Knowledge (XXG)

Catenary ring

Source 📝

314: 202: 402: 867:, Interscience Tracts in Pure and Applied Mathematics, vol. 13, New York-London: Interscience Publishers, a division of John Wiley & Sons 874: 814: 99: 470:, page 203 example 2), who found a 2-dimensional Noetherian local domain that is catenary but not universally catenary. 309:{\displaystyle {\text{height}}(P)\leq {\text{height}}(p)+{\text{tr.deg.}}_{A}(B)-{\text{tr.deg.}}_{\kappa (p)}(\kappa (P)).} 458:
It is delicate to construct examples of Noetherian rings that are not universally catenary. The first example was found by
926: 416:
that appear in algebraic geometry are universally catenary. In particular the following rings are universally catenary:
921: 146: 128: 134: 764: 443: 906: 102:
attached to a prime ideal will decrease as the prime ideal becomes bigger, the length of such a chain
740:
by the dimension formula for universally catenary rings, but the latter ideal has height equal to dim(
748: 901: 478: 432: 794:
Lectures on integral closure, the Briançon–Skoda theorem and related topics in commutative algebra
852: 436: 152: 870: 810: 896: 834: 459: 32: 848: 844: 426: 413: 140: 786: 346: 752: 915: 856: 332: 17: 822: 886: 708:, so is catenary because all 2-dimensional local domains are catenary. The ring 43: 28: 339:
and tr.deg. means the transcendence degree (of quotient fields). In fact, when
891: 839: 421: 629:
is a regular local ring of dimension 1 (the proof of this uses the fact that
90:
of prime ideals are contained in maximal strictly increasing chains from
669:
is a 2-dimensional Noetherian semi-local ring with 2 maximal ideals,
98:
of the same (finite) length. In a geometric situation, in which the
449:
Any finitely generated algebra over a universally catenary ring.
751:, so gives an example of a quasi-excellent ring that is not an 724:
is not universally catenary, because if it were then the ideal
113:
if all finitely generated algebras over it are catenary rings.
349: 205: 704:
is a local domain of dimension 2 with maximal ideal
454:
A ring that is catenary but not universally catenary
767:(which is the same as a universally catenary ring). 646:is a regular Noetherian local ring of dimension 2. 116:The word 'catenary' is derived from the Latin word 637:are algebraically independent) and the local ring 396: 308: 321:dimension formula for universally catenary rings 473:Nagata's example is as follows. Choose a field 8: 869:; reprinted by R. E. Krieger Pub. Co (1975) 123:There is the following chain of inclusions. 657:with respect to all elements not in either 571:be the (non-Noetherian) ring generated by 838: 385: 366: 348: 270: 265: 246: 241: 223: 206: 204: 106:is usually the difference in dimensions. 777: 823:"On the chain problem of prime ideals" 467: 463: 53:, any two strictly increasing chains 7: 616:, with residue fields isomorphic to 612:. These are both maximal ideals of 25: 343:is not universally catenary, but 100:dimension of an algebraic variety 327:is universally catenary. Here κ( 176:that is finitely generated over 522:are algebraically independent. 732:would have the same height as 716:is Noetherian and is a finite 446:of a universally catenary ring 391: 359: 300: 297: 291: 285: 280: 274: 258: 252: 234: 228: 217: 211: 1: 785:Hochster, Mel (Winter 2014), 787:"Lecture of January 8, 2014" 404:, then equality also holds. 323:says that equality holds if 747:Nagata's example is also a 684:be the Jacobson radical of 168:is a Noetherian domain and 147:complete intersection rings 943: 863:Nagata, Masayoshi (1962), 821:Nagata, Masayoshi (1956), 599:be the ideal generated by 506:of formal power series in 129:Universally catenary rings 840:10.1017/S0027763000000076 796:, University of Michigan 603:–1 and all the elements 172:is a domain containing 653:be the localization of 120:, which means "chain". 907:Gorenstein local rings 765:Formally catenary ring 712:is Noetherian because 398: 310: 192:its intersection with 575:and all the elements 399: 311: 902:Cohen-Macaulay rings 749:quasi-excellent ring 460:Masayoshi Nagata 433:Cohen-Macaulay rings 420:Complete Noetherian 347: 203: 184:is a prime ideal of 135:Cohen–Macaulay rings 111:universally catenary 74:⊂ ... ⊂ 18:Universally catenary 927:Commutative algebra 807:Commutative algebra 479:formal power series 437:regular local rings 397:{\displaystyle B=A} 153:regular local rings 42:if for any pair of 922:Algebraic geometry 673:(of height 1) and 394: 306: 897:Commutative rings 720:-module. However 620:. The local ring 268: 244: 226: 209: 160:Dimension formula 109:A ring is called 16:(Redirected from 934: 868: 859: 842: 798: 797: 791: 782: 427:Dedekind domains 414:Noetherian rings 403: 401: 400: 395: 390: 389: 371: 370: 315: 313: 312: 307: 284: 283: 269: 266: 251: 250: 245: 242: 227: 224: 210: 207: 141:Gorenstein rings 33:commutative ring 21: 942: 941: 937: 936: 935: 933: 932: 931: 912: 911: 883: 862: 827:Nagoya Math. J. 820: 802: 801: 789: 784: 783: 779: 774: 761: 677:(of height 2). 645: 628: 611: 583: 563: 554: 545: 531: 498: 490: 456: 410: 381: 362: 345: 344: 264: 240: 201: 200: 162: 82: 73: 66: 23: 22: 15: 12: 11: 5: 940: 938: 930: 929: 924: 914: 913: 910: 909: 904: 899: 894: 889: 882: 879: 878: 877: 860: 818: 805:H. Matsumura, 800: 799: 776: 775: 773: 770: 769: 768: 760: 757: 753:excellent ring 641: 624: 607: 591:be the ideal ( 579: 559: 550: 540: 529: 494: 485: 455: 452: 451: 450: 447: 440: 430: 424: 409: 406: 393: 388: 384: 380: 377: 374: 369: 365: 361: 358: 355: 352: 317: 316: 305: 302: 299: 296: 293: 290: 287: 282: 279: 276: 273: 263: 260: 257: 254: 249: 239: 236: 233: 230: 222: 219: 216: 213: 161: 158: 157: 156: 88: 87: 78: 71: 64: 24: 14: 13: 10: 9: 6: 4: 3: 2: 939: 928: 925: 923: 920: 919: 917: 908: 905: 903: 900: 898: 895: 893: 890: 888: 885: 884: 880: 876: 875:0-88275-228-6 872: 866: 861: 858: 854: 850: 846: 841: 836: 832: 828: 824: 819: 816: 815:0-8053-7026-9 812: 808: 804: 803: 795: 788: 781: 778: 771: 766: 763: 762: 758: 756: 754: 750: 745: 743: 739: 735: 731: 727: 723: 719: 715: 711: 707: 703: 699: 695: 691: 687: 683: 678: 676: 672: 668: 664: 660: 656: 652: 647: 644: 640: 636: 632: 627: 623: 619: 615: 610: 606: 602: 598: 594: 590: 585: 582: 578: 574: 570: 565: 562: 558: 553: 549: 543: 539: 535: 528: 523: 521: 517: 513: 509: 505: 501: 497: 493: 488: 483: 480: 476: 471: 469: 465: 461: 453: 448: 445: 441: 438: 434: 431: 428: 425: 423: 419: 418: 417: 415: 407: 405: 386: 382: 378: 375: 372: 367: 363: 356: 353: 350: 342: 338: 334: 333:residue field 330: 326: 322: 303: 294: 288: 277: 271: 261: 255: 247: 237: 231: 220: 214: 199: 198: 197: 195: 191: 187: 183: 179: 175: 171: 167: 164:Suppose that 159: 155: 154: 149: 148: 143: 142: 137: 136: 131: 130: 126: 125: 124: 121: 119: 114: 112: 107: 105: 101: 97: 93: 86: 81: 77: 70: 63: 59: 56: 55: 54: 52: 48: 45: 41: 37: 34: 30: 19: 864: 830: 826: 806: 793: 780: 746: 741: 737: 733: 729: 725: 721: 717: 713: 709: 705: 701: 697: 693: 689: 685: 681: 679: 674: 670: 666: 662: 658: 654: 650: 648: 642: 638: 634: 630: 625: 621: 617: 613: 608: 604: 600: 596: 592: 588: 586: 580: 576: 572: 568: 566: 560: 556: 551: 547: 541: 537: 533: 526: 524: 519: 515: 511: 507: 503: 502:in the ring 499: 495: 491: 486: 481: 474: 472: 457: 444:localization 429:(and fields) 411: 340: 336: 328: 324: 320: 318: 193: 189: 185: 181: 177: 173: 169: 165: 163: 151: 145: 139: 133: 127: 122: 117: 115: 110: 108: 103: 95: 91: 89: 84: 79: 75: 68: 61: 57: 50: 46: 44:prime ideals 39: 35: 26: 892:Local rings 887:Ring theory 865:Local rings 700:. The ring 595:), and let 422:local rings 412:Almost all 29:mathematics 916:Categories 772:References 688:, and let 514:such that 857:122444738 833:: 51–64, 376:… 331:) is the 289:κ 272:κ 262:− 221:≤ 881:See also 759:See also 408:Examples 196:, then 67:⊂ 40:catenary 849:0078974 736:∩ 665:. Then 525:Define 462: ( 267:tr.deg. 243:tr.deg. 873:  855:  847:  813:  477:and a 225:height 208:height 118:catena 853:S2CID 809:1980 790:(PDF) 744:)=2. 510:over 489:>0 435:(and 180:. If 871:ISBN 811:ISBN 680:Let 649:Let 633:and 587:Let 567:Let 536:and 518:and 468:1962 464:1956 442:Any 319:The 188:and 31:, a 835:doi 728:of 661:or 555:/x– 335:of 132:⊃ 94:to 38:is 27:In 918:: 851:, 845:MR 843:, 831:10 829:, 825:, 792:, 755:. 734:mB 726:mB 692:= 675:nB 671:mB 584:. 564:. 544:+1 532:= 484:=Σ 466:, 150:⊃ 144:⊃ 138:⊃ 83:= 60:= 49:, 837:: 817:. 742:A 738:A 730:B 722:A 718:A 714:B 710:A 706:I 702:A 698:I 696:+ 694:k 690:A 686:B 682:I 667:B 663:n 659:m 655:R 651:B 643:n 639:R 635:x 631:z 626:m 622:R 618:k 614:R 609:i 605:z 601:x 597:n 593:x 589:m 581:i 577:z 573:x 569:R 561:i 557:a 552:i 548:z 546:= 542:i 538:z 534:z 530:1 527:z 520:x 516:z 512:k 508:x 504:S 500:x 496:i 492:a 487:i 482:z 475:k 439:) 392:] 387:n 383:x 379:, 373:, 368:1 364:x 360:[ 357:A 354:= 351:B 341:A 337:P 329:P 325:A 304:. 301:) 298:) 295:P 292:( 286:( 281:) 278:p 275:( 259:) 256:B 253:( 248:A 238:+ 235:) 232:p 229:( 218:) 215:P 212:( 194:A 190:p 186:B 182:P 178:A 174:A 170:B 166:A 104:n 96:q 92:p 85:q 80:n 76:p 72:1 69:p 65:0 62:p 58:p 51:q 47:p 36:R 20:)

Index

Universally catenary
mathematics
commutative ring
prime ideals
dimension of an algebraic variety
Universally catenary rings
Cohen–Macaulay rings
Gorenstein rings
complete intersection rings
regular local rings
residue field
Noetherian rings
local rings
Dedekind domains
Cohen-Macaulay rings
regular local rings
localization
Masayoshi Nagata
1956
1962
formal power series
quasi-excellent ring
excellent ring
Formally catenary ring
"Lecture of January 8, 2014"
ISBN
0-8053-7026-9
"On the chain problem of prime ideals"
doi
10.1017/S0027763000000076

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.