Knowledge (XXG)

Exciton

Source đź“ť

671: 983:, which has a radius larger than the lattice spacing. Small effective mass of electrons that is typical of semiconductors also favors large exciton radii. As a result, the effect of the lattice potential can be incorporated into the effective masses of the electron and hole. Likewise, because of the lower masses and the screened Coulomb interaction, the binding energy is usually much less than that of a hydrogen atom, typically on the order of 58: 39: 684: 5521: 2896:, called excitonium, is predicted to be the ground state. Some evidence of excitonium has existed since the 1970s but has often been difficult to discern from a Peierls phase. Exciton condensates have allegedly been seen in a double quantum well systems. In 2017 Kogar et al. found "compelling evidence" for observed excitons condensing in the three-dimensional semimetal 1 31: 2916:
contrast to ordinary (spatially direct), these spatially indirect excitons can have large spatial separation between the electron and hole, and thus possess a much longer lifetime. This is often used to cool excitons to very low temperatures in order to study Bose–Einstein condensation (or rather its two-dimensional analog).
798:. In his model the electron and the hole bound by the coulomb interaction are located either on the same or on the nearest neighbouring sites of the lattice, but the exciton as a composite quasi-particle is able to travel through the lattice without any net transfer of charge, which lead to many propositions for 2512:
of excitons. This means that spectral lines of free excitons and wide bands of self-trapped excitons can be seen simultaneously in absorption and luminescence spectra. While the self-trapped states are of lattice-spacing scale, the barrier has typically much larger scale. Indeed, its spatial scale is
2478:
Excitons are lowest excited states of the electronic subsystem of pure crystals. Impurities can bind excitons, and when the bound state is shallow, the oscillator strength for producing bound excitons is so high that impurity absorption can compete with intrinsic exciton absorption even at rather low
2465:
The hallmark of molecular excitons in organic molecular crystals are doublets and/or triplets of exciton absorption bands strongly polarized along crystallographic axes. In these crystals an elementary cell includes several molecules sitting in symmetrically identical positions, which results in the
2915:
Normally, excitons in a semiconductor have a very short lifetime due to the close proximity of the electron and hole. However, by placing the electron and hole in spatially separated quantum wells with an insulating barrier layer in between so called 'spatially indirect' excitons can be created. In
901:
exciton is invoked where the hole in a valence band is correlated with the Fermi sea of conduction electrons. In that case no bound state in a strict sense is formed, but the Coulomb interaction leads to a significant enhancement of absorption in the vicinity of the fundamental absorption edge also
863:
Excitons give rise to spectrally narrow lines in optical absorption, reflection, transmission and luminescence spectra with the energies below the free-particle band gap of an insulator or a semiconductor. Exciton binding energy and radius can be extracted from optical absorption measurements in
2821:, the barriers are basically low. Therefore, free excitons can be seen in crystals with strong exciton-phonon coupling only in pure samples and at low temperatures. Coexistence of free and self-trapped excitons was observed in rare-gas solids, alkali-halides, and in molecular crystal of pyrene. 2023:
Monolayers of a transition metal dichalcogenide (TMD) are a good and cutting-edge example where excitons play a major role. In particular, in these systems, they exhibit a bounding energy of the order of 0.5 eV with a Coulomb attraction between the hole and the electrons stronger than in other
2496:
results in dressing excitons with a dense cloud of virtual phonons which strongly suppresses the ability of excitons to move across the crystal. In simpler terms, this means a local deformation of the crystal lattice around the exciton. Self-trapping can be achieved only if the energy of this
1181: 4271:
Kogar, Anshul; Rak, Melinda S; Vig, Sean; Husain, Ali A; Flicker, Felix; Joe, Young Il; Venema, Luc; MacDougall, Greg J.; Chiang, Tai C.; Fradkin, Eduardo; Van Wezel, Jasper; Abbamonte, Peter (2017). "Signatures of exciton condensation in a transition metal dichalcogenide".
2014:
the exciton radius. For this potential, no general expression for the exciton energies may be found. One must instead turn to numerical procedures, and it is precisely this potential that gives rise to the nonhydrogenic Rydberg series of the energies in 2D semiconductors.
4333:
Merkl, P.; Mooshammer, F.; Steinleitner, P.; Girnghuber, A.; Lin, K.-Q.; Nagler, P.; Holler, J.; SchĂĽller, C.; Lupton, J. M.; Korn, T.; Ovesen, S.; Brem, S.; Malic, E.; Huber, R. (2019). "Ultrafast transition between exciton phases in van der Waals heterostructures".
3822:
Madéo, Julien; Man, Michael K. L.; Sahoo, Chakradhar; Campbell, Marshall; Pareek, Vivek; Wong, E. Laine; Al-Mahboob, Abdullah; Chan, Nicholas S.; Karmakar, Arka; Mariserla, Bala Murali Krishna; Li, Xiaoqin; Heinz, Tony F.; Cao, Ting; Dani, Keshav M. (2020-12-04).
1013:, excitons have both Wannier–Mott and Frenkel character. This is due to the nature of the Coulomb interaction between electrons and holes in one-dimension. The dielectric function of the nanotube itself is large enough to allow for the spatial extent of the 1480: 3748:
Baldini, Edoardo; Chiodo, Letizia; Dominguez, Adriel; Palummo, Maurizia; Moser, Simon; Yazdi-Rizi, Meghdad; Aubock, Gerald; Mallett, Benjamin P P; Berger, Helmuth; Magrez, Arnaud; Bernhard, Christian; Grioni, Marco; Rubio, Angel; Chergui, Majed (2017).
2491:
In crystals, excitons interact with phonons, the lattice vibrations. If this coupling is weak as in typical semiconductors such as GaAs or Si, excitons are scattered by phonons. However, when the coupling is strong, excitons can be self-trapped.
851:
of the electron and hole in a crystal are typically smaller compared to that of free electrons. Wannier-Mott excitons with binding energies ranging from a few to hundreds of meV, depending on the crystal, occur in many semiconductors including
2363:. In molecular physics, CT excitons form when the electron and the hole occupy adjacent molecules. They occur primarily in organic and molecular crystals; in this case, unlike Frenkel and Wannier excitons, CT excitons display a static 914:, the Coulomb interaction between an electron and a hole may be strong and the excitons thus tend to be small, of the same order as the size of the unit cell. Molecular excitons may even be entirely located on the same molecule, as in 823:(ii) the large radius excitons are called Wannier-Mott excitons, for which the relative motion of electron and hole in the crystal covers many unit cells. Wannier-Mott excitons are considered as hydrogen-like quasiparticles. The 1619:
in the direction perpendicular to the plane of the material. The reduced dimensionality of the system has an effect on the binding energies and radii of Wannier excitons. In fact, excitonic effects are enhanced in such systems.
2671:
are large, and then the spatial size of the barrier is large compared with the lattice spacing. Transforming a free exciton state into a self-trapped one proceeds as a collective tunneling of coupled exciton-lattice system (an
1708: 1031:
two-photon experiments have shown. At cryogenic temperatures, many higher excitonic levels can be observed approaching the edge of the band, forming a series of spectral absorption lines that are in principle similar to
2117: 2254: 1058: 1887: 2479:
impurity concentrations. This phenomenon is generic and applicable both to the large radius (Wannier–Mott) excitons and molecular (Frenkel) excitons. Hence, excitons bound to impurities and defects possess
1340: 958:
transitions are in principle forbidden by symmetry, they become weakly-allowed in a crystal when the symmetry is broken by structural relaxations or other effects. Absorption of a photon resonant with a
886:
vector of the host lattice. The exciton energy also depends on the respective orientation of the electron and hole spins, whether they are parallel or anti-parallel. The spins are coupled by the
808:(i) The small radius excitons, or Frenkel excitons, where the electron-hole relative distance is restricted to one or only a few nearest neighbour unit cells. Frenkel excitons typically occur in 2504:
but with three essential differences. First, self-trapped exciton states are always of a small radius, of the order of lattice constant, due to their electric neutrality. Second, there exists a
2759: 2569: 2442:, and since they are found within the same molecular orbital manifold, the electron-hole state is said to be bound. Molecular excitons typically have characteristic lifetimes on the order of 2379:. Irrespective of the origin, the concept of CT exciton is always related to a transfer of charge from one atomic site to another, thus spreading the wave-function over a few lattice sites. 3257: 839:
in a crystal is much smaller and the exciton's size (radius) is much larger. This is mainly because of two effects: (a) Coulomb forces are screened in a crystal, which is expressed as a
764:, some metals, but also in certain atoms, molecules and liquids. The exciton is regarded as an elementary excitation that can transport energy without transporting net electric charge. 1375: 1027:
Often more than one band can be chosen as source for the electron and the hole, leading to different types of excitons in the same material. Even high-lying bands can be effective as
2466:
level degeneracy that is lifted by intermolecular interaction. As a result, absorption bands are polarized along the symmetry axes of the crystal. Such multiplets were discovered by
2458:) from one molecule to another. The process is strongly dependent on intermolecular distance between the species in solution, and so the process has found application in sensing and 998:. Wannier–Mott excitons are typically found in semiconductor crystals with small energy gaps and high dielectric constants, but have also been identified in liquids, such as liquid 4395:
High, A. A.; Leonard, J. R.; Hammack, A. T.; Fogler, M. M.; Butov, L. V.; Kavokin, A. V.; Campman, K. L.; Gossard, A. C. (2012). "Spontaneous coherence in a cold exciton gas".
3629: 2147: 1568: 1237: 1601: 1017:
to extend over a few to several nanometers along the tube axis, while poor screening in the vacuum or dielectric environment outside of the nanotube allows for large (0.4 to
1944: 3290:
Chernikov, Alexey; Berkelbach, Timothy C.; Hill, Heather M.; Rigosi, Albert; Li, Yilei; Aslan, Ozgur Burak; Reichman, David R.; Hybertsen, Mark S.; Heinz, Tony F. (2014).
1510: 715: 1206: 42:
Wannier–Mott exciton, bound electron-hole pair that is not localized at a crystal position. This figure schematically shows diffusion of the exciton across the lattice.
2799: 2669: 2629: 2609: 1992: 2701: 2308: 2281: 1917: 1367: 5444: 4178:
M. Furukawa, Ken-ichi Mizuno, A. Matsui, N. Tamai and I. Yamazaiu, Branching of Exciton Relaxation to the Free and Self-Trapped Exciton States, Chemical Physics
2819: 2779: 2649: 2589: 2012: 1968: 2851:
The existence of exciton states may be inferred from the absorption of light associated with their excitation. Typically, excitons are observed just below the
3595: 783:
between the electron and the hole, a bound state is formed, akin to that of the electron and proton in a hydrogen atom or the electron and positron in
5194: 1629: 4192: 5432: 2042:
which exhibit quantum confinement effects and hence behave as quantum dots (also called 0-dimensional semiconductors), excitonic radii are given by
775:
in the valence band. Here 'hole' represents the unoccupied quantum mechanical electron state with a positive charge, an analogue in crystal of a
708: 4043:
M. Ueta, H. Kanzaki, K. Kobayashi, Y. Toyozawa, and E. Hanamura. Excitonic Processes in Solids, Springer Series in Solid State Sciences, Vol.
2399:
Dark excitons are those where the electrons have a different momentum from the holes to which they are bound that is they are in an optically
2048: 670: 4141: 4114: 3654: 1176:{\displaystyle E(n)=-{\frac {\left({\frac {\mu }{m_{0}\varepsilon _{r}^{2}}}{\text{Ry}}\right)}{n^{2}}}\equiv -{\frac {R_{\text{X}}}{n^{2}}}} 4056:
E. I. Rashba, "Theory of Strong Interaction of Electron Excitations with Lattice Vibrations in Molecular Crystals", Optika i Spektroskopiya
2882: 2391:
to occur, where the hole is inside the solid and the electron is in the vacuum. These electron-hole pairs can only move along the surface.
2156: 930:. Frenkel excitons are typically found in alkali halide crystals and in organic molecular crystals composed of aromatic molecules, such as 848: 817: 2451: 3041:
Monique Combescot and Shiue-Yuan Shiau, "Excitons and Cooper Pairs: Two Composite Bosons in Many-Body Physics", Oxford University Press.
2454:) whereby if a molecular exciton has proper energetic matching to a second molecule's spectral absorbance, then an exciton may transfer ( 4474: 3971: 3271: 2344: 1720: 1242: 5330: 3687:
Ellis, D. S.; Hill, J. P.; Wakimoto, S.; Birgeneau, R. J.; Casa, D.; Gog, T.; Kim, Young-June (2008). "Charge-transfer exciton in La
3046: 701: 688: 794:
in 1931, when he described the excitation of an atomic lattice considering what is now called the tight-binding description of the
5411: 874:) describing free propagation of the electron-hole pair as a composite particle in the crystalline lattice in agreement with the 4086: 4030:
N. Schwentner, E.-E. Koch, and J. Jortner, Electronic excitations in condensed rare gases, Springer tracts in modern physics,
967:
transition leads to the creation of an electron-hole pair on a single atomic site, which can be treated as a Frenkel exciton.
463: 3195:
Kazimierczuk, T.; Fröhlich, D.; Scheel, S.; Stolz, H.; Bayer, M. (2014). "Giant Rydberg excitons in the copper oxide Cu2O".
2497:
deformation can compete with the width of the exciton band. Hence, it should be of atomic scale, of about an electron volt.
34:
Frenkel exciton, bound electron-hole pair where the hole is localized at a position in the crystal represented by black dots
4136:. Proceedings of the International School of Physics "Enrico Fermi". Amsterdam ; New York: North-Holland. Course 96. 2375:
orbitals. Notable examples include the lowest-energy excitons in correlated cuprates or the two-dimensional exciton of TiO
2024:
traditional quantum wells. As a result, optical excitonic peaks are present in these materials even at room temperatures.
2893: 118: 5427: 4156:
I. Ya. Fugol', "Free and self-trapped excitons in cryocrystals: kinetics and relaxation processes." Advances in Physics
2706: 2516: 638: 4104: 4169:
Ch. B. Lushchik, in "Excitons," edited by E. I. Rashba, and M. D. Sturge, (North Holland, Amsterdam, 1982), p. 505.
643: 268: 5503: 2426:
to another molecular orbital, the resulting electronic excited state is also properly described as an exciton. An
771:
e.g., when a material absorbs a photon. Promoting the electron to the conduction band leaves a positively charged
4915: 2480: 2367:. CT excitons can also occur in transition metal oxides, where they involve an electron in the transition metal 3 1612: 1475:{\displaystyle r_{n}=\left({\frac {m_{0}\varepsilon _{r}a_{\text{H}}}{\mu }}\right)n^{2}\equiv a_{\text{X}}n^{2}} 533: 208: 3825:"Directly visualizing the momentum-forbidden dark excitons and their dynamics in atomically thin semiconductors" 2337: 1714:
In most 2D semiconductors, the Rytova–Keldysh form is a more accurate approximation to the exciton interaction
1033: 976: 528: 523: 49: 4733: 613: 3888: 3530:"Optical quantum confinement and photocatalytic properties in two-, one- and zero-dimensional nanostructures" 787:. Excitons are composite bosons since they are formed from two fermions which are the electron and the hole. 5545: 5471: 5106: 4467: 3263: 623: 218: 5406: 4743: 2985:"Exciton physics and device application of two-dimensional transition metal dichalcogenide semiconductors" 2508:
separating free and self-trapped states, hence, free excitons are metastable. Third, this barrier enables
2467: 2364: 813: 799: 608: 548: 518: 468: 188: 78: 2881:. If a large density of excitons is created in a material, they can interact with one another to form an 5493: 2150: 840: 809: 757: 648: 263: 248: 3111:"Magneto-optics of layered two-dimensional semiconductors and heterostructures: Progress and prospects" 2450:
emission. Molecular excitons have several interesting properties, one of which is energy transfer (see
2125: 1540: 1215: 4414: 4353: 4291: 4236: 3925: 3846: 3776: 3714: 3541: 3455: 3370: 3313: 3214: 3169: 3132: 3083: 2940: 2400: 1573: 887: 767:
An exciton can form when an electron from the valence band of a crystal is promoted in energy to the
238: 128: 1623:
For a simple screened Coulomb potential, the binding energies take the form of the 2D hydrogen atom
5508: 4491: 2930: 2901: 1947: 1922: 1616: 995: 911: 478: 288: 138: 5520: 3501:
Brus, Louis (1986). "Electronic wave functions in semiconductor clusters: experiment and theory".
1488: 5451: 4460: 4438: 4404: 4377: 4343: 4315: 4281: 4252: 4226: 3836: 3766: 3730: 3704: 3303: 3238: 3204: 3160:
Wannier, Gregory (1937). "The Structure of Electronic Excitation Levels in Insulating Crystals".
3122: 3024: 2996: 2839: 1189: 883: 618: 593: 341: 332: 4069:
E. I. Rashba, Self-trapping of excitons, in: Excitons (North-Holland, Amsterdam, 1982), p. 547.
1044:
In a bulk semiconductor, a Wannier exciton has an energy and radius associated with it, called
5488: 5401: 4880: 4625: 4552: 4430: 4369: 4307: 4217:
Eisenstein, J. P. (January 10, 2014). "Exciton Condensation in Bilayer Quantum Hall Systems".
4137: 4110: 3870: 3862: 3804: 3650: 3644: 3623: 3577: 3559: 3483: 3386: 3339: 3331: 3267: 3230: 3042: 3016: 2892:
statistics in the low-density limit. In some systems, where the interactions are repulsive, a
2863: 2423: 2404: 1971: 588: 433: 323: 243: 4248: 3671: 2784: 2654: 2614: 2594: 1977: 5498: 5269: 5044: 4905: 4890: 4572: 4483: 4422: 4361: 4299: 4244: 3933: 3854: 3794: 3784: 3722: 3603: 3567: 3549: 3510: 3473: 3463: 3378: 3321: 3222: 3177: 3140: 3091: 3006: 2329: 1520: 1209: 1010: 753: 737: 293: 258: 253: 213: 183: 153: 113: 73: 4133:
Excited-state spectroscopy in solids: Varenna on Lake Como, Villa Monastero, 9–19 July 1985
3968: 2679: 2446:, after which the ground electronic state is restored and the molecule undergoes photon or 2286: 2259: 1895: 1345: 856:
O, GaAs, other III-V and II-VI semiconductors, transition metal dichalcogenides such as MoS
5550: 5466: 5391: 5375: 5315: 4725: 4542: 4090: 3975: 2945: 2873:
Provided the interaction is attractive, an exciton can bind with other excitons to form a
991: 768: 603: 553: 423: 178: 90: 2470:
and their genesis was proposed by Alexander Davydov. It is known as 'Davydov splitting'.
4418: 4357: 4295: 4240: 3929: 3850: 3780: 3718: 3545: 3459: 3374: 3317: 3218: 3173: 3136: 3087: 2403:
which prevents them from photon absorption and therefore to reach their state they need
5525: 5439: 5396: 5132: 4920: 4693: 4615: 4610: 4532: 3799: 3750: 3572: 3529: 3478: 3443: 2845: 2830: 2804: 2764: 2634: 2574: 2419:, or molecule, if the excitation is wandering from one cell of the lattice to another. 2348: 2333: 1997: 1953: 1523:, we have relative permittivity of 12.8 and effective electron and hole masses as 0.067 891: 836: 795: 675: 653: 633: 628: 583: 503: 438: 336: 223: 68: 57: 38: 3824: 2703:
is large, tunneling can be described by a continuum theory. The height of the barrier
2422:
When a molecule absorbs a quantum of energy that corresponds to a transition from one
5539: 5483: 5335: 5302: 5094: 5064: 4996: 4855: 4635: 4562: 4547: 4381: 4319: 4083: 3734: 3423:
Keldysh, LV (1979). "Coulomb interaction in thin semiconductor and semimetal films".
3028: 2435: 2323: 2039: 1014: 979:
tends to reduce the Coulomb interaction between electrons and holes. The result is a
927: 923: 875: 832: 791: 780: 761: 749: 733: 558: 364: 345: 327: 228: 148: 4256: 3358: 5461: 5011: 5001: 4991: 4752: 4703: 4645: 4567: 4522: 4442: 3950:
A. Prikhotjko, Absorption Spectra of Crystals at Low Temperatures, J. Physics USSR
3326: 3291: 3242: 2631:
is the characteristic frequency of optical phonons. Excitons are self-trapped when
898: 824: 578: 568: 538: 498: 493: 473: 318: 298: 158: 3913: 3359:"Analytic solution of a two-dimensional hydrogen atom. I. Nonrelativistic theory" 5476: 5244: 5147: 5142: 5059: 5054: 4984: 4938: 4895: 4860: 4819: 4711: 4675: 4537: 4131: 3404:
Rytova, N S. (1967). "The screened potential of a point charge in a thin film".
2834: 2443: 2311: 2033: 1703:{\displaystyle E(n)=-{\frac {R_{\text{X}}}{\left(n-{\tfrac {1}{2}}\right)^{2}}}} 1513: 1028: 784: 741: 598: 573: 543: 488: 483: 415: 3789: 3726: 3607: 3444:"Model dielectric function for 2D semiconductors including substrate screening" 5218: 5112: 5102: 5084: 4974: 4875: 4810: 4527: 4365: 3011: 2984: 931: 868: 828: 508: 350: 143: 3937: 3866: 3563: 3382: 3335: 3074:
Frenkel, J. (1931). "On the Transformation of light into Heat in Solids. I".
3020: 2407:. They can even outnumber normal bright excitons formed by absorption alone. 975:
In semiconductors, the dielectric constant is generally large. Consequently,
5360: 5350: 5320: 5213: 5179: 5172: 5049: 5039: 5034: 5006: 4774: 4557: 4303: 3858: 2874: 2859: 2673: 2439: 2431: 935: 915: 563: 513: 386: 233: 133: 4434: 4373: 4311: 3874: 3808: 3581: 3487: 3343: 3234: 3181: 2415:
Alternatively, an exciton may be described as an excited state of an atom,
3390: 3095: 2848:), replacing the free electron-hole recombination at higher temperatures. 816:
with relatively narrow allowed energy bands and accordingly, rather heavy
5456: 5284: 5239: 5223: 5184: 5157: 4870: 4865: 4845: 4815: 4805: 4800: 4650: 4640: 4630: 4620: 4595: 4590: 4517: 3599: 3292:"Exciton Binding Energy and Nonhydrogenic Rydberg Series in MonolayerWS2" 2878: 2852: 2427: 776: 729: 123: 4426: 3554: 3514: 3226: 2112:{\displaystyle a_{\text{X}}={\frac {\varepsilon _{r}}{\mu /m_{0}}}a_{0}} 27:
Quasiparticle which is a bound state of an electron and an electron hole
17: 5365: 5355: 5279: 5274: 5249: 5167: 5152: 5079: 5074: 4979: 4964: 4910: 4885: 4850: 4779: 4761: 4500: 4452: 2935: 2925: 2501: 443: 428: 391: 382: 3596:"Scientists observe Hubbard exciton in strongly correlated insulators" 3468: 3145: 3110: 2343:
Hubbard excitons were observed for the first time in 2023 through the
5345: 5340: 4969: 4956: 4947: 4769: 4683: 4582: 4130:
Grassano, U. M.; Terzi, N.; SocietĂ  italiana di fisica, eds. (1987).
2968:(Ed. by Seitz and Turnbul), New York, New York: Academic, v. 5, 1963. 2889: 2447: 2249:{\displaystyle \mu \equiv (m_{e}^{*}m_{h}^{*})/(m_{e}^{*}+m_{h}^{*})} 882:
and is typically parabolic for the wavevectors much smaller than the
396: 372: 103: 867:
The exciton as a quasiparticle is characterized by the momentum (or
4348: 4286: 3841: 3771: 3127: 3001: 30: 5370: 5310: 5162: 5021: 4900: 4840: 4795: 4688: 4666: 4509: 4409: 4231: 3709: 3308: 3209: 999: 401: 98: 37: 29: 2359:
An intermediate case between Frenkel and Wannier excitons is the
5137: 5069: 5029: 4605: 4600: 2500:
Self-trapping of excitons is similar to forming strong-coupling
1882:{\displaystyle V(r)=-{\frac {e^{2}}{8\epsilon _{0}r_{0}}}\left.} 946:
excitations in transition metal compounds with partially filled
772: 4456: 3442:
Trolle, Mads L.; Pedersen, Thomas G.; VĂ©niard, Valerie (2017).
1335:{\displaystyle \mu =(m_{e}^{*}m_{h}^{*})/(m_{e}^{*}+m_{h}^{*})} 2416: 2347:. Those particles have been obtained by applying a light to a 1994:
the average dielectric constant of the surrounding media, and
108: 2885:
liquid, a state observed in k-space indirect semiconductors.
4078:
S. I. Pekar, E. I. Rashba, V. I. Sheka, Soviet Physics JETP
4015:
Giant Oscillator Strengths Associated with Exciton Complexes
2019:
Example: excitons in transition metal dichalcogenides (TMDs)
897:
In metals and highly doped semiconductors a concept of the
3285: 3283: 2888:
Additionally, excitons are integer-spin particles obeying
3649:(2nd ed.). Cambridge University Press. p. 108. 2866:) is formed. These excitons are sometimes referred to as 831:, resulting in a series of energy states in analogy to a 3969:
http://ujp.bitp.kiev.ua/files/journals/53/si/53SI18p.pdf
2034:
Quantum dot § Quantum confinement in semiconductors
926:, has a typical binding energy on the order of 0.1 to 1 1676: 938:. Another example of Frenkel exciton includes on-site 805:
Excitons are often treated in the two limiting cases:
2807: 2787: 2767: 2709: 2682: 2657: 2637: 2617: 2597: 2577: 2519: 2289: 2262: 2159: 2128: 2051: 2000: 1980: 1956: 1925: 1898: 1723: 1632: 1576: 1543: 1491: 1378: 1369:
is the electron mass. Concerning the radius, we have
1348: 1245: 1218: 1192: 1061: 5420: 5384: 5301: 5262: 5232: 5206: 5193: 5125: 5093: 5020: 4955: 4946: 4937: 4833: 4788: 4760: 4751: 4742: 4724: 4702: 4674: 4665: 4581: 4508: 4499: 4490: 3673:
The Photophysics Behind Photovoltaics and Photonics
4084:http://www.jetp.ac.ru/cgi-bin/dn/e_049_01_0129.pdf 3695:probed with resonant inelastic x-ray scattering". 2813: 2793: 2773: 2754:{\displaystyle W\sim \omega ^{4}/m^{3}\gamma ^{4}} 2753: 2695: 2663: 2643: 2623: 2603: 2583: 2564:{\displaystyle r_{b}\sim m\gamma ^{2}/\omega ^{2}} 2563: 2328:Hubbard excitons are linked to electrons not by a 2302: 2275: 2248: 2141: 2111: 2006: 1986: 1962: 1938: 1911: 1881: 1702: 1595: 1562: 1504: 1474: 1361: 1342:is the reduced mass of the electron and hole, and 1334: 1231: 1200: 1175: 2256:is the reduced mass of the electron-hole system, 3893:Okinawa Institute of Science and Technology OIST 3628:: CS1 maint: bot: original URL status unknown ( 3610:. Archived from the original on October 11, 2023 3262:. Oxford Master Series in Physics (2 ed.). 3063:(2nd ed.). Oxford Master Series in Physics. 2858:When excitons interact with photons a so-called 2336:. Their name derives by the English physicist 902:known as the Mahan or Fermi-edge singularity. 790:The concept of excitons was first proposed by 4468: 4000:V. L. Broude, E. I. Rashba, and E. F. Sheka, 2611:is the exciton-phonon coupling constant, and 709: 8: 4193:"New form of matter 'excitonium' discovered" 2983:Mueller, Thomas; Malic, Ermin (2018-09-10). 2510:coexistence of free and self-trapped states 2474:Giant oscillator strength of bound excitons 835:. Compared to a hydrogen atom, the exciton 5203: 5199: 4952: 4943: 4757: 4748: 4671: 4505: 4496: 4475: 4461: 4453: 716: 702: 56: 45: 4408: 4347: 4285: 4230: 4219:Annual Review of Condensed Matter Physics 3963:A. F. Prikhot'ko, Izv, AN SSSR Ser. Fiz. 3840: 3798: 3788: 3770: 3708: 3571: 3553: 3477: 3467: 3325: 3307: 3208: 3144: 3126: 3010: 3000: 2806: 2786: 2766: 2745: 2735: 2726: 2720: 2708: 2687: 2681: 2656: 2636: 2616: 2596: 2576: 2555: 2546: 2540: 2524: 2518: 2387:At surfaces it is possible for so called 2294: 2288: 2267: 2261: 2237: 2232: 2219: 2214: 2202: 2193: 2188: 2178: 2173: 2158: 2133: 2127: 2103: 2090: 2081: 2071: 2065: 2056: 2050: 1999: 1979: 1955: 1930: 1924: 1903: 1897: 1859: 1845: 1835: 1816: 1802: 1792: 1787: 1772: 1762: 1748: 1742: 1722: 1692: 1675: 1657: 1651: 1631: 1581: 1575: 1548: 1542: 1496: 1490: 1466: 1456: 1443: 1423: 1413: 1403: 1396: 1383: 1377: 1353: 1347: 1323: 1318: 1305: 1300: 1288: 1279: 1274: 1264: 1259: 1244: 1223: 1217: 1193: 1191: 1165: 1155: 1149: 1135: 1121: 1112: 1107: 1097: 1087: 1080: 1060: 4249:10.1146/annurev-conmatphys-031113-133832 4103:Kagan, Yu; Leggett, A. J. (2012-12-02). 2837:(when the characteristic thermal energy 847:significantly larger than 1 and (b) the 736:that are attracted to each other by the 3751:"Strongly bound excitons in anatase TiO 2966:Theory of excitons, Solid state physics 2957: 1239:is the (static) relative permittivity, 48: 3621: 2911:Spatially direct and indirect excitons 1052:respectively. For the energy, we have 827:of the bound state then is said to be 4106:Quantum Tunnelling in Condensed Media 3914:"Dark excitons outnumber bright ones" 990:. This type of exciton was named for 910:In materials with a relatively small 7: 4004:(Springer, New York, New York) 1985. 2978: 2976: 2974: 2829:Excitons are the main mechanism for 3509:(12). ACS Publications: 2555–2560. 2371:orbitals and a hole in the oxygen 2 1919:is the so-called screening length, 1208:is the Rydberg unit of energy (cf. 4002:Spectroscopy of molecular excitons 3991:(Plenum, New York, New York) 1971. 3755:single crystals and nanoparticles" 2591:is effective mass of the exciton, 2440:highest occupied molecular orbital 2345:Terahertz time-domain spectroscopy 25: 3889:"Dark excitons hit the spotlight" 3503:The Journal of Physical Chemistry 2989:npj 2D Materials and Applications 2452:Förster resonance energy transfer 5519: 5412:Timeline of particle discoveries 4017:, Soviet Physics Semiconductors 2349:Mott antiferromagnetic insulator 2142:{\displaystyle \varepsilon _{r}} 1563:{\displaystyle R_{\text{X}}=4.2} 1537:respectively; and that gives us 1232:{\displaystyle \varepsilon _{r}} 890:, giving rise to exciton energy 878:. The exciton energy depends on 748:. It is an electrically neutral 683: 682: 669: 3676:. Wiley-VCH Verlag. p. 82. 3357:Yang, X. L. (1 February 1991). 3109:Arora, Ashish (30 March 2021). 1596:{\displaystyle a_{\text{X}}=13} 3327:10.1103/PhysRevLett.113.076802 2243: 2207: 2199: 2166: 1733: 1727: 1642: 1636: 1613:two-dimensional (2D) materials 1329: 1293: 1285: 1252: 1071: 1065: 1: 2894:Bose–Einstein condensed state 2801:appear in the denominator of 2411:Atomic and molecular excitons 1939:{\displaystyle \epsilon _{0}} 5428:History of subatomic physics 3989:Theory of Molecular Excitons 3259:Optical Properties of Solids 3061:Optical Properties of Solids 2877:, analogous to a dihydrogen 2361:charge-transfer (CT) exciton 1505:{\displaystyle a_{\text{H}}} 779:. Because of the attractive 3670:Lanzani, Guglielmo (2012). 2430:is said to be found in the 1201:{\displaystyle {\text{Ry}}} 5567: 3790:10.1038/s41467-017-00016-6 3727:10.1103/PhysRevB.77.060501 3608:10.1038/s41567-023-02204-2 3534:Royal Society Open Science 3115:Journal of Applied Physics 2321: 2283:is the electron mass, and 2031: 269:Spin gapless semiconductor 5517: 5202: 4366:10.1038/s41563-019-0337-0 3012:10.1038/s41699-018-0074-2 2844:is less than the exciton 2833:in semiconductors at low 2487:Self-trapping of excitons 2481:giant oscillator strength 2432:lowest unoccupied orbital 1002:. They are also known as 864:applied magnetic fields. 209:Electronic band structure 5445:mathematical formulation 5040:Eta and eta prime mesons 3938:10.1063/PT.6.1.20210107a 3924:(1): 0107a. 2021-01-07. 3383:10.1103/PhysRevA.43.1186 3256:Fox, Mark (2010-03-25). 3059:Fox, Mark (2010-03-25). 1034:hydrogen spectral series 977:electric field screening 119:Bose–Einstein condensate 50:Condensed matter physics 5107:Double-charm tetraquark 4304:10.1126/science.aam6432 3859:10.1126/science.aba1029 3643:Wright, J. D. (1995) . 3296:Physical Review Letters 3264:Oxford University Press 2794:{\displaystyle \gamma } 2664:{\displaystyle \gamma } 2624:{\displaystyle \omega } 2604:{\displaystyle \gamma } 2355:Charge-transfer exciton 1987:{\displaystyle \kappa } 3602:. September 25, 2023. 3528:Edvinsson, T. (2018). 3406:Proc. MSU Phys. Astron 3182:10.1103/PhysRev.52.191 2862:(or more specifically 2815: 2795: 2775: 2755: 2697: 2665: 2645: 2625: 2605: 2585: 2565: 2365:electric dipole moment 2304: 2277: 2250: 2143: 2113: 2008: 1988: 1964: 1940: 1913: 1883: 1704: 1597: 1564: 1506: 1476: 1363: 1336: 1233: 1202: 1177: 1046:exciton Rydberg energy 814:organic semiconductors 800:optoelectronic devices 752:that exists mainly in 43: 35: 5504:Wave–particle duality 5494:Relativistic particle 4631:Electron antineutrino 3759:Nature Communications 3096:10.1103/PhysRev.37.17 2816: 2796: 2776: 2756: 2698: 2696:{\displaystyle r_{b}} 2666: 2646: 2626: 2606: 2586: 2566: 2506:self-trapping barrier 2330:Coulomb's interaction 2305: 2303:{\displaystyle a_{0}} 2278: 2276:{\displaystyle m_{0}} 2251: 2151:relative permittivity 2144: 2114: 2009: 1989: 1965: 1941: 1914: 1912:{\displaystyle r_{0}} 1884: 1705: 1598: 1565: 1507: 1477: 1364: 1362:{\displaystyle m_{0}} 1337: 1234: 1203: 1178: 841:relative permittivity 264:Topological insulator 41: 33: 4734:Faddeev–Popov ghosts 4484:Particles in physics 4060:, pp. 75, 88 (1957). 2941:Polariton superfluid 2805: 2785: 2765: 2707: 2680: 2655: 2635: 2615: 2595: 2575: 2517: 2401:forbidden transition 2287: 2260: 2157: 2126: 2049: 1998: 1978: 1954: 1923: 1896: 1721: 1630: 1574: 1541: 1489: 1376: 1346: 1243: 1216: 1190: 1059: 1024:) binding energies. 981:Wannier–Mott exciton 971:Wannier–Mott exciton 888:exchange interaction 282:Electronic phenomena 129:Fermionic condensate 5509:Particle chauvinism 5452:Subatomic particles 4427:10.1038/nature10903 4419:2012Natur.483..584H 4358:2019NatMa..18..691M 4296:2017Sci...358.1314K 4280:(6368): 1314–1317. 4241:2014ARCMP...5..159E 3930:2021PhT..2021a.107. 3851:2020Sci...370.1199M 3835:(6521): 1199–1204. 3781:2017NatCo...8...13B 3719:2008PhRvB..77f0501E 3555:10.1098/rsos.180387 3546:2018RSOS....580387E 3515:10.1021/j100403a003 3460:2017NatSR...739844T 3375:1991PhRvA..43.1186Y 3318:2014PhRvL.113g6802C 3227:10.1038/nature13832 3219:2014Natur.514..343K 3174:1937PhRv...52..191W 3137:2021JAP...129l0902A 3088:1931PhRv...37...17F 2931:Oscillator strength 2468:Antonina Prikhot'ko 2242: 2224: 2198: 2183: 1948:vacuum permittivity 1328: 1310: 1284: 1269: 1117: 1050:exciton Bohr radius 996:Nevill Francis Mott 912:dielectric constant 289:Quantum Hall effect 4197:The Times of India 4160:, pp. 1–35 (1988). 4089:2019-02-23 at the 3974:2016-03-05 at the 3646:Molecular Crystals 2811: 2791: 2771: 2751: 2693: 2661: 2641: 2621: 2601: 2581: 2561: 2300: 2273: 2246: 2228: 2210: 2184: 2169: 2139: 2109: 2004: 1984: 1960: 1936: 1909: 1879: 1700: 1685: 1593: 1560: 1502: 1472: 1359: 1332: 1314: 1296: 1270: 1255: 1229: 1198: 1173: 1103: 884:reciprocal lattice 676:Physics portal 44: 36: 5533: 5532: 5489:Massless particle 5297: 5296: 5293: 5292: 5258: 5257: 5121: 5120: 4933: 4932: 4929: 4928: 4881:Magnetic monopole 4829: 4828: 4720: 4719: 4661: 4660: 4641:Muon antineutrino 4626:Electron neutrino 4403:(7391): 584–588. 4143:978-0-444-87070-4 4116:978-0-444-60047-9 4082:, p. 251 (1979), 4021:, 807–816 (1975). 3697:Physical Review B 3656:978-0-521-47730-7 3469:10.1038/srep39844 3363:Physical Review A 3203:(7522): 343–347. 3146:10.1063/5.0042683 2864:exciton-polariton 2814:{\displaystyle W} 2774:{\displaystyle m} 2644:{\displaystyle m} 2584:{\displaystyle m} 2424:molecular orbital 2405:phonon scattering 2097: 2059: 2028:0D semiconductors 2007:{\displaystyle r} 1972:elementary charge 1963:{\displaystyle e} 1865: 1822: 1790: 1779: 1698: 1684: 1660: 1607:2D semiconductors 1584: 1551: 1499: 1459: 1433: 1426: 1196: 1171: 1158: 1141: 1124: 1119: 1040:3D semiconductors 726: 725: 434:Granular material 202:Electronic phases 16:(Redirected from 5558: 5523: 5499:Virtual particle 5270:Mesonic molecule 5204: 5200: 5045:Bottom eta meson 4953: 4944: 4916:W′ and Z′ bosons 4906:Sterile neutrino 4891:Majorana fermion 4758: 4749: 4672: 4651:Tau antineutrino 4506: 4497: 4477: 4470: 4463: 4454: 4447: 4446: 4412: 4392: 4386: 4385: 4351: 4336:Nature Materials 4330: 4324: 4323: 4289: 4267: 4261: 4260: 4234: 4214: 4208: 4207: 4205: 4203: 4189: 4183: 4182:, p. 423 (1989). 4176: 4170: 4167: 4161: 4154: 4148: 4147: 4127: 4121: 4120: 4100: 4094: 4076: 4070: 4067: 4061: 4054: 4048: 4041: 4035: 4028: 4022: 4011: 4005: 3998: 3992: 3985: 3979: 3967:, p. 499 (1948) 3961: 3955: 3954:, p. 257 (1944). 3948: 3942: 3941: 3910: 3904: 3903: 3901: 3900: 3885: 3879: 3878: 3844: 3819: 3813: 3812: 3802: 3792: 3774: 3745: 3739: 3738: 3712: 3703:(6): 060501(R). 3684: 3678: 3677: 3667: 3661: 3660: 3640: 3634: 3633: 3627: 3619: 3617: 3615: 3592: 3586: 3585: 3575: 3557: 3525: 3519: 3518: 3498: 3492: 3491: 3481: 3471: 3439: 3433: 3432: 3420: 3414: 3413: 3401: 3395: 3394: 3369:(3): 1186–1196. 3354: 3348: 3347: 3329: 3311: 3287: 3278: 3277: 3253: 3247: 3246: 3212: 3192: 3186: 3185: 3157: 3151: 3150: 3148: 3130: 3106: 3100: 3099: 3071: 3065: 3064: 3056: 3050: 3039: 3033: 3032: 3014: 3004: 2980: 2969: 2962: 2868:dressed excitons 2820: 2818: 2817: 2812: 2800: 2798: 2797: 2792: 2780: 2778: 2777: 2772: 2760: 2758: 2757: 2752: 2750: 2749: 2740: 2739: 2730: 2725: 2724: 2702: 2700: 2699: 2694: 2692: 2691: 2670: 2668: 2667: 2662: 2650: 2648: 2647: 2642: 2630: 2628: 2627: 2622: 2610: 2608: 2607: 2602: 2590: 2588: 2587: 2582: 2570: 2568: 2567: 2562: 2560: 2559: 2550: 2545: 2544: 2529: 2528: 2460:molecular rulers 2309: 2307: 2306: 2301: 2299: 2298: 2282: 2280: 2279: 2274: 2272: 2271: 2255: 2253: 2252: 2247: 2241: 2236: 2223: 2218: 2206: 2197: 2192: 2182: 2177: 2148: 2146: 2145: 2140: 2138: 2137: 2118: 2116: 2115: 2110: 2108: 2107: 2098: 2096: 2095: 2094: 2085: 2076: 2075: 2066: 2061: 2060: 2057: 2013: 2011: 2010: 2005: 1993: 1991: 1990: 1985: 1969: 1967: 1966: 1961: 1945: 1943: 1942: 1937: 1935: 1934: 1918: 1916: 1915: 1910: 1908: 1907: 1888: 1886: 1885: 1880: 1875: 1871: 1870: 1866: 1864: 1863: 1854: 1846: 1840: 1839: 1827: 1823: 1821: 1820: 1811: 1803: 1797: 1796: 1791: 1788: 1780: 1778: 1777: 1776: 1767: 1766: 1753: 1752: 1743: 1709: 1707: 1706: 1701: 1699: 1697: 1696: 1691: 1687: 1686: 1677: 1662: 1661: 1658: 1652: 1617:quantum confined 1615:, the system is 1602: 1600: 1599: 1594: 1586: 1585: 1582: 1569: 1567: 1566: 1561: 1553: 1552: 1549: 1519:For example, in 1511: 1509: 1508: 1503: 1501: 1500: 1497: 1481: 1479: 1478: 1473: 1471: 1470: 1461: 1460: 1457: 1448: 1447: 1438: 1434: 1429: 1428: 1427: 1424: 1418: 1417: 1408: 1407: 1397: 1388: 1387: 1368: 1366: 1365: 1360: 1358: 1357: 1341: 1339: 1338: 1333: 1327: 1322: 1309: 1304: 1292: 1283: 1278: 1268: 1263: 1238: 1236: 1235: 1230: 1228: 1227: 1210:Rydberg constant 1207: 1205: 1204: 1199: 1197: 1194: 1182: 1180: 1179: 1174: 1172: 1170: 1169: 1160: 1159: 1156: 1150: 1142: 1140: 1139: 1130: 1126: 1125: 1122: 1120: 1118: 1116: 1111: 1102: 1101: 1088: 1081: 1023: 1022: 1011:carbon nanotubes 989: 988: 754:condensed matter 718: 711: 704: 691: 686: 685: 678: 674: 673: 294:Spin Hall effect 184:Phase transition 154:Luttinger liquid 91:States of matter 74:Phase transition 60: 46: 21: 5566: 5565: 5561: 5560: 5559: 5557: 5556: 5555: 5536: 5535: 5534: 5529: 5513: 5467:Nuclear physics 5416: 5380: 5316:Davydov soliton 5289: 5254: 5228: 5189: 5117: 5089: 5016: 4925: 4825: 4784: 4738: 4716: 4698: 4657: 4577: 4486: 4481: 4451: 4450: 4394: 4393: 4389: 4332: 4331: 4327: 4270: 4268: 4264: 4216: 4215: 4211: 4201: 4199: 4191: 4190: 4186: 4177: 4173: 4168: 4164: 4155: 4151: 4144: 4129: 4128: 4124: 4117: 4102: 4101: 4097: 4091:Wayback Machine 4077: 4073: 4068: 4064: 4055: 4051: 4042: 4038: 4029: 4025: 4012: 4008: 3999: 3995: 3987:A. S. Davydov, 3986: 3982: 3976:Wayback Machine 3962: 3958: 3949: 3945: 3912: 3911: 3907: 3898: 3896: 3887: 3886: 3882: 3821: 3820: 3816: 3754: 3747: 3746: 3742: 3694: 3690: 3686: 3685: 3681: 3669: 3668: 3664: 3657: 3642: 3641: 3637: 3620: 3613: 3611: 3594: 3593: 3589: 3527: 3526: 3522: 3500: 3499: 3495: 3441: 3440: 3436: 3422: 3421: 3417: 3403: 3402: 3398: 3356: 3355: 3351: 3289: 3288: 3281: 3274: 3255: 3254: 3250: 3194: 3193: 3189: 3162:Physical Review 3159: 3158: 3154: 3108: 3107: 3103: 3076:Physical Review 3073: 3072: 3068: 3058: 3057: 3053: 3040: 3036: 2982: 2981: 2972: 2963: 2959: 2954: 2922: 2913: 2905: 2827: 2803: 2802: 2783: 2782: 2763: 2762: 2761:. Because both 2741: 2731: 2716: 2705: 2704: 2683: 2678: 2677: 2653: 2652: 2633: 2632: 2613: 2612: 2593: 2592: 2573: 2572: 2551: 2536: 2520: 2515: 2514: 2489: 2476: 2413: 2397: 2385: 2383:Surface exciton 2378: 2357: 2326: 2320: 2318:Hubbard exciton 2290: 2285: 2284: 2263: 2258: 2257: 2155: 2154: 2129: 2124: 2123: 2099: 2086: 2077: 2067: 2052: 2047: 2046: 2036: 2030: 2021: 1996: 1995: 1976: 1975: 1952: 1951: 1926: 1921: 1920: 1899: 1894: 1893: 1855: 1847: 1841: 1831: 1812: 1804: 1798: 1786: 1785: 1781: 1768: 1758: 1754: 1744: 1719: 1718: 1668: 1664: 1663: 1653: 1628: 1627: 1609: 1577: 1572: 1571: 1544: 1539: 1538: 1535: 1528: 1492: 1487: 1486: 1462: 1452: 1439: 1419: 1409: 1399: 1398: 1392: 1379: 1374: 1373: 1349: 1344: 1343: 1241: 1240: 1219: 1214: 1213: 1188: 1187: 1161: 1151: 1131: 1093: 1092: 1086: 1082: 1057: 1056: 1042: 1020: 1018: 1009:In single-wall 992:Gregory Wannier 986: 984: 973: 950:-shells. While 920:Frenkel exciton 908: 906:Frenkel exciton 859: 855: 846: 769:conduction band 722: 681: 668: 667: 660: 659: 658: 458: 450: 449: 448: 424:Amorphous solid 418: 408: 407: 406: 385: 367: 357: 356: 355: 344: 342:Antiferromagnet 335: 333:Superparamagnet 326: 313: 312:Magnetic phases 305: 304: 303: 283: 275: 274: 273: 203: 195: 194: 193: 179:Order parameter 173: 172:Phase phenomena 165: 164: 163: 93: 83: 28: 23: 22: 15: 12: 11: 5: 5564: 5562: 5554: 5553: 5548: 5546:Quasiparticles 5538: 5537: 5531: 5530: 5526:Physics portal 5518: 5515: 5514: 5512: 5511: 5506: 5501: 5496: 5491: 5486: 5481: 5480: 5479: 5469: 5464: 5459: 5454: 5449: 5448: 5447: 5440:Standard Model 5437: 5436: 5435: 5424: 5422: 5418: 5417: 5415: 5414: 5409: 5407:Quasiparticles 5404: 5399: 5394: 5388: 5386: 5382: 5381: 5379: 5378: 5373: 5368: 5363: 5358: 5353: 5348: 5343: 5338: 5333: 5328: 5323: 5318: 5313: 5307: 5305: 5303:Quasiparticles 5299: 5298: 5295: 5294: 5291: 5290: 5288: 5287: 5282: 5277: 5272: 5266: 5264: 5260: 5259: 5256: 5255: 5253: 5252: 5247: 5242: 5236: 5234: 5230: 5229: 5227: 5226: 5221: 5216: 5210: 5208: 5197: 5191: 5190: 5188: 5187: 5182: 5177: 5176: 5175: 5170: 5165: 5160: 5155: 5150: 5140: 5135: 5129: 5127: 5123: 5122: 5119: 5118: 5116: 5115: 5110: 5099: 5097: 5095:Exotic hadrons 5091: 5090: 5088: 5087: 5082: 5077: 5072: 5067: 5062: 5057: 5052: 5047: 5042: 5037: 5032: 5026: 5024: 5018: 5017: 5015: 5014: 5009: 5004: 4999: 4994: 4989: 4988: 4987: 4982: 4977: 4972: 4961: 4959: 4950: 4941: 4935: 4934: 4931: 4930: 4927: 4926: 4924: 4923: 4921:X and Y bosons 4918: 4913: 4908: 4903: 4898: 4893: 4888: 4883: 4878: 4873: 4868: 4863: 4858: 4853: 4848: 4843: 4837: 4835: 4831: 4830: 4827: 4826: 4824: 4823: 4813: 4808: 4803: 4798: 4792: 4790: 4786: 4785: 4783: 4782: 4777: 4772: 4766: 4764: 4755: 4746: 4740: 4739: 4737: 4736: 4730: 4728: 4722: 4721: 4718: 4717: 4715: 4714: 4708: 4706: 4700: 4699: 4697: 4696: 4694:W and Z bosons 4691: 4686: 4680: 4678: 4669: 4663: 4662: 4659: 4658: 4656: 4655: 4654: 4653: 4648: 4643: 4638: 4633: 4628: 4618: 4613: 4608: 4603: 4598: 4593: 4587: 4585: 4579: 4578: 4576: 4575: 4570: 4565: 4560: 4555: 4550: 4548:Strange (quark 4545: 4540: 4535: 4530: 4525: 4520: 4514: 4512: 4503: 4494: 4488: 4487: 4482: 4480: 4479: 4472: 4465: 4457: 4449: 4448: 4387: 4342:(7): 691–696. 4325: 4262: 4209: 4184: 4171: 4162: 4149: 4142: 4122: 4115: 4095: 4071: 4062: 4049: 4036: 4034:, p. 1 (1985). 4023: 4013:E. I. Rashba, 4006: 3993: 3980: 3956: 3943: 3905: 3880: 3814: 3752: 3740: 3692: 3688: 3679: 3662: 3655: 3635: 3587: 3520: 3493: 3434: 3415: 3396: 3349: 3279: 3273:978-0199573363 3272: 3266:. p. 97. 3248: 3187: 3152: 3101: 3066: 3051: 3034: 2970: 2956: 2955: 2953: 2950: 2949: 2948: 2943: 2938: 2933: 2928: 2921: 2918: 2912: 2909: 2903: 2846:binding energy 2831:light emission 2826: 2823: 2810: 2790: 2770: 2748: 2744: 2738: 2734: 2729: 2723: 2719: 2715: 2712: 2690: 2686: 2660: 2640: 2620: 2600: 2580: 2558: 2554: 2549: 2543: 2539: 2535: 2532: 2527: 2523: 2488: 2485: 2475: 2472: 2412: 2409: 2396: 2393: 2384: 2381: 2376: 2356: 2353: 2334:magnetic force 2322:Main article: 2319: 2316: 2297: 2293: 2270: 2266: 2245: 2240: 2235: 2231: 2227: 2222: 2217: 2213: 2209: 2205: 2201: 2196: 2191: 2187: 2181: 2176: 2172: 2168: 2165: 2162: 2136: 2132: 2120: 2119: 2106: 2102: 2093: 2089: 2084: 2080: 2074: 2070: 2064: 2055: 2029: 2026: 2020: 2017: 2003: 1983: 1959: 1933: 1929: 1906: 1902: 1890: 1889: 1878: 1874: 1869: 1862: 1858: 1853: 1850: 1844: 1838: 1834: 1830: 1826: 1819: 1815: 1810: 1807: 1801: 1795: 1784: 1775: 1771: 1765: 1761: 1757: 1751: 1747: 1741: 1738: 1735: 1732: 1729: 1726: 1712: 1711: 1695: 1690: 1683: 1680: 1674: 1671: 1667: 1656: 1650: 1647: 1644: 1641: 1638: 1635: 1608: 1605: 1592: 1589: 1580: 1559: 1556: 1547: 1533: 1526: 1495: 1483: 1482: 1469: 1465: 1455: 1451: 1446: 1442: 1437: 1432: 1422: 1416: 1412: 1406: 1402: 1395: 1391: 1386: 1382: 1356: 1352: 1331: 1326: 1321: 1317: 1313: 1308: 1303: 1299: 1295: 1291: 1287: 1282: 1277: 1273: 1267: 1262: 1258: 1254: 1251: 1248: 1226: 1222: 1184: 1183: 1168: 1164: 1154: 1148: 1145: 1138: 1134: 1129: 1115: 1110: 1106: 1100: 1096: 1091: 1085: 1079: 1076: 1073: 1070: 1067: 1064: 1041: 1038: 1004:large excitons 972: 969: 922:, named after 907: 904: 892:fine structure 857: 853: 849:Effective mass 844: 837:binding energy 818:Effective mass 796:band structure 762:semiconductors 724: 723: 721: 720: 713: 706: 698: 695: 694: 693: 692: 679: 662: 661: 657: 656: 651: 646: 641: 636: 631: 626: 621: 616: 611: 606: 601: 596: 591: 586: 581: 576: 571: 566: 561: 556: 551: 546: 541: 536: 531: 526: 521: 516: 511: 506: 501: 496: 491: 486: 481: 476: 471: 466: 460: 459: 456: 455: 452: 451: 447: 446: 441: 439:Liquid crystal 436: 431: 426: 420: 419: 414: 413: 410: 409: 405: 404: 399: 394: 389: 380: 375: 369: 368: 365:Quasiparticles 363: 362: 359: 358: 354: 353: 348: 339: 330: 324:Superdiamagnet 321: 315: 314: 311: 310: 307: 306: 302: 301: 296: 291: 285: 284: 281: 280: 277: 276: 272: 271: 266: 261: 256: 251: 249:Thermoelectric 246: 244:Superconductor 241: 236: 231: 226: 224:Mott insulator 221: 216: 211: 205: 204: 201: 200: 197: 196: 192: 191: 186: 181: 175: 174: 171: 170: 167: 166: 162: 161: 156: 151: 146: 141: 136: 131: 126: 121: 116: 111: 106: 101: 95: 94: 89: 88: 85: 84: 82: 81: 76: 71: 65: 62: 61: 53: 52: 26: 24: 14: 13: 10: 9: 6: 4: 3: 2: 5563: 5552: 5549: 5547: 5544: 5543: 5541: 5528: 5527: 5522: 5516: 5510: 5507: 5505: 5502: 5500: 5497: 5495: 5492: 5490: 5487: 5485: 5484:Exotic matter 5482: 5478: 5475: 5474: 5473: 5472:Eightfold way 5470: 5468: 5465: 5463: 5462:Antiparticles 5460: 5458: 5455: 5453: 5450: 5446: 5443: 5442: 5441: 5438: 5434: 5431: 5430: 5429: 5426: 5425: 5423: 5419: 5413: 5410: 5408: 5405: 5403: 5400: 5398: 5395: 5393: 5390: 5389: 5387: 5383: 5377: 5374: 5372: 5369: 5367: 5364: 5362: 5359: 5357: 5354: 5352: 5349: 5347: 5344: 5342: 5339: 5337: 5334: 5332: 5329: 5327: 5324: 5322: 5319: 5317: 5314: 5312: 5309: 5308: 5306: 5304: 5300: 5286: 5283: 5281: 5278: 5276: 5273: 5271: 5268: 5267: 5265: 5261: 5251: 5248: 5246: 5243: 5241: 5238: 5237: 5235: 5231: 5225: 5222: 5220: 5217: 5215: 5212: 5211: 5209: 5205: 5201: 5198: 5196: 5192: 5186: 5183: 5181: 5178: 5174: 5171: 5169: 5166: 5164: 5161: 5159: 5156: 5154: 5151: 5149: 5146: 5145: 5144: 5141: 5139: 5136: 5134: 5133:Atomic nuclei 5131: 5130: 5128: 5124: 5114: 5111: 5108: 5104: 5101: 5100: 5098: 5096: 5092: 5086: 5083: 5081: 5078: 5076: 5073: 5071: 5068: 5066: 5065:Upsilon meson 5063: 5061: 5058: 5056: 5053: 5051: 5048: 5046: 5043: 5041: 5038: 5036: 5033: 5031: 5028: 5027: 5025: 5023: 5019: 5013: 5010: 5008: 5005: 5003: 5000: 4998: 4997:Lambda baryon 4995: 4993: 4990: 4986: 4983: 4981: 4978: 4976: 4973: 4971: 4968: 4967: 4966: 4963: 4962: 4960: 4958: 4954: 4951: 4949: 4945: 4942: 4940: 4936: 4922: 4919: 4917: 4914: 4912: 4909: 4907: 4904: 4902: 4899: 4897: 4894: 4892: 4889: 4887: 4884: 4882: 4879: 4877: 4874: 4872: 4869: 4867: 4864: 4862: 4859: 4857: 4856:Dual graviton 4854: 4852: 4849: 4847: 4844: 4842: 4839: 4838: 4836: 4832: 4821: 4817: 4814: 4812: 4809: 4807: 4804: 4802: 4799: 4797: 4794: 4793: 4791: 4787: 4781: 4778: 4776: 4773: 4771: 4768: 4767: 4765: 4763: 4759: 4756: 4754: 4753:Superpartners 4750: 4747: 4745: 4741: 4735: 4732: 4731: 4729: 4727: 4723: 4713: 4710: 4709: 4707: 4705: 4701: 4695: 4692: 4690: 4687: 4685: 4682: 4681: 4679: 4677: 4673: 4670: 4668: 4664: 4652: 4649: 4647: 4644: 4642: 4639: 4637: 4636:Muon neutrino 4634: 4632: 4629: 4627: 4624: 4623: 4622: 4619: 4617: 4614: 4612: 4609: 4607: 4604: 4602: 4599: 4597: 4594: 4592: 4589: 4588: 4586: 4584: 4580: 4574: 4571: 4569: 4568:Bottom (quark 4566: 4564: 4561: 4559: 4556: 4554: 4551: 4549: 4546: 4544: 4541: 4539: 4536: 4534: 4531: 4529: 4526: 4524: 4521: 4519: 4516: 4515: 4513: 4511: 4507: 4504: 4502: 4498: 4495: 4493: 4489: 4485: 4478: 4473: 4471: 4466: 4464: 4459: 4458: 4455: 4444: 4440: 4436: 4432: 4428: 4424: 4420: 4416: 4411: 4406: 4402: 4398: 4391: 4388: 4383: 4379: 4375: 4371: 4367: 4363: 4359: 4355: 4350: 4345: 4341: 4337: 4329: 4326: 4321: 4317: 4313: 4309: 4305: 4301: 4297: 4293: 4288: 4283: 4279: 4275: 4266: 4263: 4258: 4254: 4250: 4246: 4242: 4238: 4233: 4228: 4224: 4220: 4213: 4210: 4198: 4194: 4188: 4185: 4181: 4175: 4172: 4166: 4163: 4159: 4153: 4150: 4145: 4139: 4135: 4134: 4126: 4123: 4118: 4112: 4108: 4107: 4099: 4096: 4092: 4088: 4085: 4081: 4075: 4072: 4066: 4063: 4059: 4053: 4050: 4046: 4040: 4037: 4033: 4027: 4024: 4020: 4016: 4010: 4007: 4003: 3997: 3994: 3990: 3984: 3981: 3977: 3973: 3970: 3966: 3960: 3957: 3953: 3947: 3944: 3939: 3935: 3931: 3927: 3923: 3919: 3918:Physics Today 3915: 3909: 3906: 3894: 3890: 3884: 3881: 3876: 3872: 3868: 3864: 3860: 3856: 3852: 3848: 3843: 3838: 3834: 3830: 3826: 3818: 3815: 3810: 3806: 3801: 3796: 3791: 3786: 3782: 3778: 3773: 3768: 3764: 3760: 3756: 3744: 3741: 3736: 3732: 3728: 3724: 3720: 3716: 3711: 3706: 3702: 3698: 3683: 3680: 3675: 3674: 3666: 3663: 3658: 3652: 3648: 3647: 3639: 3636: 3631: 3625: 3609: 3605: 3601: 3597: 3591: 3588: 3583: 3579: 3574: 3569: 3565: 3561: 3556: 3551: 3547: 3543: 3540:(9): 180387. 3539: 3535: 3531: 3524: 3521: 3516: 3512: 3508: 3504: 3497: 3494: 3489: 3485: 3480: 3475: 3470: 3465: 3461: 3457: 3453: 3449: 3445: 3438: 3435: 3430: 3426: 3419: 3416: 3411: 3407: 3400: 3397: 3392: 3388: 3384: 3380: 3376: 3372: 3368: 3364: 3360: 3353: 3350: 3345: 3341: 3337: 3333: 3328: 3323: 3319: 3315: 3310: 3305: 3302:(7): 076802. 3301: 3297: 3293: 3286: 3284: 3280: 3275: 3269: 3265: 3261: 3260: 3252: 3249: 3244: 3240: 3236: 3232: 3228: 3224: 3220: 3216: 3211: 3206: 3202: 3198: 3191: 3188: 3183: 3179: 3175: 3171: 3167: 3163: 3156: 3153: 3147: 3142: 3138: 3134: 3129: 3124: 3120: 3116: 3112: 3105: 3102: 3097: 3093: 3089: 3085: 3081: 3077: 3070: 3067: 3062: 3055: 3052: 3048: 3047:9780198753735 3044: 3038: 3035: 3030: 3026: 3022: 3018: 3013: 3008: 3003: 2998: 2994: 2990: 2986: 2979: 2977: 2975: 2971: 2967: 2961: 2958: 2951: 2947: 2944: 2942: 2939: 2937: 2934: 2932: 2929: 2927: 2924: 2923: 2919: 2917: 2910: 2908: 2906: 2899: 2895: 2891: 2886: 2884: 2883:electron-hole 2880: 2876: 2871: 2869: 2865: 2861: 2856: 2854: 2849: 2847: 2843: 2841: 2836: 2832: 2824: 2822: 2808: 2788: 2768: 2746: 2742: 2736: 2732: 2727: 2721: 2717: 2713: 2710: 2688: 2684: 2675: 2658: 2638: 2618: 2598: 2578: 2556: 2552: 2547: 2541: 2537: 2533: 2530: 2525: 2521: 2511: 2507: 2503: 2498: 2495: 2494:Self-trapping 2486: 2484: 2482: 2473: 2471: 2469: 2463: 2461: 2457: 2453: 2449: 2445: 2441: 2437: 2436:electron hole 2433: 2429: 2425: 2420: 2418: 2410: 2408: 2406: 2402: 2394: 2392: 2390: 2382: 2380: 2374: 2370: 2366: 2362: 2354: 2352: 2350: 2346: 2341: 2339: 2335: 2331: 2325: 2324:Hubbard model 2317: 2315: 2313: 2295: 2291: 2268: 2264: 2238: 2233: 2229: 2225: 2220: 2215: 2211: 2203: 2194: 2189: 2185: 2179: 2174: 2170: 2163: 2160: 2152: 2134: 2130: 2104: 2100: 2091: 2087: 2082: 2078: 2072: 2068: 2062: 2053: 2045: 2044: 2043: 2041: 2040:nanoparticles 2035: 2027: 2025: 2018: 2016: 2001: 1981: 1973: 1957: 1949: 1931: 1927: 1904: 1900: 1876: 1872: 1867: 1860: 1856: 1851: 1848: 1842: 1836: 1832: 1828: 1824: 1817: 1813: 1808: 1805: 1799: 1793: 1782: 1773: 1769: 1763: 1759: 1755: 1749: 1745: 1739: 1736: 1730: 1724: 1717: 1716: 1715: 1693: 1688: 1681: 1678: 1672: 1669: 1665: 1654: 1648: 1645: 1639: 1633: 1626: 1625: 1624: 1621: 1618: 1614: 1606: 1604: 1590: 1587: 1578: 1557: 1554: 1545: 1536: 1529: 1522: 1517: 1515: 1493: 1467: 1463: 1453: 1449: 1444: 1440: 1435: 1430: 1420: 1414: 1410: 1404: 1400: 1393: 1389: 1384: 1380: 1372: 1371: 1370: 1354: 1350: 1324: 1319: 1315: 1311: 1306: 1301: 1297: 1289: 1280: 1275: 1271: 1265: 1260: 1256: 1249: 1246: 1224: 1220: 1211: 1166: 1162: 1152: 1146: 1143: 1136: 1132: 1127: 1113: 1108: 1104: 1098: 1094: 1089: 1083: 1077: 1074: 1068: 1062: 1055: 1054: 1053: 1051: 1047: 1039: 1037: 1035: 1030: 1025: 1016: 1015:wave function 1012: 1007: 1005: 1001: 997: 993: 982: 978: 970: 968: 966: 962: 957: 953: 949: 945: 941: 937: 933: 929: 925: 924:Yakov Frenkel 921: 917: 913: 905: 903: 900: 895: 893: 889: 885: 881: 877: 876:Bloch theorem 873: 870: 865: 861: 850: 842: 838: 834: 833:hydrogen atom 830: 826: 821: 819: 815: 811: 806: 803: 801: 797: 793: 792:Yakov Frenkel 788: 786: 782: 781:coulomb force 778: 774: 770: 765: 763: 759: 755: 751: 750:quasiparticle 747: 743: 739: 738:Coulomb force 735: 734:electron hole 731: 719: 714: 712: 707: 705: 700: 699: 697: 696: 690: 680: 677: 672: 666: 665: 664: 663: 655: 652: 650: 647: 645: 642: 640: 637: 635: 632: 630: 627: 625: 622: 620: 617: 615: 612: 610: 607: 605: 602: 600: 597: 595: 592: 590: 587: 585: 582: 580: 577: 575: 572: 570: 567: 565: 562: 560: 557: 555: 552: 550: 547: 545: 542: 540: 537: 535: 532: 530: 527: 525: 522: 520: 517: 515: 512: 510: 507: 505: 502: 500: 497: 495: 492: 490: 487: 485: 482: 480: 477: 475: 472: 470: 467: 465: 464:Van der Waals 462: 461: 454: 453: 445: 442: 440: 437: 435: 432: 430: 427: 425: 422: 421: 417: 412: 411: 403: 400: 398: 395: 393: 390: 388: 384: 381: 379: 376: 374: 371: 370: 366: 361: 360: 352: 349: 347: 343: 340: 338: 334: 331: 329: 325: 322: 320: 317: 316: 309: 308: 300: 297: 295: 292: 290: 287: 286: 279: 278: 270: 267: 265: 262: 260: 259:Ferroelectric 257: 255: 254:Piezoelectric 252: 250: 247: 245: 242: 240: 237: 235: 232: 230: 229:Semiconductor 227: 225: 222: 220: 217: 215: 212: 210: 207: 206: 199: 198: 190: 187: 185: 182: 180: 177: 176: 169: 168: 160: 157: 155: 152: 150: 149:Superfluidity 147: 145: 142: 140: 137: 135: 132: 130: 127: 125: 122: 120: 117: 115: 112: 110: 107: 105: 102: 100: 97: 96: 92: 87: 86: 80: 77: 75: 72: 70: 67: 66: 64: 63: 59: 55: 54: 51: 47: 40: 32: 19: 5524: 5325: 5195:Hypothetical 5143:Exotic atoms 5012:Omega baryon 5002:Sigma baryon 4992:Delta baryon 4744:Hypothetical 4726:Ghost fields 4712:Higgs boson 4646:Tau neutrino 4538:Charm (quark 4400: 4396: 4390: 4339: 4335: 4328: 4277: 4273: 4265: 4222: 4218: 4212: 4200:. Retrieved 4196: 4187: 4179: 4174: 4165: 4157: 4152: 4132: 4125: 4109:. Elsevier. 4105: 4098: 4079: 4074: 4065: 4057: 4052: 4044: 4039: 4031: 4026: 4018: 4014: 4009: 4001: 3996: 3988: 3983: 3964: 3959: 3951: 3946: 3921: 3917: 3908: 3897:. Retrieved 3895:. 2020-12-04 3892: 3883: 3832: 3828: 3817: 3762: 3758: 3743: 3700: 3696: 3682: 3672: 3665: 3645: 3638: 3612:. Retrieved 3590: 3537: 3533: 3523: 3506: 3502: 3496: 3451: 3447: 3437: 3428: 3424: 3418: 3409: 3405: 3399: 3366: 3362: 3352: 3299: 3295: 3258: 3251: 3200: 3196: 3190: 3165: 3161: 3155: 3118: 3114: 3104: 3079: 3075: 3069: 3060: 3054: 3037: 2992: 2988: 2965: 2964:R. S. Knox, 2960: 2914: 2897: 2887: 2872: 2867: 2857: 2850: 2838: 2828: 2509: 2505: 2499: 2493: 2490: 2477: 2464: 2459: 2455: 2421: 2414: 2398: 2395:Dark exciton 2389:image states 2388: 2386: 2372: 2368: 2360: 2358: 2342: 2338:John Hubbard 2327: 2121: 2037: 2022: 1891: 1713: 1622: 1610: 1531: 1524: 1518: 1484: 1185: 1049: 1045: 1043: 1026: 1008: 1003: 980: 974: 964: 960: 955: 951: 947: 943: 939: 919: 909: 899:Gerald Mahan 896: 879: 871: 866: 862: 825:wavefunction 822: 807: 804: 789: 766: 756:, including 745: 727: 594:von Klitzing 377: 299:Kondo effect 159:Time crystal 139:Fermi liquid 5477:Quark model 5245:Theta meson 5148:Positronium 5060:Omega meson 5055:J/psi meson 4985:Antineutron 4896:Dark photon 4861:Graviphoton 4820:Stop squark 4528:Down (quark 4225:: 159–181. 4202:10 December 3614:October 11, 2995:(1): 1–12. 2835:temperature 2825:Interaction 2676:). Because 2444:nanoseconds 2332:, but by a 2312:Bohr radius 1514:Bohr radius 1029:femtosecond 869:wavevector 785:positronium 742:bound state 740:can form a 416:Soft matter 337:Ferromagnet 5540:Categories 5219:Heptaquark 5180:Superatoms 5113:Pentaquark 5103:Tetraquark 5085:Quarkonium 4975:Antiproton 4876:Leptoquark 4811:Neutralino 4573:antiquark) 4563:antiquark) 4558:Top (quark 4553:antiquark) 4543:antiquark) 4533:antiquark) 4523:antiquark) 4492:Elementary 4349:1910.03890 4287:1611.04217 3899:2023-12-02 3842:2005.00241 3772:1601.01244 3765:(13): 13. 3168:(3): 191. 3128:2103.17110 3002:1903.02962 2952:References 2032:See also: 932:anthracene 916:fullerenes 829:hydrogenic 810:insulators 758:insulators 744:called an 559:Louis NĂ©el 549:Schrieffer 457:Scientists 351:Spin glass 346:Metamagnet 328:Paramagnet 144:Supersolid 5457:Particles 5402:Particles 5361:Polariton 5351:Plasmaron 5321:Dropleton 5214:Hexaquark 5185:Molecules 5173:Protonium 5050:Phi meson 5035:Rho meson 5007:Xi baryon 4939:Composite 4775:Gravitino 4518:Up (quark 4410:1109.0253 4382:104295452 4320:206656719 4232:1306.0584 3867:0036-8075 3735:119238654 3710:0709.1705 3564:2054-5703 3454:: 39844. 3425:JETP Lett 3336:0031-9007 3309:1403.4270 3210:1407.0691 3082:(1): 17. 3029:119537445 3021:2397-7132 2875:biexciton 2860:polariton 2789:γ 2743:γ 2718:ω 2714:∼ 2674:instanton 2659:γ 2619:ω 2599:γ 2553:ω 2538:γ 2531:∼ 2239:∗ 2221:∗ 2195:∗ 2180:∗ 2164:≡ 2161:μ 2131:ε 2079:μ 2069:ε 1982:κ 1928:ϵ 1849:κ 1829:− 1806:κ 1760:ϵ 1740:− 1673:− 1649:− 1450:≡ 1431:μ 1411:ε 1325:∗ 1307:∗ 1281:∗ 1266:∗ 1247:μ 1221:ε 1147:− 1144:≡ 1105:ε 1090:μ 1078:− 936:tetracene 639:Abrikosov 554:Josephson 524:Van Vleck 514:Luttinger 387:Polariton 319:Diamagnet 239:Conductor 234:Semimetal 219:Insulator 134:Fermi gas 5433:timeline 5285:R-hadron 5240:Glueball 5224:Skyrmion 5158:Tauonium 4871:Inflaton 4866:Graviton 4846:Curvaton 4816:Sfermion 4806:Higgsino 4801:Chargino 4762:Gauginos 4621:Neutrino 4606:Antimuon 4596:Positron 4591:Electron 4501:Fermions 4435:22437498 4374:30962556 4312:29217574 4257:15776603 4087:Archived 3972:Archived 3875:33273099 3809:28408739 3624:cite web 3600:Phys.org 3582:30839677 3488:28117326 3448:Sci. Rep 3344:25170725 3235:25318523 2920:See also 2879:molecule 2853:band gap 2502:polarons 2428:electron 1570:meV and 777:positron 730:electron 689:Category 644:Ginzburg 619:Laughlin 579:Kadanoff 534:Shockley 519:Anderson 474:von Laue 124:Bose gas 18:Excitons 5421:Related 5392:Baryons 5366:Polaron 5356:Plasmon 5331:Fracton 5326:Exciton 5280:Diquark 5275:Pomeron 5250:T meson 5207:Baryons 5168:Pionium 5153:Muonium 5080:D meson 5075:B meson 4980:Neutron 4965:Nucleon 4957:Baryons 4948:Hadrons 4911:Tachyon 4886:Majoron 4851:Dilaton 4780:Photino 4616:Antitau 4583:Leptons 4443:3049881 4415:Bibcode 4354:Bibcode 4292:Bibcode 4274:Science 4237:Bibcode 4047:(1986). 3926:Bibcode 3847:Bibcode 3829:Science 3800:5432032 3777:Bibcode 3715:Bibcode 3573:6170533 3542:Bibcode 3479:5259763 3456:Bibcode 3391:9905143 3371:Bibcode 3314:Bibcode 3243:4470179 3215:Bibcode 3170:Bibcode 3133:Bibcode 3084:Bibcode 2936:Plasmon 2926:Orbiton 2438:in the 2434:and an 2310:is the 2149:is the 1970:is the 1946:is the 1530:and 0.2 1512:is the 918:. This 746:exciton 732:and an 649:Leggett 624:Störmer 609:Bednorz 569:Giaever 539:Bardeen 529:Hubbard 504:Peierls 494:Onsager 444:Polymer 429:Colloid 392:Polaron 383:Plasmon 378:Exciton 5551:Bosons 5397:Mesons 5346:Phonon 5341:Magnon 5263:Others 5233:Mesons 5126:Others 5022:Mesons 4970:Proton 4834:Others 4789:Others 4770:Gluino 4704:Scalar 4684:Photon 4667:Bosons 4510:Quarks 4441:  4433:  4397:Nature 4380:  4372:  4318:  4310:  4255:  4140:  4113:  3873:  3865:  3807:  3797:  3733:  3653:  3580:  3570:  3562:  3486:  3476:  3431:: 658. 3389:  3342:  3334:  3270:  3241:  3233:  3197:Nature 3121:(12). 3045:  3027:  3019:  2571:where 2513:about 2448:phonon 2122:where 1892:where 1485:where 1186:where 687:  654:Parisi 614:MĂĽller 604:Rohrer 599:Binnig 589:Wilson 584:Fisher 544:Cooper 509:Landau 397:Magnon 373:Phonon 214:Plasma 114:Plasma 104:Liquid 69:Phases 5385:Lists 5376:Trion 5371:Roton 5311:Anyon 5138:Atoms 4901:Preon 4841:Axion 4796:Axino 4689:Gluon 4676:Gauge 4439:S2CID 4405:arXiv 4378:S2CID 4344:arXiv 4316:S2CID 4282:arXiv 4253:S2CID 4227:arXiv 3837:arXiv 3767:arXiv 3731:S2CID 3705:arXiv 3412:: 30. 3304:arXiv 3239:S2CID 3205:arXiv 3123:arXiv 3025:S2CID 2997:arXiv 2946:Trion 1000:xenon 564:Esaki 489:Bloch 484:Debye 479:Bragg 469:Onnes 402:Roton 99:Solid 5336:Hole 5163:Onia 5070:Kaon 5030:Pion 4601:Muon 4431:PMID 4370:PMID 4308:PMID 4204:2017 4138:ISBN 4111:ISBN 3922:2021 3871:PMID 3863:ISSN 3805:PMID 3651:ISBN 3630:link 3616:2023 3578:PMID 3560:ISSN 3484:PMID 3387:PMID 3340:PMID 3332:ISSN 3268:ISBN 3231:PMID 3043:ISBN 3017:ISSN 2902:TiSe 2890:Bose 2781:and 2651:and 1603:nm. 1521:GaAs 1048:and 994:and 985:0.01 934:and 812:and 773:hole 634:Tsui 629:Yang 574:Kohn 499:Mott 4611:Tau 4423:doi 4401:483 4362:doi 4300:doi 4278:358 4245:doi 4180:138 4032:107 3934:doi 3855:doi 3833:370 3795:PMC 3785:doi 3723:doi 3691:CuO 3604:doi 3568:PMC 3550:doi 3511:doi 3474:PMC 3464:doi 3379:doi 3322:doi 3300:113 3223:doi 3201:514 3178:doi 3141:doi 3119:129 3092:doi 3007:doi 2456:hop 2417:ion 2038:In 1611:In 1558:4.2 1212:), 1019:1.0 860:. 728:An 189:QCP 109:Gas 79:QCP 5542:: 4437:. 4429:. 4421:. 4413:. 4399:. 4376:. 4368:. 4360:. 4352:. 4340:18 4338:. 4314:. 4306:. 4298:. 4290:. 4276:. 4251:. 4243:. 4235:. 4221:. 4195:. 4158:37 4080:49 4045:60 3932:. 3920:. 3916:. 3891:. 3869:. 3861:. 3853:. 3845:. 3831:. 3827:. 3803:. 3793:. 3783:. 3775:. 3761:. 3757:. 3729:. 3721:. 3713:. 3701:77 3699:. 3626:}} 3622:{{ 3598:. 3576:. 3566:. 3558:. 3548:. 3536:. 3532:. 3507:90 3505:. 3482:. 3472:. 3462:. 3450:. 3446:. 3429:29 3427:. 3408:. 3385:. 3377:. 3367:43 3365:. 3361:. 3338:. 3330:. 3320:. 3312:. 3298:. 3294:. 3282:^ 3237:. 3229:. 3221:. 3213:. 3199:. 3176:. 3166:52 3164:. 3139:. 3131:. 3117:. 3113:. 3090:. 3080:37 3078:. 3023:. 3015:. 3005:. 2991:. 2987:. 2973:^ 2907:. 2870:. 2855:. 2483:. 2462:. 2351:. 2340:. 2314:. 2153:, 1974:, 1950:, 1591:13 1516:. 1195:Ry 1123:Ry 1036:. 1021:eV 1006:. 987:eV 928:eV 894:. 852:Cu 820:. 802:. 760:, 5109:) 5105:( 4822:) 4818:( 4476:e 4469:t 4462:v 4445:. 4425:: 4417:: 4407:: 4384:. 4364:: 4356:: 4346:: 4322:. 4302:: 4294:: 4284:: 4269:. 4259:. 4247:: 4239:: 4229:: 4223:5 4206:. 4146:. 4119:. 4093:. 4058:2 4019:8 3978:. 3965:7 3952:8 3940:. 3936:: 3928:: 3902:. 3877:. 3857:: 3849:: 3839:: 3811:. 3787:: 3779:: 3769:: 3763:8 3753:2 3737:. 3725:: 3717:: 3707:: 3693:4 3689:2 3659:. 3632:) 3618:. 3606:: 3584:. 3552:: 3544:: 3538:5 3517:. 3513:: 3490:. 3466:: 3458:: 3452:7 3410:3 3393:. 3381:: 3373:: 3346:. 3324:: 3316:: 3306:: 3276:. 3245:. 3225:: 3217:: 3207:: 3184:. 3180:: 3172:: 3149:. 3143:: 3135:: 3125:: 3098:. 3094:: 3086:: 3049:. 3031:. 3009:: 2999:: 2993:2 2904:2 2900:- 2898:T 2842:T 2840:k 2809:W 2769:m 2747:4 2737:3 2733:m 2728:/ 2722:4 2711:W 2689:b 2685:r 2639:m 2579:m 2557:2 2548:/ 2542:2 2534:m 2526:b 2522:r 2377:2 2373:p 2369:d 2296:0 2292:a 2269:0 2265:m 2244:) 2234:h 2230:m 2226:+ 2216:e 2212:m 2208:( 2204:/ 2200:) 2190:h 2186:m 2175:e 2171:m 2167:( 2135:r 2105:0 2101:a 2092:0 2088:m 2083:/ 2073:r 2063:= 2058:X 2054:a 2002:r 1958:e 1932:0 1905:0 1901:r 1877:. 1873:] 1868:) 1861:0 1857:r 1852:r 1843:( 1837:0 1833:Y 1825:) 1818:0 1814:r 1809:r 1800:( 1794:0 1789:H 1783:[ 1774:0 1770:r 1764:0 1756:8 1750:2 1746:e 1737:= 1734:) 1731:r 1728:( 1725:V 1710:. 1694:2 1689:) 1682:2 1679:1 1670:n 1666:( 1659:X 1655:R 1646:= 1643:) 1640:n 1637:( 1634:E 1588:= 1583:X 1579:a 1555:= 1550:X 1546:R 1534:0 1532:m 1527:0 1525:m 1498:H 1494:a 1468:2 1464:n 1458:X 1454:a 1445:2 1441:n 1436:) 1425:H 1421:a 1415:r 1405:0 1401:m 1394:( 1390:= 1385:n 1381:r 1355:0 1351:m 1330:) 1320:h 1316:m 1312:+ 1302:e 1298:m 1294:( 1290:/ 1286:) 1276:h 1272:m 1261:e 1257:m 1253:( 1250:= 1225:r 1167:2 1163:n 1157:X 1153:R 1137:2 1133:n 1128:) 1114:2 1109:r 1099:0 1095:m 1084:( 1075:= 1072:) 1069:n 1066:( 1063:E 965:d 963:- 961:d 956:d 954:- 952:d 948:d 944:d 942:- 940:d 880:K 872:K 858:2 854:2 845:r 843:ε 717:e 710:t 703:v 20:)

Index

Excitons


Condensed matter physics

Phases
Phase transition
QCP
States of matter
Solid
Liquid
Gas
Plasma
Bose–Einstein condensate
Bose gas
Fermionic condensate
Fermi gas
Fermi liquid
Supersolid
Superfluidity
Luttinger liquid
Time crystal
Order parameter
Phase transition
QCP
Electronic band structure
Plasma
Insulator
Mott insulator
Semiconductor

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑