Knowledge (XXG)

Excellent ring

Source 📝

1348:, and this seems to have been Grothendieck's motivation for defining them. Grothendieck (1965) observed that if it is possible to resolve singularities of all complete integral local Noetherian rings, then it is possible to resolve the singularities of all reduced quasi-excellent rings. Hironaka (1964) 1352:
this for all complete integral Noetherian local rings over a field of characteristic 0, which implies his theorem that all singularities of excellent schemes over a field of characteristic 0 can be resolved. Conversely if it is possible to resolve all singularities of the spectra of all integral
804:
has the same length. This is useful for studying the dimension theory of such rings because their dimension can be bounded by a fixed maximal chain. In practice, this means infinite-dimensional Noetherian rings which have an inductive definition of maximal chains of prime ideals, giving an
90:
0, but the positive characteristic case is (as of 2024) still a major open problem. Essentially all Noetherian rings that occur naturally in algebraic geometry or number theory are excellent; in fact it is quite hard to construct examples of Noetherian rings that are not excellent.
1320:
has a cusp singularity at every closed point, so the set of singular points is not closed, though it is a G-ring. This ring is also universally catenary, as its localization at every prime ideal is a quotient of a regular ring.
99:
The definition of excellent rings is quite involved, so we recall the definitions of the technical conditions it satisfies. Although it seems like a long list of conditions, most rings in practice are excellent, such as
719: 604: 420: 551: 374: 453: 1104: 477: 868: 768:
is called excellent or quasi-excellent if it has a cover by open affine subschemes with the same property, which implies that every open affine subscheme has this property.
292: 136: 893: 329: 1124: 831: 794: 747: 656: 636: 500: 259: 239: 219: 193: 173: 1504: 1332:
of a 2-dimensional Noetherian local ring that is catenary but not universally catenary is a G-ring, and is also a J-2 ring as any local G-ring is a J-2 ring (
59:
and others found several strange counterexamples showing that in general Noetherian rings need not be well-behaved: for example, a normal Noetherian
761:. In practice almost all Noetherian rings are universally catenary, so there is little difference between excellent and quasi-excellent rings. 665: 143: 556: 1615: 379: 1522: 1569:
Hironaka, Heisuke (1964). "Resolution of Singularities of an Algebraic Variety Over a Field of Characteristic Zero: II".
515: 338: 1639: 1634: 1517: 1370: 1345: 79: 1448:"ÉlĂ©ments de gĂ©omĂ©trie algĂ©brique : IV. Étude locale des schĂ©mas et des morphismes de schĂ©mas, Seconde partie" 938:
Most naturally occurring commutative rings in number theory or algebraic geometry are excellent. In particular:
87: 425: 1014: 1136: 1491: 1011:
Any finitely generated algebra over an excellent ring is excellent. This includes all polynomial algebras
71: 197: 1532:(1964). "Resolution of Singularities of an Algebraic Variety Over a Field of Characteristic Zero: I". 915: 758: 458: 40: 32: 1512: 264: 1290: 922: 101: 64: 55:. At one time it seemed that the class of Noetherian rings might be an answer to this problem, but 17: 119: 1594: 1557: 1349: 1241: 52: 44: 1261:
Here is an example of a ring that is a G-ring but not a J-2 ring and so not quasi-excellent. If
512:) if it is Noetherian and its formal fibers are geometrically regular; this means that for any 836: 1611: 1586: 1549: 1495: 987: 302: 43:. Excellent rings are one answer to the problem of finding a natural class of "well-behaved" 1578: 1541: 1529: 308: 56: 28: 797: 113: 105: 25: 1277:
in infinitely many generators generated by the squares and cubes of all generators, and
873: 74:(1965) as a candidate for such a class of well-behaved rings. Quasi-excellent rings are 1109: 954: 816: 779: 732: 641: 621: 485: 244: 224: 204: 178: 158: 1628: 1499: 1329: 139: 109: 48: 1336:, p.88, 260). So it is a quasi-excellent catenary local ring that is not excellent. 1470:"Section 108.14 (02JC): A Noetherian ring of infinite dimension—The Stacks project" 1447: 990: 911: 295: 1126:
excellent. This means most rings considered in algebraic geometry are excellent.
904: 801: 75: 60: 1590: 1553: 1469: 1417: 1393: 979:
is excellent. Dedekind domains over fields of characteristic greater than
942:
All complete Noetherian local rings, for instance all fields and the ring
800:
by definition. Because it is universally catenary, every maximal chain of
611: 1228:
rings. It is also universally catenary as it is a Dedekind domain. Here
1598: 1561: 1268: 976: 714:{\displaystyle {\text{Reg}}({\text{Spec}}(S))\subset {\text{Spec}}(S)} 504: 1582: 1545: 599:{\displaystyle R_{\mathfrak {p}}\to {\hat {R_{\mathfrak {p}}}}} 1418:"Section 15.46 (07P6): The singular locus—The Stacks project" 1344:
Quasi-excellent rings are closely related to the problem of
1388: 1386: 1289:
by adjoining inverses to all elements not in any of the
1220:
ring as all Noetherian local rings of dimension at most
1112: 1017: 876: 839: 819: 782: 735: 668: 644: 624: 559: 518: 488: 461: 428: 415:{\displaystyle S\otimes _{R}\kappa ({\mathfrak {p}})} 382: 341: 311: 267: 247: 227: 207: 181: 161: 122: 1310:is a 1-dimensional Noetherian domain that is not a 1008:
Any localization of an excellent ring is excellent.
546:{\displaystyle {\mathfrak {p}}\in {\text{Spec}}(R)} 369:{\displaystyle {\mathfrak {p}}\in {\text{Spec}}(R)} 31:that behaves well with respect to the operation of 1394:"Section 15.49 (07GG): G-rings—The Stacks project" 1118: 1098: 887: 862: 825: 805:infinite-dimensional ring, cannot be constructed. 788: 741: 713: 650: 630: 598: 545: 494: 471: 447: 414: 368: 323: 286: 253: 233: 213: 187: 167: 130: 1200:such that is finite then the formal fibers of 606:to its completion is regular in the sense above. 422:is geometrically regular over the residue field 78:to be the base rings for which the problem of 1610:. Reading, Mass.: Benjamin/Cummings Pub. Co. 753:if it is a G-ring and J-2 ring. It is called 8: 1325:A quasi-excellent ring that is not excellent 70:The class of excellent rings was defined by 47:containing most of the rings that occur in 1606:Matsumura, Hideyuki (1980). "Chapter 13". 1333: 1111: 1087: 1068: 1056: 1047: 1028: 1016: 921:Any quasi-excellent normal local ring is 875: 838: 818: 781: 734: 697: 677: 669: 667: 643: 623: 583: 582: 576: 575: 565: 564: 558: 529: 520: 519: 517: 487: 463: 462: 460: 436: 435: 427: 403: 402: 390: 381: 352: 343: 342: 340: 310: 275: 266: 246: 226: 206: 180: 160: 124: 123: 121: 1163:-ring and so is not quasi-excellent. If 448:{\displaystyle \kappa ({\mathfrak {p}})} 83: 1382: 1353:finite algebras over a Noetherian ring 1099:{\displaystyle R/(f_{1},\ldots ,f_{k})} 965:All Dedekind domains of characteristic 969:are excellent. In particular the ring 1206:are not all geometrically regular so 993:in a finite number of variables over 7: 1505:Publications MathĂ©matiques de l'IHÉS 1452:Publications MathĂ©matiques de l'IHÉS 1441: 1439: 1437: 1501:ElĂ©ments de gĂ©omĂ©trie algĂ©brique IV 833:and a locally finite type morphism 584: 566: 521: 464: 437: 404: 344: 14: 1446:Grothendieck, Alexander (1965). 725:Definition of (quasi-)excellence 662:, meaning the regular subscheme 1257:A G-ring that is not a J-2 ring 1169:is any field of characteristic 1131:A J-2 ring that is not a G-ring 472:{\displaystyle {\mathfrak {p}}} 116:over characteristic 0 (such as 1093: 1061: 1053: 1021: 903:Any quasi-excellent ring is a 854: 708: 702: 691: 688: 682: 674: 590: 572: 553:, the map from the local ring 540: 534: 442: 432: 409: 399: 363: 357: 315: 287:{\displaystyle R\otimes _{k}K} 1: 757:if it is quasi-excellent and 1185:is the ring of power series 335:if it is flat and for every 221:if for any finite extension 131:{\displaystyle \mathbb {Z} } 1518:Encyclopedia of Mathematics 1371:Resolution of singularities 1346:resolution of singularities 1340:Resolution of singularities 80:resolution of singularities 1656: 813:Given an excellent scheme 776:Because an excellent ring 863:{\displaystyle f:X'\to X} 1474:stacks.math.columbia.edu 1422:stacks.math.columbia.edu 1398:stacks.math.columbia.edu 1135:Here is an example of a 1271:of the polynomial ring 1137:discrete valuation ring 1511:V.I. Danilov (2001) , 1492:Alexandre Grothendieck 1120: 1100: 983:need not be excellent. 889: 864: 827: 790: 743: 715: 652: 632: 600: 547: 496: 473: 449: 416: 370: 325: 324:{\displaystyle R\to S} 288: 255: 235: 215: 189: 169: 146:rings of these rings. 132: 72:Alexander Grothendieck 1571:Annals of Mathematics 1534:Annals of Mathematics 1234:denotes the image of 1121: 1101: 890: 865: 828: 791: 744: 716: 653: 633: 601: 548: 497: 474: 450: 417: 371: 326: 289: 256: 236: 216: 198:geometrically regular 190: 170: 133: 1507:24 (1965), section 7 1361:is quasi-excellent. 1110: 1015: 916:analytically reduced 910:Any quasi-excellent 874: 837: 817: 780: 759:universally catenary 733: 666: 642: 622: 557: 516: 486: 459: 426: 380: 339: 309: 265: 245: 225: 205: 179: 159: 150:Recalled definitions 120: 41:universally catenary 22:quasi-excellent ring 1640:Commutative algebra 1608:Commutative algebra 1148:and characteristic 923:analytically normal 796:is a G-ring, it is 618:if any finite type 610:Finally, a ring is 175:containing a field 65:analytically normal 35:, and is called an 18:commutative algebra 1635:Algebraic geometry 1293:generated by some 1242:Frobenius morphism 1116: 1096: 888:{\displaystyle X'} 885: 860: 823: 786: 739: 711: 648: 628: 596: 543: 492: 469: 445: 412: 366: 321: 284: 251: 231: 211: 185: 165: 128: 112:Noetherian rings, 53:algebraic geometry 1530:Hironaka, Heisuke 1283:is obtained from 1119:{\displaystyle R} 826:{\displaystyle X} 789:{\displaystyle R} 742:{\displaystyle R} 700: 680: 672: 651:{\displaystyle S} 631:{\displaystyle R} 593: 532: 510:Grothendieck ring 495:{\displaystyle R} 355: 254:{\displaystyle k} 234:{\displaystyle K} 214:{\displaystyle k} 188:{\displaystyle k} 168:{\displaystyle R} 1647: 1621: 1602: 1565: 1525: 1513:"Excellent ring" 1484: 1483: 1481: 1480: 1466: 1460: 1459: 1443: 1432: 1431: 1429: 1428: 1414: 1408: 1407: 1405: 1404: 1390: 1330:Nagata's example 1319: 1313: 1309: 1303: 1288: 1282: 1276: 1266: 1252: 1239: 1233: 1227: 1223: 1219: 1215: 1211: 1205: 1199: 1184: 1178: 1174: 1168: 1162: 1158: 1154: 1147: 1143: 1125: 1123: 1122: 1117: 1105: 1103: 1102: 1097: 1092: 1091: 1073: 1072: 1060: 1052: 1051: 1033: 1032: 1004: 998: 982: 974: 968: 962:, are excellent. 959: 952: 899:Quasi-excellence 894: 892: 891: 886: 884: 869: 867: 866: 861: 853: 832: 830: 829: 824: 795: 793: 792: 787: 748: 746: 745: 740: 720: 718: 717: 712: 701: 698: 681: 678: 673: 670: 657: 655: 654: 649: 637: 635: 634: 629: 605: 603: 602: 597: 595: 594: 589: 588: 587: 577: 571: 570: 569: 552: 550: 549: 544: 533: 530: 525: 524: 501: 499: 498: 493: 478: 476: 475: 470: 468: 467: 454: 452: 451: 446: 441: 440: 421: 419: 418: 413: 408: 407: 395: 394: 375: 373: 372: 367: 356: 353: 348: 347: 330: 328: 327: 322: 293: 291: 290: 285: 280: 279: 260: 258: 257: 252: 240: 238: 237: 232: 220: 218: 217: 212: 194: 192: 191: 186: 174: 172: 171: 166: 137: 135: 134: 129: 127: 114:Dedekind domains 106:polynomial rings 57:Masayoshi Nagata 29:commutative ring 1655: 1654: 1650: 1649: 1648: 1646: 1645: 1644: 1625: 1624: 1618: 1605: 1583:10.2307/1970547 1568: 1546:10.2307/1970486 1528: 1510: 1488: 1487: 1478: 1476: 1468: 1467: 1463: 1445: 1444: 1435: 1426: 1424: 1416: 1415: 1411: 1402: 1400: 1392: 1391: 1384: 1379: 1367: 1342: 1327: 1315: 1311: 1305: 1302: 1294: 1284: 1278: 1272: 1262: 1259: 1244: 1235: 1229: 1225: 1221: 1217: 1216:-ring. It is a 1213: 1207: 1201: 1195: 1186: 1180: 1176: 1170: 1164: 1160: 1156: 1149: 1145: 1139: 1133: 1108: 1107: 1083: 1064: 1043: 1024: 1013: 1012: 1000: 994: 980: 970: 966: 955: 951: 943: 936: 934:Excellent rings 931: 901: 877: 872: 871: 846: 835: 834: 815: 814: 811: 778: 777: 774: 751:quasi-excellent 731: 730: 727: 664: 663: 640: 639: 620: 619: 578: 560: 555: 554: 514: 513: 484: 483: 457: 456: 424: 423: 386: 378: 377: 337: 336: 307: 306: 271: 263: 262: 243: 242: 223: 222: 203: 202: 177: 176: 157: 156: 152: 118: 117: 97: 86:showed this in 84:Hironaka (1964) 82:can be solved; 12: 11: 5: 1653: 1651: 1643: 1642: 1637: 1627: 1626: 1623: 1622: 1616: 1603: 1577:(2): 205–326. 1566: 1540:(1): 109–203. 1526: 1508: 1496:Jean DieudonnĂ© 1486: 1485: 1461: 1433: 1409: 1381: 1380: 1378: 1375: 1374: 1373: 1366: 1363: 1357:then the ring 1341: 1338: 1334:Matsumura 1980 1326: 1323: 1298: 1258: 1255: 1191: 1132: 1129: 1128: 1127: 1115: 1095: 1090: 1086: 1082: 1079: 1076: 1071: 1067: 1063: 1059: 1055: 1050: 1046: 1042: 1039: 1036: 1031: 1027: 1023: 1020: 1009: 1006: 1005:are excellent. 984: 963: 960:-adic integers 947: 935: 932: 930: 927: 914:local ring is 900: 897: 895:is excellent. 883: 880: 859: 856: 852: 849: 845: 842: 822: 810: 807: 785: 773: 770: 738: 726: 723: 710: 707: 704: 696: 693: 690: 687: 684: 676: 647: 627: 608: 607: 592: 586: 581: 574: 568: 563: 542: 539: 536: 528: 523: 491: 480: 466: 444: 439: 434: 431: 411: 406: 401: 398: 393: 389: 385: 365: 362: 359: 351: 346: 320: 317: 314: 305:of rings from 299: 283: 278: 274: 270: 250: 230: 210: 184: 164: 151: 148: 126: 96: 93: 88:characteristic 39:if it is also 37:excellent ring 13: 10: 9: 6: 4: 3: 2: 1652: 1641: 1638: 1636: 1633: 1632: 1630: 1619: 1617:0-8053-7026-9 1613: 1609: 1604: 1600: 1596: 1592: 1588: 1584: 1580: 1576: 1572: 1567: 1563: 1559: 1555: 1551: 1547: 1543: 1539: 1535: 1531: 1527: 1524: 1520: 1519: 1514: 1509: 1506: 1503: 1502: 1497: 1493: 1490: 1489: 1475: 1471: 1465: 1462: 1457: 1453: 1449: 1442: 1440: 1438: 1434: 1423: 1419: 1413: 1410: 1399: 1395: 1389: 1387: 1383: 1376: 1372: 1369: 1368: 1364: 1362: 1360: 1356: 1351: 1347: 1339: 1337: 1335: 1331: 1324: 1322: 1318: 1308: 1301: 1297: 1292: 1287: 1281: 1275: 1270: 1265: 1256: 1254: 1251: 1247: 1243: 1238: 1232: 1210: 1204: 1198: 1194: 1190: 1183: 1173: 1167: 1152: 1144:of dimension 1142: 1138: 1130: 1113: 1088: 1084: 1080: 1077: 1074: 1069: 1065: 1057: 1048: 1044: 1040: 1037: 1034: 1029: 1025: 1018: 1010: 1007: 1003: 997: 992: 989: 986:The rings of 985: 978: 973: 964: 961: 958: 950: 946: 941: 940: 939: 933: 928: 926: 924: 919: 917: 913: 908: 906: 898: 896: 881: 878: 857: 850: 847: 843: 840: 820: 808: 806: 803: 799: 783: 771: 769: 767: 762: 760: 756: 752: 736: 724: 722: 705: 694: 685: 661: 645: 625: 617: 615: 614: 579: 561: 537: 526: 511: 507: 506: 489: 481: 429: 396: 391: 387: 383: 360: 349: 334: 318: 312: 304: 300: 297: 281: 276: 272: 268: 248: 228: 208: 200: 199: 182: 162: 154: 153: 149: 147: 145: 141: 115: 111: 107: 103: 94: 92: 89: 85: 81: 77: 73: 68: 66: 62: 58: 54: 50: 49:number theory 46: 42: 38: 34: 30: 27: 23: 19: 1607: 1574: 1570: 1537: 1533: 1516: 1500: 1477:. Retrieved 1473: 1464: 1455: 1451: 1425:. Retrieved 1421: 1412: 1401:. Retrieved 1397: 1358: 1354: 1343: 1328: 1316: 1306: 1299: 1295: 1285: 1279: 1273: 1263: 1260: 1249: 1245: 1236: 1230: 1208: 1202: 1196: 1192: 1188: 1181: 1171: 1165: 1150: 1140: 1134: 1001: 995: 991:power series 971: 956: 948: 944: 937: 920: 909: 902: 812: 802:prime ideals 775: 765: 763: 754: 750: 728: 659: 616: 612: 609: 509: 503: 502:is called a 332: 303:homomorphism 196: 144:localization 98: 69: 63:need not be 36: 21: 15: 905:Nagata ring 95:Definitions 76:conjectured 1629:Categories 1479:2020-07-24 1427:2020-07-24 1403:2020-07-24 1377:References 1240:under the 1159:but not a 988:convergent 798:Noetherian 772:Properties 749:is called 376:the fiber 331:is called 195:is called 61:local ring 33:completion 26:Noetherian 1591:0003-486X 1554:0003-486X 1523:EMS Press 1212:is not a 1155:which is 1078:… 1038:… 855:→ 755:excellent 721:is open. 695:⊂ 638:-algebra 591:^ 573:→ 527:∈ 430:κ 397:κ 388:⊗ 350:∈ 316:→ 273:⊗ 261:the ring 1458:: 5–231. 1365:See also 1314:ring as 977:integers 929:Examples 882:′ 851:′ 140:quotient 110:complete 1599:1970547 1562:1970486 1304:, then 1269:subring 1267:is the 912:reduced 870:, then 809:Schemes 729:A ring 482:A ring 333:regular 296:regular 155:A ring 138:), and 1614:  1597:  1589:  1560:  1552:  1350:proved 1291:ideals 1153:> 0 766:scheme 505:G-ring 102:fields 1595:JSTOR 1558:JSTOR 1175:with 1106:with 201:over 45:rings 24:is a 1612:ISBN 1587:ISSN 1550:ISSN 1224:are 1179:and 699:Spec 679:Spec 531:Spec 508:(or 354:Spec 142:and 67:. 51:and 20:, a 1579:doi 1542:doi 1312:J-1 1226:J-2 1218:J-2 1177:= ∞ 1157:J-2 999:or 975:of 953:of 671:Reg 660:J-1 658:is 613:J-2 455:of 294:is 241:of 16:In 1631:: 1593:. 1585:. 1575:79 1573:. 1556:. 1548:. 1538:79 1536:. 1521:, 1515:, 1498:, 1494:, 1472:. 1456:24 1454:. 1450:. 1436:^ 1420:. 1396:. 1385:^ 1253:. 1248:→ 925:. 918:. 907:. 764:A 301:A 108:, 104:, 1620:. 1601:. 1581:: 1564:. 1544:: 1482:. 1430:. 1406:. 1359:R 1355:R 1317:S 1307:S 1300:n 1296:x 1286:R 1280:S 1274:k 1264:R 1250:a 1246:a 1237:k 1231:k 1222:1 1214:G 1209:A 1203:A 1197:x 1193:i 1189:a 1187:ÎŁ 1182:A 1172:p 1166:k 1161:G 1151:p 1146:1 1141:A 1114:R 1094:) 1089:k 1085:f 1081:, 1075:, 1070:1 1066:f 1062:( 1058:/ 1054:] 1049:n 1045:x 1041:, 1035:, 1030:1 1026:x 1022:[ 1019:R 1002:C 996:R 981:0 972:Z 967:0 957:p 949:p 945:Z 879:X 858:X 848:X 844:: 841:f 821:X 784:R 737:R 709:) 706:S 703:( 692:) 689:) 686:S 683:( 675:( 646:S 626:R 585:p 580:R 567:p 562:R 541:) 538:R 535:( 522:p 490:R 479:. 465:p 443:) 438:p 433:( 410:) 405:p 400:( 392:R 384:S 364:) 361:R 358:( 345:p 319:S 313:R 298:. 282:K 277:k 269:R 249:k 229:K 209:k 183:k 163:R 125:Z

Index

commutative algebra
Noetherian
commutative ring
completion
universally catenary
rings
number theory
algebraic geometry
Masayoshi Nagata
local ring
analytically normal
Alexander Grothendieck
conjectured
resolution of singularities
Hironaka (1964)
characteristic
fields
polynomial rings
complete
Dedekind domains
quotient
localization
geometrically regular
regular
homomorphism
G-ring
J-2
universally catenary
Noetherian
prime ideals

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑