2580: 2568: 2556: 2552: 2544: 2540: 2528: 2524: 2520: 2516: 2512: 2508: 2478: 2465: 2437: 2402:Euclidean group 2398:normal subgroup 2389: 2387:Group structure 2328: 2323: 2317: 2310: 2303: 2296: 2289: 2282: 2275: 2268: 2261: 2254: 2247: 2240: 2233: 2226: 2219: 2212: 2205: 2198: 2191: 2184: 2177: 2170: 2163: 2156: 2149: 2134: 2078:As Alice found 2041: 2029: 1991:for all points 1922: 1888: 1883: 1882: 1839: 1799: 1794: 1793: 1759: 1746: 1721: 1716: 1715: 1679: 1648: 1624: 1618: 1572: 1550: 1516: 1511: 1510: 1461: 1427: 1422: 1421: 1390: 1371: 1358: 1339: 1334: 1333: 1288: 1272: 1259: 1251: 1250: 1240: 1208: 1207: 1197: 1194: 1193: 1183: 1176: 1168: 1167: 1156: 1144: 1143: 1129: 1113: 1084: 1079: 1078: 1069: 1048: 1020: 1019: 1009: 996: 993: 992: 982: 969: 962: 939: 934: 933: 874: 869: 868: 844: 821: 779: 778: 768: 765: 764: 754: 747: 739: 738: 722: 710: 709: 698: 682: 653: 648: 647: 582: 577: 576: 544: 531: 518: 502: 489: 476: 438: 437: 413: 395:reflection axis 352: 321: 309: 291:) is the usual 202: 201: 164: 147: 136: 135: 123: 90:of the picture. 73: 65:Euclidean group 30:Euclidean plane 12: 11: 5: 3498: 3496: 3488: 3487: 3482: 3477: 3472: 3462: 3461: 3458: 3457: 3450: 3449:External links 3447: 3444: 3443: 3435: 3408: 3407: 3405: 3402: 3401: 3400: 3394: 3389: 3384: 3376: 3373: 3360: 3357: 3354: 3334: 3331: 3328: 3325: 3322: 3318: 3314: 3311: 3308: 3288: 3285: 3282: 3279: 3276: 3273: 3270: 3267: 3258:one can solve 3247: 3244: 3241: 3238: 3235: 3232: 3229: 3207: 3204: 3201: 3198: 3195: 3192: 3189: 3186: 3183: 3180: 3177: 3174: 3171: 3168: 3165: 3162: 3159: 3156: 3153: 3150: 3133: 3132: 3129: 3116: 3021: 3017: 3014: 3011: 3008: 3005: 3002: 2996: 2994: 2991: 2989: 2986: 2984: 2980: 2976: 2974: 2971: 2968: 2964: 2962: 2959: 2956: 2955: 2884: 2881: 2876: 2873: 2870: 2867: 2865: 2862: 2860: 2857: 2856: 2852: 2848: 2846: 2843: 2840: 2836: 2835: 2807: 2804: 2801: 2798: 2795: 2793: 2790: 2788: 2785: 2784: 2780: 2776: 2774: 2771: 2768: 2764: 2763: 2745: 2742: 2733: 2713:of the plane. 2709:of a periodic 2700:rosette groups 2689: 2683: 2679: 2675: 2651: 2648: 2643: 2642: 2639: 2636: 2632: 2631: 2623: 2620: 2578: 2566: 2554: 2550: 2542: 2538: 2526: 2522: 2518: 2514: 2510: 2506: 2495: 2477: 2474: 2464: 2461: 2453:direct product 2449:quotient group 2410: 2388: 2385: 2382: 2381: 2378: 2375: 2369: 2368: 2365: 2362: 2357: 2353: 2352: 2347: 2341: 2340: 2337: 2327: 2324: 2315: 2308: 2301: 2294: 2287: 2283:now in place, 2280: 2273: 2266: 2259: 2252: 2245: 2238: 2231: 2224: 2217: 2210: 2203: 2196: 2189: 2182: 2175: 2168: 2161: 2154: 2147: 2138: 2133: 2130: 2129: 2128: 2123: 2122: 2121: 2120: 2114: 2113: 2108: 2107: 2106: 2105: 2099: 2098: 2093: 2092: 2091: 2090: 2084: 2083: 2075: 2074: 2073: 2072: 2066: 2065: 2061: 2060: 2059: 2058: 2040: 2037: 2028: 2025: 1955: 1952: 1949: 1946: 1943: 1940: 1935: 1932: 1929: 1925: 1921: 1918: 1915: 1912: 1907: 1904: 1901: 1898: 1895: 1891: 1866: 1863: 1860: 1857: 1852: 1849: 1846: 1842: 1838: 1835: 1832: 1829: 1826: 1823: 1818: 1815: 1812: 1809: 1806: 1802: 1777: 1772: 1769: 1766: 1762: 1758: 1753: 1749: 1745: 1740: 1737: 1734: 1731: 1728: 1724: 1667: 1647: 1644: 1620:Main article: 1617: 1614: 1599: 1596: 1593: 1590: 1585: 1582: 1579: 1575: 1571: 1568: 1563: 1560: 1557: 1553: 1549: 1546: 1543: 1540: 1537: 1534: 1529: 1526: 1523: 1519: 1494: 1491: 1488: 1485: 1482: 1479: 1474: 1471: 1468: 1464: 1460: 1457: 1454: 1451: 1448: 1445: 1440: 1437: 1434: 1430: 1405: 1400: 1397: 1393: 1389: 1384: 1381: 1378: 1374: 1370: 1365: 1361: 1357: 1352: 1349: 1346: 1342: 1300: 1295: 1291: 1287: 1284: 1279: 1275: 1271: 1266: 1262: 1258: 1238: 1217: 1212: 1204: 1200: 1196: 1195: 1190: 1186: 1182: 1181: 1179: 1172: 1166: 1163: 1160: 1157: 1155: 1152: 1149: 1146: 1145: 1142: 1139: 1136: 1133: 1130: 1128: 1125: 1122: 1119: 1118: 1116: 1111: 1108: 1105: 1102: 1097: 1094: 1091: 1087: 1067: 1047: 1044: 1029: 1024: 1016: 1012: 1008: 1003: 999: 995: 994: 989: 985: 981: 976: 972: 968: 967: 965: 960: 957: 954: 951: 946: 942: 931: 930: 929:) coordinates, 907: 904: 901: 898: 895: 892: 889: 886: 881: 877: 865:in the plane, 840: 820: 817: 788: 783: 775: 771: 767: 766: 761: 757: 753: 752: 750: 743: 737: 734: 731: 727: 723: 721: 718: 715: 712: 711: 708: 705: 702: 699: 697: 694: 691: 688: 687: 685: 680: 677: 674: 671: 666: 663: 660: 656: 627: 624: 621: 618: 615: 612: 609: 606: 603: 600: 595: 592: 589: 585: 556: 551: 547: 543: 538: 534: 530: 525: 521: 517: 514: 509: 505: 501: 496: 492: 488: 483: 479: 475: 472: 469: 466: 463: 460: 457: 454: 451: 448: 445: 405: 393:is called the 344: 320: 317: 308: 307:Classification 305: 266: 263: 260: 257: 254: 251: 248: 245: 242: 239: 236: 233: 230: 227: 224: 221: 218: 215: 212: 209: 198:in the plane, 175: 163: 158: 146: 143: 122: 119: 92: 91: 84: 81: 72: 69: 13: 10: 9: 6: 4: 3: 2: 3497: 3486: 3483: 3481: 3478: 3476: 3473: 3471: 3468: 3467: 3465: 3456: 3453: 3452: 3448: 3438: 3432: 3428: 3423: 3422: 3413: 3410: 3403: 3398: 3395: 3393: 3390: 3388: 3385: 3382: 3379: 3378: 3374: 3372: 3358: 3355: 3352: 3329: 3326: 3323: 3316: 3312: 3309: 3306: 3286: 3283: 3277: 3274: 3271: 3265: 3245: 3242: 3239: 3236: 3233: 3227: 3218: 3202: 3199: 3196: 3190: 3187: 3184: 3181: 3178: 3175: 3172: 3166: 3163: 3160: 3154: 3148: 3140: 3138: 3130: 3126: 3122: 3117: 3113: 3109: 3105: 3100: 3099: 3098: 3095: 3091: 3087: 3083: 3079: 3075: 3070: 3064: 3057: 3051: 3045: 3019: 3015: 3012: 3006: 3000: 2987: 2960: 2957: 2945: 2941: 2937: 2933: 2926: 2922: 2908: 2879: 2874: 2871: 2868: 2858: 2825: 2822: 2805: 2802: 2799: 2796: 2786: 2753: 2751: 2743: 2741: 2739: 2731: 2727: 2723: 2719: 2718:frieze groups 2714: 2712: 2708: 2703: 2701: 2697: 2692: 2686: 2673: 2670:of a regular 2669: 2665: 2656: 2649: 2647: 2640: 2637: 2634: 2633: 2629: 2628: 2627: 2621: 2618: 2617: 2611: 2608: 2604: 2601: 2597: 2594: 2588: 2584: 2576: 2572: 2564: 2560: 2553:′ and B 2549:, and so do B 2548: 2536: 2532: 2502: 2490: 2486: 2484: 2475: 2473: 2471: 2462: 2460: 2458: 2455:, but only a 2454: 2450: 2446: 2442: 2436: 2435: 2431: 2427: 2423: 2419: 2409: 2407: 2403: 2399: 2396:, and form a 2395: 2394:rigid motions 2386: 2379: 2376: 2374: 2366: 2363: 2361: 2356:Fixed point? 2351: 2348: 2346: 2343: 2335: 2332: 2325: 2322: 2321: 2314: 2307: 2300: 2293: 2286: 2279: 2272: 2265: 2258: 2251: 2244: 2237: 2230: 2223: 2216: 2209: 2202: 2195: 2188: 2181: 2174: 2167: 2160: 2153: 2146: 2137: 2131: 2125: 2124: 2118: 2117: 2116: 2115: 2110: 2109: 2103: 2102: 2101: 2100: 2095: 2094: 2088: 2087: 2086: 2085: 2081: 2077: 2076: 2070: 2069: 2068: 2067: 2063: 2062: 2056: 2055: 2054: 2053: 2048: 2044: 2038: 2036: 2034: 2026: 2024: 2021: 2017: 2013: 2009: 2005: 2004:almost surely 2000: 1996: 1994: 1990: 1986: 1982: 1978: 1973: 1969: 1966: 1953: 1947: 1944: 1941: 1933: 1930: 1927: 1923: 1919: 1913: 1905: 1902: 1899: 1896: 1893: 1889: 1880: 1877: 1864: 1858: 1850: 1847: 1844: 1840: 1836: 1833: 1830: 1824: 1816: 1813: 1810: 1807: 1804: 1800: 1791: 1788: 1775: 1770: 1767: 1764: 1760: 1756: 1751: 1747: 1743: 1738: 1735: 1732: 1729: 1726: 1722: 1713: 1711: 1707: 1703: 1699: 1695: 1691: 1687: 1683: 1678: 1674: 1670: 1666: 1663:, denoted by 1662: 1661: 1652: 1645: 1643: 1641: 1637: 1633: 1629: 1628:rigid motions 1623: 1615: 1613: 1610: 1597: 1591: 1583: 1580: 1577: 1573: 1569: 1566: 1561: 1558: 1555: 1551: 1547: 1544: 1541: 1535: 1527: 1524: 1521: 1517: 1508: 1505: 1492: 1486: 1483: 1480: 1472: 1469: 1466: 1462: 1458: 1455: 1452: 1446: 1438: 1435: 1432: 1428: 1419: 1416: 1403: 1398: 1395: 1391: 1387: 1382: 1379: 1376: 1372: 1368: 1363: 1359: 1355: 1350: 1347: 1344: 1340: 1331: 1329: 1325: 1321: 1316: 1314: 1298: 1293: 1289: 1285: 1282: 1277: 1273: 1269: 1264: 1260: 1256: 1248: 1244: 1237: 1236:square matrix 1233: 1228: 1215: 1210: 1202: 1198: 1188: 1184: 1177: 1170: 1164: 1161: 1158: 1153: 1150: 1147: 1140: 1137: 1134: 1131: 1126: 1123: 1120: 1114: 1109: 1103: 1095: 1092: 1089: 1085: 1076: 1073: 1066: 1063:, denoted by 1062: 1061: 1052: 1045: 1043: 1040: 1027: 1022: 1014: 1010: 1006: 1001: 997: 987: 983: 979: 974: 970: 963: 958: 952: 944: 940: 928: 924: 920: 919: 918: 905: 902: 899: 896: 893: 887: 879: 875: 866: 864: 860: 856: 852: 848: 843: 839: 836:, denoted by 835: 834: 825: 818: 816: 814: 810: 806: 802: 786: 781: 773: 769: 759: 755: 748: 741: 735: 732: 729: 719: 716: 713: 706: 703: 700: 695: 692: 689: 683: 678: 672: 664: 661: 658: 654: 645: 643: 638: 625: 622: 619: 616: 613: 610: 607: 601: 593: 590: 587: 583: 574: 572: 567: 554: 549: 545: 536: 532: 528: 523: 519: 512: 507: 503: 494: 490: 486: 481: 477: 470: 467: 464: 458: 455: 452: 446: 443: 435: 433: 429: 425: 421: 417: 412: 408: 404: 400: 396: 392: 388: 384: 380: 376: 372: 368: 364: 360: 356: 351: 347: 343: 340:, denoted by 339: 335: 334: 325: 318: 316: 314: 306: 304: 302: 298: 294: 290: 286: 282: 277: 264: 255: 249: 246: 240: 234: 228: 225: 219: 216: 213: 207: 199: 197: 193: 188: 173: 156: 144: 141: 133: 132: 128: 120: 118: 115: 113: 109: 105: 101: 97: 89: 85: 82: 79: 78: 77: 70: 68: 66: 62: 58: 53: 51: 47: 43: 39: 35: 31: 27: 23: 19: 3485:Group theory 3420: 3412: 3219: 3141: 3136: 3134: 3124: 3120: 3111: 3107: 3103: 3096: 3089: 3085: 3081: 3077: 3073: 3068: 3062: 3055: 3049: 3046: 2946: 2939: 2935: 2931: 2924: 2920: 2909: 2826: 2823: 2754: 2748:In terms of 2747: 2715: 2704: 2695: 2690: 2684: 2661: 2644: 2625: 2609: 2606: 2602: 2599: 2595: 2592: 2582: 2574: 2570: 2562: 2558: 2546: 2534: 2530: 2503: 2499: 2479: 2466: 2445:homomorphism 2438: 2414: 2400:of the full 2393: 2390: 2372: 2359: 2349: 2344: 2329: 2312: 2305: 2298: 2291: 2284: 2277: 2270: 2263: 2256: 2249: 2248:′. If 2242: 2241:′ and 2235: 2228: 2221: 2214: 2207: 2200: 2193: 2186: 2179: 2172: 2165: 2158: 2151: 2144: 2142: 2135: 2042: 2030: 2001: 1997: 1992: 1988: 1984: 1980: 1974: 1970: 1967: 1881: 1878: 1792: 1789: 1714: 1709: 1705: 1701: 1697: 1693: 1689: 1685: 1681: 1676: 1672: 1668: 1664: 1658: 1657: 1639: 1631: 1627: 1625: 1611: 1509: 1506: 1420: 1417: 1332: 1327: 1323: 1319: 1317: 1229: 1077: 1071: 1064: 1058: 1057: 1041: 932: 926: 922: 867: 862: 858: 854: 846: 841: 837: 833:Translations 831: 830: 819:Translations 812: 811:/2 with the 808: 804: 800: 646: 641: 639: 575: 570: 568: 436: 431: 427: 423: 419: 410: 406: 402: 398: 394: 390: 386: 382: 378: 377:in the line 374: 370: 366: 358: 354: 349: 345: 341: 337: 331: 330: 312: 310: 300: 296: 288: 284: 280: 278: 200: 195: 191: 189: 134: 126: 124: 116: 96:translations 93: 88:mirror image 74: 54: 34:translations 21: 15: 2730:isomorphism 2481:point, the 2463:Composition 2430:involutions 2418:associative 2367:Reflection 2326:Recognition 2104:Translation 2016:independent 1712:. That is, 1330:. That is, 827:Translation 434:direction, 416:dot product 389:. The line 363:unit vector 333:Reflections 319:Reflections 104:reflections 61:composition 48:(see below 42:reflections 3464:Categories 3404:References 3299:to obtain 2726:compatible 2694:, for any 2668:symmetries 2664:Lie groups 2071:Reflection 327:Reflection 3356:≠ 3353:ω 3330:ω 3327:− 3278:ω 3275:− 3234:ω 3231:↦ 3203:ω 3200:− 3182:ω 3164:− 3155:ω 3152:↦ 3020:ω 3013:− 2993:↦ 2973:⟶ 2961:: 2883:¯ 2875:ω 2864:↦ 2845:⟶ 2803:ω 2792:↦ 2773:⟶ 2577:to make A 2565:to make B 2557:, say at 2422:semigroup 1757:∘ 1584:θ 1562:θ 1548:− 1528:θ 1484:− 1473:θ 1439:θ 1396:− 1388:∘ 1383:θ 1369:∘ 1351:θ 1243:transpose 1165:θ 1162:⁡ 1154:θ 1151:⁡ 1141:θ 1138:⁡ 1132:− 1127:θ 1124:⁡ 1096:θ 1060:Rotations 1046:Rotations 736:θ 733:⁡ 726:− 720:θ 717:⁡ 707:θ 704:⁡ 696:θ 693:⁡ 665:θ 614:− 529:− 487:− 465:⋅ 456:− 162:→ 100:rotations 38:rotations 3375:See also 2672:pentagon 2424:. For a 2364:Rotation 2206:maps to 2089:Rotation 2057:Identity 1977:identity 1680:, where 1070:, where 1054:Rotation 845:, where 426:− 353:, where 295:between 127:isometry 26:isometry 18:geometry 3065:(1) = 1 3058:(0) = 0 2707:lattice 2406:abelian 2164:map to 1315:SO(2). 1249:, i.e. 1247:inverse 1245:is its 430:in the 28:of the 3433:  3429:–164. 3060:, and 2938:(1) − 2711:tiling 2616:Q.E.D. 2605:) = 2( 2598:) + 2( 2441:kernel 2434:Q.E.D. 2320:Q.E.D. 2290:is at 2097:order. 1692:, and 1241:whose 851:vector 399:mirror 279:where 102:, and 63:: the 59:under 44:, and 24:is an 3047:then 2688:and C 2541:and A 2525:and B 2497:Proof 2470:Euler 2447:to a 2443:of a 2426:group 2412:Proof 2140:Proof 1636:group 849:is a 361:is a 336:, or 57:group 3431:ISBN 3080:) = 2929:and 2914:and 2720:and 2304:and 2276:and 2227:and 2192:and 2018:and 1987:) = 1975:The 1704:and 365:in 313:Note 299:and 194:and 20:, a 3427:136 3123:→ ω 2942:(0) 2927:(0) 2517:, B 2509:, A 2360:Yes 2345:Yes 1630:or 1159:cos 1148:sin 1135:sin 1121:cos 1068:c,θ 853:in 730:cos 714:sin 701:sin 690:cos 422:of 369:. ( 131:map 125:An 114:). 52:). 16:In 3466:: 3110:+ 3106:→ 3094:. 3086:ωg 3084:+ 2934:= 2923:= 2702:. 2614:. 2591:2( 2589:: 2485:. 2373:No 2350:No 2178:, 2171:, 2157:, 2150:, 2035:. 925:, 303:. 287:, 98:, 40:, 36:, 3439:. 3359:1 3333:) 3324:1 3321:( 3317:/ 3313:a 3310:= 3307:p 3287:a 3284:= 3281:) 3272:1 3269:( 3266:p 3246:, 3243:a 3240:+ 3237:z 3228:z 3206:) 3197:1 3194:( 3191:p 3188:+ 3185:z 3179:= 3176:p 3173:+ 3170:) 3167:p 3161:z 3158:( 3149:z 3137:p 3125:z 3121:z 3112:z 3108:a 3104:z 3092:) 3090:z 3088:( 3082:a 3078:z 3076:( 3074:f 3069:g 3063:g 3056:g 3050:g 3027:, 3016:a 3010:) 3007:z 3004:( 3001:f 2988:z 2979:C 2967:C 2958:g 2940:f 2936:f 2932:ω 2925:f 2921:a 2916:ω 2912:a 2890:, 2880:z 2872:+ 2869:a 2859:z 2851:C 2839:C 2806:z 2800:+ 2797:a 2787:z 2779:C 2767:C 2734:5 2696:n 2691:n 2685:n 2680:5 2676:5 2612:) 2610:q 2607:p 2603:q 2600:c 2596:c 2593:p 2583:p 2579:1 2575:q 2571:q 2567:2 2563:p 2559:q 2555:2 2551:1 2547:p 2543:2 2539:1 2535:c 2531:c 2527:1 2523:2 2519:2 2515:1 2511:2 2507:1 2316:3 2313:q 2309:2 2306:q 2302:1 2299:q 2295:3 2292:p 2288:3 2285:p 2281:2 2278:p 2274:1 2271:p 2267:1 2264:q 2260:2 2257:p 2253:2 2250:q 2246:3 2243:p 2239:2 2236:p 2232:3 2229:p 2225:2 2222:p 2218:1 2215:q 2211:1 2208:q 2204:1 2201:p 2197:1 2194:q 2190:1 2187:p 2183:3 2180:q 2176:2 2173:q 2169:1 2166:q 2162:3 2159:p 2155:2 2152:p 2148:1 2145:p 1993:p 1989:p 1985:p 1983:( 1981:I 1954:; 1951:) 1948:w 1945:+ 1942:p 1939:( 1934:v 1931:, 1928:c 1924:F 1920:= 1917:) 1914:p 1911:( 1906:w 1903:, 1900:v 1897:, 1894:c 1890:G 1865:. 1862:) 1859:p 1856:( 1851:v 1848:, 1845:c 1841:F 1837:+ 1834:w 1831:= 1828:) 1825:p 1822:( 1817:w 1814:, 1811:v 1808:, 1805:c 1801:G 1776:, 1771:v 1768:, 1765:c 1761:F 1752:w 1748:T 1744:= 1739:w 1736:, 1733:v 1730:, 1727:c 1723:G 1710:w 1706:v 1702:c 1698:v 1694:w 1690:R 1686:v 1682:c 1677:w 1675:, 1673:v 1671:, 1669:c 1665:G 1598:. 1595:) 1592:p 1589:( 1581:, 1578:0 1574:R 1570:+ 1567:c 1559:, 1556:0 1552:R 1545:c 1542:= 1539:) 1536:p 1533:( 1525:, 1522:c 1518:R 1493:. 1490:) 1487:c 1481:p 1478:( 1470:, 1467:0 1463:R 1459:+ 1456:c 1453:= 1450:) 1447:p 1444:( 1436:, 1433:c 1429:R 1404:, 1399:c 1392:T 1380:, 1377:0 1373:R 1364:c 1360:T 1356:= 1348:, 1345:c 1341:R 1328:c 1324:c 1320:c 1299:. 1294:2 1290:I 1286:= 1283:G 1278:T 1274:G 1270:= 1265:T 1261:G 1257:G 1239:G 1216:. 1211:] 1203:y 1199:p 1189:x 1185:p 1178:[ 1171:] 1115:[ 1110:= 1107:) 1104:p 1101:( 1093:, 1090:0 1086:R 1072:c 1065:R 1028:. 1023:] 1015:y 1011:v 1007:+ 1002:y 998:p 988:x 984:v 980:+ 975:x 971:p 964:[ 959:= 956:) 953:p 950:( 945:v 941:T 927:y 923:x 906:, 903:v 900:+ 897:p 894:= 891:) 888:p 885:( 880:v 876:T 863:p 859:v 855:R 847:v 842:v 838:T 813:x 809:θ 805:θ 801:x 787:. 782:] 774:y 770:p 760:x 756:p 749:[ 742:] 684:[ 679:= 676:) 673:p 670:( 662:, 659:0 655:R 642:O 626:. 623:v 620:t 617:2 611:p 608:= 605:) 602:p 599:( 594:v 591:, 588:c 584:F 571:p 555:, 550:y 546:v 542:) 537:y 533:c 524:y 520:p 516:( 513:+ 508:x 504:v 500:) 495:x 491:c 482:x 478:p 474:( 471:= 468:v 462:) 459:c 453:p 450:( 447:= 444:t 432:v 428:c 424:p 420:t 411:v 409:, 407:c 403:F 391:L 387:c 383:v 379:L 375:p 371:F 367:R 359:v 355:c 350:v 348:, 346:c 342:F 301:q 297:p 289:q 285:p 283:( 281:d 265:, 262:) 259:) 256:q 253:( 250:M 247:, 244:) 241:p 238:( 235:M 232:( 229:d 226:= 223:) 220:q 217:, 214:p 211:( 208:d 196:q 192:p 174:2 168:R 157:2 151:R 145:: 142:M

Index

geometry
isometry
Euclidean plane
translations
rotations
reflections
glide reflections
§ Classification
group
composition
Euclidean group
mirror image
translations
rotations
reflections
glide reflection
classification of Euclidean plane isometries
map
Euclidean distance

Reflections
unit vector
dot product

Translations
vector

Rotations
orthogonal matrices
square matrix

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.